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Preface

Data envelopment analysis (DEA) is a linear programming based approach for

measuring relative efficiencies or performances of peer decision making units

(DMUs). The performance or efficiency of a DMU is expressed in terms of a set

of measures which are classified or coined as DEA inputs and outputs. In conven-

tional DEA, each DMU is treated as a black-box and its internal structures and

operations are ignored.

With the publication of the 2nd edition of Handbook on Data Envelopment
Analysis (eds, Cooper et al. 2011), DEA models for treating DMUs that have

internal or network structures have been identified as being on the research frontier

(see, for example, Cook and Seiford 2009, and Liu et al. 2013). In fact, there already

exists a significant amount of research on both the theory and applications of the

network DEA approach. A significant number of researchers and scholars have

started to look into the internal structures of DMUs.

Färe and Grosskopf (1996) are the first to propose DEA models when inputs and

outputs of DMUs form a network structure. Castelli et al. (2004) study several types

of DMU internal structures and develop DEA-type models to measure the overall

and component efficiencies. In a different line of research, Kao and Hwang (2008)

and Liang et al. (2008) model a specific type of internal structure where DMUs are

composed of a two-stage process, namely the output measures from the first stage

become input measures to the second stage. Tone and Tsutsui (2009) develop

slacks-based network DEA model. There are other variations or extensions to the

above earlier work on network DEA models, depending on the particular DMU

network structures. Some are based upon the DEA envelopment form and some on

the DEA multiplier form.

The current handbook serves as a complement to the Handbook on Data
Envelopment Analysis (eds, Cooper et al. 2011) in an effort to extend the frontier

of DEA research. It provides a comprehensive source for the state-of-the art DEA

modeling on internal structures and network DEA.
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Chapter 1 by Cook and Zhu provides a survey on two-stage network performance

decomposition and modeling techniques. Chapter 2 by Chen et al. discusses the

pitfalls in network DEAmodeling. The authors point out that caution should be paid

when models are developed based upon the envelopment or multiplier forms,

because the usual duality (or equivalence) between the DEA envelopment and

multiplier linear models is no longer true. Chapter 3 by Kao discusses efficiency

decompositions in network DEA under three types of structures, namely series,

parallel, and dynamic.

Chapter 4 by Chen, Cook and Zhu studies the determination of the network DEA

frontier. In Chap. 5 the same authors then discuss additive efficiency decomposition

in network DEA. Kao and Hwang present an approach in scale efficiency measure-

ment in two-stage networks in Chap. 6. Sahoo, Zhu and Tone further discuss the

scale efficiency decomposition in two stage networks in Chap. 7.

Chapter 8 by Du et al. offers a bargaining game approach to modeling two-stage

networks. Chen et al. in Chap. 9 study shared resources and efficiency decompo-

sition in two-stage networks. Chapter 10 by Chen introduces an approach to

computing the technical efficiency scores for a dynamic production network and

its sub-processes.

In Chap. 11 Tone and Tsutsui present a slacks-based network DEA. Chapter 12

by Li et al. discusses a DEA modeling technique for a two-stage network process

where the inputs of the second stage include both the outputs from the first stage and

additional inputs to the second stage.

Chapter 13 by Golany, Hackman and Passy presents an efficiency measurement

methodology for multi-stage production systems. Färe, Grosskopf, andWhittaker in

Chap. 14 discuss network DEA models, both static and dynamic. The discussion

also explores various useful objective functions that can be applied to the models to

find the optimal allocation of resources for processes within the black box that are

normally invisible to DEA. Chapter 15 by Castelli and Pesenti provides a compre-

hensive review of various types of network DEA modeling techniques.

In Chap. 16, Cook et al. present shared resources models for deriving aggregate

measures of bank-branch performance, with accompanying component measures

that make up that aggregate value.

In Chap. 17, Cook et al. examine a set of manufacturing plants operating under

a single umbrella, with the objective being to use the component or function

measures to decide what might be considered as each plant’s core business.

Chapter 18 by Cook et al. considers problem settings where there may be

clusters or groups of DMUs that form a hierarchy. The specific case of a set of

electric power plants is examined in this context.
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Chapter 19 by Fukuyama and Weber models bad outputs in two-stage network

DEA. Chapter 20 by Lewis presents an application of network DEA to performance

measurement of Major League Baseball (MLB) teams. Lu et al. in Chap. 21 present

an application of a two-stage network DEA model for examining the performance

of 30 U.S. airline companies. Chapter 22 by Triantis presents two distinct network

efficiency models that are applied to engineering systems.

Toronto, ON, Canada Wade D. Cook

Worcester, MA, USA Joe Zhu
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Chapter 1

DEA for Two-Stage Networks: Efficiency

Decompositions and Modeling Techniques

Wade D. Cook and Joe Zhu

Abstract Data envelopment analysis (DEA) is a method for identifying best

practices among peer decision making units (DMUs). An important area of devel-

opment in recent years has been that devoted to applications wherein DMUs

represent network processes. One particular subset of such processes is those in

which all the outputs from the first stage become inputs to the second stage. We call

these types of DMU structures “two-stage networks”. Existing approaches in

modeling efficiency of two-stage networks can be categorized as using either

Stackelberg (leader-follower), or cooperative game concepts. There are two types

of efficiency decomposition; multiplicative and additive. In multiplicative effi-

ciency decomposition, the overall efficiency is defined as a product of the two

individual stages’ efficiency scores, whereas in additive efficiency decomposition,

the overall efficiency is defined as a weighted average of the two individual stages’

efficiency scores. We discuss modeling techniques used for solving two-stage

network DEA models in linear programs.

Keywords Data envelopment analysis (DEA) • Efficiency • Decomposition

• Game • Intermediate measure • Network • Cooperative • Two-stage

1.1 Introduction

Data envelopment analysis (DEA), introduced by Charnes et al. (1978), is an

approach for identifying best practices among peer decision making units (DMUs)

in the presence of multiple inputs and outputs. In many cases DMUs may consist of

W.D. Cook (*)
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two-stage network structures with intermediate measures. In other words, DMUs

under evaluation share a common feature found in many two-stage network struc-

tures, namely that outputs from the first stage become the inputs to the second stage.

We refer to these as intermediate measures. For example, Seiford and Zhu (1999)

use a two-stage network structure to measure the profitability and marketability of

US commercial banks. In their study, profitability is measured relative to labor and

assets as inputs, and the outputs are profits and revenues. In the second stage, for

marketability, the profits and revenue are then used as inputs, while market value,

returns and earnings per share constitute the outputs. Zhu (2000) applies the same

two-stage network structure to the Fortune Global 500 companies.

Seiford and Zhu (1999) use the standard DEA approach which does not address

potential conflicts between the two stages arising from the intermediate measures.

Namely, the second stage may have to reduce its inputs (intermediate measures) in

order to achieve an ‘efficient’ status. Such an action would, however, imply a

reduction in the first stage outputs, thereby reducing the efficiency of that stage.

Note that these types of DMUs have not only inputs and outputs, but also

intermediate measures that flow from one stage to the other. Each stage may also

have its own inputs and outputs. Recently, a number of studies have focused on

DMUs that appear as two-stage processes. Kao and Hwang (2008) describe a

two-stage process where 24 non-life insurance companies use operating and insur-

ance expenses to generate premiums in the first stage, and then underwriting and

investment profits in the second stage. Other examples include the impact of

information technology use on bank branch performance (Chen and Zhu 2004),

two stage Major League Baseball performance (Sexton and Lewis 2003), health

care applications (Chilingerian and Sherman 2004), and many others.

Kao and Hwang (2008) define the overall efficiency of the DMU as the product of

the efficiencies of the two stages. Such multiplicative efficiency decomposition is

also studied in Liang et al. (2008), where three DEA models/efficiency decomposi-

tions are developed using game theory concepts. More recently, Chen et al. (2009b)

present a methodology for representing overall radial efficiency of a DMU as an

additive weighted average of the radial efficiencies of the individual stages or

components that make up the DMU. Cook et al. (2010) extend the additive decom-

position approach of Chen et al. (2009b) into more general network structures.

In a review study done by Cook et al. (2010), the authors classify various existing

DEA models for measuring efficiency in the aforementioned two-stage network

structures or processes. The models fall into four categories: standard DEA approach;

efficiency decomposition approach; network DEA approach; and game theoretic

approach. Except for the standard DEA approach, all other approaches attempt to

correct for the above-referenced conflict issue existing between the two stages.

The rest of the chapter is organized as follows. Section 1.2 presents the generic

two-stage process and a general literature review and classification of papers

dealing with DMUs having such processes.

2 W.D. Cook and J. Zhu



In Sects. 1.3 and 1.4, we discuss the efficiency decomposition methodology and

game-theoretic approaches. We begin with the work by Liang et al. (2006) where

DEA models are developed to measure the performance of supply chains with two

members. In their study, because some of the inputs to the second stage are not from

the first stage, one of the DEA models is non-linear. However, if we apply their

approach to our two-stage processes, and use the overall efficiency definition from

Kao and Hwang (2008), we can obtain linear DEA models as in Liang et al. (2008).

This establishes the relationships among the works of Liang et al. (2006), Castelli

et al. (2004), Kao and Hwang (2008) and Liang et al. (2008). These approaches are

then re-categorized as (1.1) the centralized models of Kao and Hwang (2008) and

Liang et al. (2008), and (1.2) the non-cooperative (or leader-follower) model. It is

shown how to test for uniqueness of the efficiency decomposition.

We then proceed to the network DEA approach in Sect. 1.5. We show that the

Kao and Hwang (2008) model and the centralized model of Liang et al. (2008) are

equivalent to the network DEA approach of Färe and Grosskopf (1996). Note the

fact that, as demonstrated in Chen et al. (2009a), Chen and Zhu’s (2004)model under

the CRS assumption is equivalent to the Kao and Hwang (2008) model. As a result,

we establish the equivalence among these models in dealing with two-stage pro-

cesses. We discuss as well the determination of the efficient frontier of the two-stage

process. Since it is possible that no single DMU is efficient, the standard DEA

projections can no longer be used to generate the frontier. See Chen et al. (2010a,

2013) on issues related to DEA frontier identification under network DEA models.

Section 1.6 presents a technique for solving non-linear network DEA models via

linear programming problems. Such a technique is often used in additive efficiency

decompositions (see, e.g., Liang et al. 2006, 2011, 2013). Section 1.7 discusses a

two-stage network structure where outputs from the second stage can be fed back as

inputs to the first stage (Liang et al. 2011). Conclusions appear in Sect. 1.8.

1.2 Classification of Network DEA Modeling

Consider a generic two-stage network structure or process as shown in Fig. 1.1. Using

the notation of Chen and Zhu (2004), we assume each DMUj ( j ¼ 1, 2, . . ., n) has
m inputs xij, (i ¼ 1, 2, . . ., m) to the first stage, and D outputs zdj, (d ¼ 1, 2, . . ., D)

xij,i = 1,2,...,m zdj,d = 1,2,...,D yrj,r = 1,2,...,s

Stage 1 Stage 2 

DMUj, j = 1,2,...,n

Fig. 1.1 Two-stage process

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 3



from that stage. These D outputs then become the inputs to the second stage and

will be referred to as intermediate measures. The outputs from the second stage are

yrj, (r ¼ 1, 2, . . ., s).

We denote the efficiency for the first stage as e1j and second stage as e
2
j , for each

DMUj. Using the Constant Returns to Scale (CRS) DEA model of Charnes

et al. (1978), we define

e1j ¼

XD
d¼1

wdzdj

Xm
i¼1

vixij

and e2j ¼

Xs
r¼1

uryrj

XD
d¼1

ewdzdj

ð1:1Þ

where vi, wd, ewd , and ur are unknown non-negative weights. Note that wd can be

equal to ewd .

There are four types of papers that use various approaches to the modeling of

efficiency of DMUs with two-stage processes. Some approaches are equivalent.

1.2.1 Standard DEA Methodology

The first type simply uses the standard DEA model. i.e. two separate DEA runs

are applied to the two stages to calculate e1j and e2j , respectively. For example,

Chilingerian and Sherman (2004) describe a two-stage process in measuring

physician care. Their first stage is a manager-controlled process with inputs

including registered nurses, medical supplies, and capital and fixed costs. These

inputs generate the outputs or intermediate measures (inputs to the second

stage), including patient days, quality of treatment, drugs dispensed, among

others. The outputs of the second (physician controlled) stage include research

grants, quality of patients, and quantity of individuals trained, by specialty.

Other examples include Fortune 500 companies performance (Seiford and Zhu

1999; Zhu 2000). Similar to Seiford and Zhu (1999), Sexton and Lewis (2003)

also use the standard DEA approach where in one of their standard DEA

models, projected (efficient) intermediate measures are used in the second

stage efficiency calculation.

However, as discussed earlier, such an approach does not treat zdj in a coordi-

nated manner. For example, suppose the first stage is DEA efficient and the second

stage is not. When the second stage improves its performance, by reducing the

inputs zdj via an input-oriented DEA model, the reduced zdj may render the first

stage inefficient.

4 W.D. Cook and J. Zhu



1.2.2 Efficiency Decomposition Methodology

It is useful to point out that given individual efficiency measures e1j and e2j , for

stages 1 and 2, respectively, it is reasonable to define the efficiency of the overall

two-stage process either as 1
2

e1j þ e2j

� �
or e1j � e2j . If the input-oriented DEA model

is used, then we should as well require that e1j � 1 and e2j � 1. The above definition

ensures that the two-stage process is efficient if and only if e1j ¼ e2j ¼ 1.

If we define ej ¼

Xs
r¼1

uryro

Xm
i¼1

vixio

as the two-stage overall efficiency, then we arrive at

another type of research, as in Kao and Hwang (2008) who describe a two-stage

process where 24 non-life insurance companies use operating and insurance

expenses to generate premiums in the first stage, and then underwriting and

investment profits in the second stage. As in Kao and Hwang (2008), we have

ej ¼ e1j � e2j at optimality provided we assume wd ¼ ewd. Note that such a decom-

position of efficiency is not available in the standard DEA approach, and the

network DEA approaches.

1.2.3 Network DEA

We point out that in these above examples, it is the case that the intermediate

measures are the only inputs to the second stage, i.e., there are no additional

independent inputs to that stage. There are, of course, other types of two-stage

processes and even DMUs with network structures that may have inputs to the

second stage in addition to the intermediate measures. In a more general

situation than two-stage processes, Castelli et al. (2004) discuss DMUs with

two-stage and two-layer structures. The network DEA approach of Färe and

Whittaker (1995) and Färe and Grosskopf (1996), and the slacks-based network

DEA approach of Tone and Tsutsui (2009, 2010) may involve more than

two stages. Fukuyama and Weber (2010) considers a slacks-based measure for

a two-stage process with bad outputs. More recently, Chen (2009) developed a

network DEA model incorporating dynamic effects in production networks.

A number of empirical studies have used this type of DEA technique, see,

e.g., Avkiran (2009), and Yu and Lin (2008), among others. We call these

network DEA approaches.

Similar network DEA approaches are used in two-stage processes described in

Fig. 1.1. For example, Chen and Zhu (2004) study the impact of information

technology use on bank branches performance (Wang et al. 1997). Under the

assumption of variable returns to scale (VRS), Chen and Zhu (2004) and

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 5



Chen et al. (2006) develop linear and non-linear models for measuring the impact of

information technology on the firm performance via a two-stage process. However,

their individual stage efficiency scores do not provide information on the overall

performance and best-practices of the two-stage process.

1.2.4 Game-Theoretic Approaches

The fourth type of approach uses game theory concepts. It originates from the

work of Liang et al. (2006) who use DEA to measure the performance of supply

chains with two members (as in a manufacturer-retailer setting, for example).

In Liang et al. (2006), the concepts of the Stackelberg game (or leader-follower)

and the cooperative game are used to develop models for measuring performance

in supply chain settings. We should point out that in their paper, the second

stage(retailer) has not only the inputs from the first stage (manufacturer), but

also its own inputs not linked with the first stage, i.e. additional inputs to the

second stage are introduced (see, for example, Fig. 1.2 above). As a results,

e2j ¼

Xs
r¼1

uryrj

XD
d¼1

ewdzdjþ
XH
h¼1

Qhx
2
hj

, where x2hj (h ¼ 1,. . ., H) are inputs to the second stage

that are not related to the first stage. In this case, it may be more convenient and

tractable to express the overall efficiency as 1
2

e1j þ e2j

� �
, since the alternative,

namely e1j � e2j , results in a highly non-linear problem.

We note that their models can actually be directly applied to the two-stage process

described in Fig. 1.1, since if there are no additional inputs x2hj (h ¼ 1,. . ., H), the

structure of their two-member supply chain is identical to the two-stage process

shown. Liang et al. (2008) provide detailed models for the two-stage process using

the same modeling principle as in Liang et al. (2006).

While the current chapter focuses on the two-stage processes that have only the

intermediate measures linking the stages, we will discuss the relations among DEA

models for specific two-stage processes, and for the more general network

structures.

Stage 1 Stage 2 

zdj,d = 1…D

xij,i = 1,…m yrj,r = 1…s

xhj      ,h = 1,…Hstage−2

Fig. 1.2 Two-stage process

with additional inputs to the

second stage

6 W.D. Cook and J. Zhu



1.3 Centralized Model

Liang et al. (2006) show that using the concept of cooperative game theory, or

centralized control, the two stage process can be viewed as one where the stages

jointly determine a set of optimal weights on the intermediate factors to maximize

their efficiency scores. This would be the case in situations where the manufacturer

and retailer jointly determine prices, order quantities, etc., to achieve maximum

profit (Huang and Li 2001). In other words, the cooperative or centralized approach

is characterized by lettingwd ¼ ewd in (1.1), and the efficiency scores of both stages

are optimized simultaneously. The optimization can be based upon maximizing the

average of e1o and e2o in a non-linear program as in Liang et al. (2006), Kao and

Hwang (2008), and Liang et al. (2008). However, it is noted that because of the

assumption wd ¼ ewd in (1.1), e1o � e2o becomes

Xs
r¼1

uryro

Xm
i¼1

vixio

. Therefore, instead of

maximizing the average of e1o and e2o, we have

ecentralizedo ¼ Max e1o � e2o ¼

Xs
r¼1

uryro

Xm
i¼1

vixio

s:t: e1j < 1 and e2j < 1 and wd ¼ ewd:

ð1:2Þ

Model (1.2) can be converted into the following linear program format:

ecentralizedo ¼ Max
Xs
r¼1

uryro

s:t:
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � , i ¼ 1, 2, . . . ,m; ur � ,

r ¼ 1, 2, . . . , s

ð1:3Þ

Model (1.3) is the Kao and Hwang (2008) model and the centralized model

developed in Liang et al. (2008). Note that constraints
Xs
r¼1

uryrj �
Xm
i¼1

vixij � 0 are

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 7



redundant in Kao and Hwang’s (2008) model, since
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 and

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 imply
Xs
r¼1

uryrj �
Xm
i¼1

vixij � 0.

Model (1.3) gives the overall efficiency of the two-stage process. Assume the

above model (1.3) yields a unique solution. We can then obtain

e1,centralizedo ¼

XD
d¼1

w�
dzdo

Xm
i¼1

v�i xio

¼
XD
d¼1

w�
dzdo and e2,centralizedo ¼

Xs
r¼1

u�r yro

XD
d¼1

w�
dzdo

ð1:4Þ

as the efficiencies for the first and second stages, respectively. If we denote

the optimal value to model (1.3) as ecentralizedo , then we have

ecentralizedo ¼ e1;centralizedo � e2;centralizedo .

If only one layer is considered in the internal structure of Castelli et al. (2004),

then the same above efficiency decomposition can be obtained. Therefore, the

approaches of Castelli et al. (2004) and Kao and Hwang (2008) can be viewed as

cooperative game models.

As noted in Kao and Hwang (2008), optimal multipliers from model (1.3) may

not be unique. They propose deriving the maximum achievable value of e1;centralizedo

or e2;centralizedo . In fact, as shown in Liang et al. (2008), their models can also be used

to test whether e1;centralizedo and e2;centralizedo , obtained from model (1.3), are unique.

The maximum achievable value of e1;centralizedo can be determined via

e1þo ¼ Max
XD
d¼1

wdzdo

s:t:
Xs
r¼1

uryro ¼ ecentralizedo

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0,

r ¼ 1, 2, . . . , s

ð1:5Þ

8 W.D. Cook and J. Zhu



This yields the minimum of e2;centralizedo , namely, e2�o ¼ e centralized
o

e1þo
. The maximum of

e2;centralizedo can be calculated via the following linear program,

e2þo ¼ Max
Xs
r¼1

uryro

s:t:
Xs
r¼1

uryro � ecentralizedo �
Xm
i¼1

vixio ¼ 0

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdo ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s,

ð1:6Þ

and the minimum of e1;centralizedo is then calculated as e1�k ¼ ecentralizedo /e2þo Note that

e1�o ¼ e1þo if and only of e2�o ¼ e2þo . Note also if e1�o ¼ e1þo or e2�o ¼ e2þo , then

e1;centralizedo and e2;centralizedo are uniquely determined via model (1.3). If e1�o 6¼ e1þo or

e2�o 6¼ e2þo , Liang et al. (2008) develop a procedure to obtain an alternative decom-

position of e1;centralizedo and e2;centralizedo .

Table 1.1 presents data on 24 non-life insurance companies in Taiwan where

there are two intermediate measures (Kao and Hwang 2008). The two inputs to the

first stage (premium acquisition) are Operating expenses and Insurance expenses.

The intermediate measures (or the outputs from the first stage) are Direct written

premiums and Reinsurance premiums. The outputs of the second stage (profit

generation) are Underwriting profit and Investment profit.

The efficiency scores for the two individual stages are calculated based upon

(1.4) via a set of optimal solutions from model (1.3) (see the 2nd, 3rd and 4th

columns of Table 1.2). Note that the efficiency decompositions are identical to

those in Kao and Hwang (2008). In fact, the use of models (1.5) and (1.6) indicates

that e1�o ¼ e1þo and e2�o ¼ e2þo for all the DMUs. Therefore, the e1;centralizedo and

e2;centralizedo defined in (1.4), or the efficiency decompositions in Kao and Hwang

(2008), are uniquely determined via model (1.3).

1 DEA for Two-Stage Networks: Efficiency Decompositions and Modeling Techniques 9
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1.4 Stackelberg Game

In the previous section we examined the cooperative or centralized game approach

to the two stage problem. In this section we look at the two-stage process from

the perspective of the non-cooperative game. The non-cooperative approach is

characterized by the leader-follower, or Stackelberg game. For example, consider

a case of a supply chain where there is non-cooperative advertising on the part of

the manufacture (leader) and the retailer (follower). The manufacturer determines

its optimal brand name investment and local advertising allowance based on

an estimation of the local advertisement by the retailer to maximize its profit. The

retailer, as a follower on the other hand, based on the information from the

manufacturer, determines the optimal local advertisement cost to maximize its

profit (Huang and Li 2001).

In a similar manner, if we assume that the first stage is the leader, then the first

stage performance is more important, and the efficiency of the second stage is

computed subject to the requirement that the efficiency of the first stage is to stay

fixed. We first calculate the efficiency for the first stage. Based upon the CRS

model, we have for a specific DMUo

e1�o ¼ Max
XD
d¼1

wdzdo

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m:

ð1:7Þ

Note that model (1.7) is in fact the standard (CCR) DEA model. i.e., e1�o is the

regular DEA efficiency score.

Once we obtain the efficiency for the first stage, the second stage will only

consider wd that maintains e1o ¼ e1�o . Or, in other words, the second stage now treatsXD
d¼1

wdzdj as the “single” input subject to the restriction that the efficiency score of

the first stage remains at e1�o . The model for computing e2o, the second stage’s

efficiency, can be calculated as (Liang et al. 2008)
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e2�o ¼ Max

Xs
r¼1

Uryro

Q
XD
d¼1

wdzdo

s:t:

Xs
r¼1

Uryrj

Q
XD
d¼1

wdzdj

� 1 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

XD
d¼1

wdzdo ¼ e1�o

Ur,Q,wd, vi � 0, r ¼ 1, 2, . . . , s; d ¼ 1, 2, . . . ,D; i ¼ 1, 2, . . . ,m

ð1:8Þ

Note that in model (1.8), the efficiency of the first stage is set equal to e1�o . Let

ur ¼ Ur

Q , r ¼ 1, 2, . . . , s.Model (1.8) is then equivalent to the following linearmodel

e2�o ¼ Max
Xs
r¼1

uryro

 !
=e1�o

s:t:
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

XD
d¼1

wdzdo ¼ e1�o

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s

ð1:9Þ

In a similar manner, if we take the second stage as the leader, we then calculate

the regular DEA efficiency (e2
o

o ) for the second stage first using the CCR model.
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Once we obtain the second stage efficiency, the efficiency for the first stage, namely

e1
o

o , is calculated via the following linear program (see Liang et al. 2008)

1

e1
o

o

¼ Min
Xm
i¼1

vixio

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdo ¼ 1

Xs
r¼1

uryro ¼ e2
o

o

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s

ð1:10Þ

We note that in (1.9), e1�o � e2�o ¼
Xs
r¼1

u�r yro at optimality, with
Xm
i¼1

v�i xio ¼ 1. i.e.,

e1�o � e2�o ¼

Xs
r¼1

u�r yro

Xm
i¼1

v�i xio

. Note also that at optimality,

Xs
r¼1

u�r yro

Xm
i¼1

v�i xio

¼ e1
o

o � e2oo in model

(1.10). This indicates that the leader-follower approach also implies an efficiency

decomposition for the two-stage process. i.e., the overall efficiency is a product of

efficiencies of individual stages. Further, note that in the first-stage leader case, e1�o
and e2�o , and in the second-stage leader case, e1

o

o and e2
o

o , are optimal values to linear

programs. Therefore, such efficiency decomposition is unique, and is not affected

by possible multiple optimal solutions. However, the two approaches may not yield

the same efficiency decomposition.

Note that ultimately, a common set of weights is used at both stages in both

centralized and Stackelberg game approaches. However, in the Stackelberg game

approach, the efficiency scores of two stages, e1o and e2o, are not optimized

simultaneously.

Liang et al. (2008) also study the relationships among non-cooperative and

centralized models and the standard DEA approach. We here summarize their

findings.

Let θ1o and θ2o be the standard CRS efficiency scores for the two stages.
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Theorem 1 If there is only one intermediate measure, then e1�o ¼ θ1o and e2�o ¼ θ2o
regardless of the assumption of whether the first stage is a leader or follower, where

e1�o and e2�o are obtained via the non-cooperative approach.
Theorem 1 indicates that when there is only one intermediate measure, the

non-cooperative approach yields the same result as applying the standard DEA

model to each stage.

Under the condition of multiple intermediate measures, we have

Theorem 2 For a specific DMUo, e
centralized
o � e1�o � e2�o , where ecentralizedo is the

optimal value to model (1.3), and e1�o and e2�o are obtained via the non-cooperative
(leader-follower) approach.

Based upon Theorems 1 and 2, we must have

Theorem 3 If there is only one intermediate measure, then ecentralizedo ¼ θ1o � θ2o
with θ1o ¼ e1;centralizedo and θ2o ¼ e2;centralizedo , where θ1o and θ2o are the CRS

efficiency scores for the two stages, respectively, and e1;centralizedo and e2;centralizedo

are defined in (1.4).
When there is only one intermediate measure, Theorem 3 indicates that (i) both

the non-cooperative and centralized models yield the same result as applying the

standard DEA model to each stage, and (ii) the efficiency decomposition is unique.

We finally note that the following is true with respect to the relations between the

non-cooperative and centralized approaches.

Theorem 4

(i) e1;centralizedo � e1�0 and θ2o(¼e2�o ) � e2;centralizedo when the second stage is the
leader,

(ii) e2;centralizedo � e2�o and θ1o(¼e1�o ) > e1;centralizedo when the first stage is the leader.

The results in Table 1.2 also verify Theorems 2 and 4. We finally note that

ecentralizedo ¼ e1�o � e2�o holds for 12 DMUs (50 % of the companies), where e1�o and

e2�o represent the efficiency scores for the two stages when the first stage is treated as

the leader. Note also that ecentralizedo ¼ e1
o

o � e2oo holds for only one DMU, namely

DMU 6, where e1
o

o and e2
o

o represent the efficiency scores for the two stages when the

second stage is treated as the leader. This may indicate that the first stage or the

premium-generating stage is more important.

1.5 Network DEA

If we model the two-stage process shown in Fig. 1.1 using the network approach of

Färe and Grosskopf (1996), we have
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min
Θ, λj, μj,ez Θ
subject to

stage 1ð ÞXn
j¼1

λjxij � Θxijo i ¼ 1, . . . , m

Xn
j¼1

λjzdj � ezdjo d ¼ 1, . . . , D

λj � 0, j ¼ 1, . . . , n

stage 2ð ÞXn
j¼1

μjzdj � ezdjo d ¼ 1, . . . , D

Xn
j¼1

μjyrj � yrjo r ¼ 1, . . . , s

μj � 0, j ¼ 1, . . . , n

ð1:11Þ

where ezdjo are set as decision variables related to the intermediate measures.

Model (1.11) is equivalent to the following model

min
Θ, λj, μj,ez Θ
subject toXn
j¼1

λjxij � Θxijo i ¼ 1, . . . , m

Xn
j¼1

λj � μj
� �

zdj � 0 d ¼ 1, . . . , D

Xn
j¼1

μjyrj � yrjo r ¼ 1, . . . , s

λj, μj � 0, j ¼ 1, . . . , n

ð1:12Þ

Model (1.12) is the dual to the centralized model (1.3). Therefore, the network

DEA approach of Färe and Grosskopf (1996) yields results equivalent to the

centralized model (1.3) of Liang et al. (2008) and Kao and Hwang (2008).

Chen et al. (2009a) show that the following CRS version of the Chen and Zhu’s

(2004) model is equivalent to model (1.3). (If we add the convexity constraints

∑ λj ¼ ∑ μj ¼ 1 into model (1.13), then model (1.13) becomes the original Chen

and Zhu (2004) model under the variable returns to scale assumption.)
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min
α, β, λj, μj,ez α� β

subject to

stage 1ð ÞXn
j¼1

λjxij � αxijo i ¼ 1, . . . , m

Xn
j¼1

λjzdj � ezdjo d ¼ 1, . . . , D

λj � 0, j ¼ 1, . . . , n

α � 1

stage 2ð ÞXn
j¼1

μjzdj � ezdjo d ¼ 1, . . . , D

Xn
j¼1

μjyrj � βyrjo r ¼ 1, . . . , s

μj � 0, j ¼ 1, . . . , n

β � 1

ð1:13Þ

Thus, since both the network DEA model (1.11) and model (1.13) are equivalent

to model (1.3), they ((1.11) and (1.13)) must then be equivalent to each other. This

implies that β ¼ 1 at optimality in model (1.13).

Chen et al. (2010a) demonstrate that the centralized model (1.3) may not yield

information on the efficient frontier of the two-stage process in Fig. 1.1. In other

words, due to the existence of intermediate measures, the usual procedure of

adjusting the inputs or outputs by the efficiency scores obtained from model (1.3),

as in the standard DEA approach, does not necessarily yield a frontier projection.

We note that the network DEA approach only provides information on the overall

efficiency of the two-stages, and does not yield information on the individual stages.

However, the equivalence between models (1.11) and (1.13) indicates that the

network DEA approach generates an efficient frontier point, since model (1.13)

ensures that a frontier point is obtained if α < 1 in optimality. SeeChen et al. (2010a).

1.6 Searching for the Global Optimal Solution

While in the previous sections, the DEA models can be converted into linear pro-

grams due to the specific nature of two-stage network processes depicted in Fig. 1.1.

A slight modification to Fig. 1.1, for example, by introducing additional (inde-

pendent) inputs to the second stage, the resulting models are not necessarily linear.
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For example, Li et al. (2012) considers a situation depicted in Fig. 1.2, where

inputs to the second stage are denoted as x
stage�2
hj (h ¼ 1, 2, . . ., H).

Model (1.2) now becomes

maxθ o
1
�θ o

2 ¼ max

XD
d¼1

wdzdo

Xm
i¼1

vixio

�

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
stage�2
ho

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
stage�2
hj

� 1 8j

vi,wd,Qh, ur � 0, 8i, d, h, r

ð1:14Þ

where θo1 and θ
o
2 represent the ratio efficiencies for stages 1 and 2, respectively. Due to

the additional inputs to the second stage
XH
h¼1

Qhx
stage�2
ho

 !
, model (1.13) cannot be

converted into a linear program. Li et al. (2012) introduce a heuristic method to solve

this problem. In fact, such a heuristicmethod can be found inLiang et al. (2006, 2011),

and Du et al. (2011). Further, such a heuristic method can be used when an additive

form of objective function of model (1.2) is used, namely, Lim and Zhu (2013)

max

XD
d¼1

wdzdo

Xm
i¼1

vixio

þ

Xs
r¼1

uryro

XD
d¼1

wdzdo

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1, j ¼ 1, . . . , n

Xs
r¼1

uryrj

XD
d¼1

wdzdj

� 1 j ¼ 1, . . . , n

wd � 0, d ¼ 1, 2, . . . ,D; vi � , i ¼ 1, 2, . . . ,m; ur � , r ¼ 1, 2, . . . , s

ð1:15Þ
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Next we apply the following transformation to model (1.15):

t1 ¼ 1X
vixio

, t2 ¼ 1X
wdzdo

ωi ¼ t1vi, c
1
d ¼ t1wd, μr ¼ t2ur, c2d ¼ t2wd

Note that in the above transformation, c1d ¼ t1wd and c2d ¼ t2wd imply a linear

relationship between c1d and c2d. Therefore, we can assume c2d ¼ hc1d , where h is a

positive real number. Then model (1.15) (Cook and Hababou 2001) can be

transformed into:

max
XD
d¼1

c1dzdo þ
Xs
r¼1

μryro

s:t:
XD
d¼1

c1dzij �
Xm
i¼1

ωixij

Xs
r¼1

μryrj �
XD
d¼1

c2dzij

Xm
i¼1

ωixio ¼ 1

XD
d¼1

c2dzio ¼ 1

c2d ¼ hc1d

c1d, c
2
d � 0, d ¼ 1, 2, . . . ,D; ωi � , i ¼ 1, 2, . . . ,m;

μr � , r ¼ 1, 2, . . . , s, h > 0

ð1:16Þ

Taking h as a parameter, model (1.16) can be considered a parametric linear

program, and it can be solved via a simple line search method over a certain range

of h, as is done in Liang et al. (2006).

To secure a search range of h, it is needed to calculate a lower bound and an

upper bound on h, which can be done similarly with Liang et al. (2006). See Lim

and Zhu (2013) for a detailed discussion and a numerical example.

1.7 Two Stage Network System with Feedbacks

Liang et al. (2011) extend the basic two-stage network system as shown in Fig. 1.1 to

include situationswhere outputs from the second stage can be fed back as inputs to the

first stage. Such feed-back variables thus serve a dual role. Liang et al (2011) develop

models for examining performance under such feedback setting (see Fig. 1.3).
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Note that both intermediate variables and the feed-back variables constitute what

Cook et al. (2006) and Cook and Zhu (2007) call dual-role variables, in that they

play a role of both output and input simultaneously.

To gain a sense of how feedback, as pictured in Fig. 1.3, might materialize in a

practical setting, consider an example involving highway resurfacing. Liang

et al. (2011) point out many highway resurfacing operations can be thought of as

constituting a multi stage process. The way it often works is as follows: A machine

passes over the old pavement and planes or grinds off the top damaged layer of

asphalt. Generally, a truck follows behind the grinding machine, and the used

asphalt is deposited into that truck, which then takes it off to a storage area. At a

somewhat later time (the same day or even much later), a paving machine passes

over the piece of highway, and the resurfacing process takes place. That is, asphalt

is brought from a processing plant and deposited into a paving machine that runs

over the road and puts the new surface on.

The resurfacing operation described, might be viewed as a two-stage process

as follows:

Stage 1 might be regarded as the asphalt plant where the raw material (asphalt) is

prepared. Note that in most cases new asphalt is prepared and then mixed with

used asphalt (from a storage site).Using reclaimed asphalt has become a com-

mon practice. This is a less expensive way to resurface highways, and the

resulting quality is nearly as good as using all new materials. There are

recommended percentages regarding the mix of old and new asphalt to get

varying life spans from the resurfaced structure. The inputs to this first stage

are then the materials, including the old asphalt from the storage area. The output

is the prepared asphalt ready to be taken to the resurfacing site.

Stage 2 is the actual resurfacing operation. Inputs include the prepared asphalt from

Stage 1, together with a grinding machine, paving machine, manpower, etc. The

output from this stage is the reclaimed old pavement from the grinding process,

and the resulting resurfaced piece of road created by the paving machine.

Clearly, one might choose to call the grinding process Stage 2 and the paving

process that follows, Stage 3.

Note that in this problem one does not normally use the reclaimed pavement

from stage 2 (that is taken off to a storage area) as the input to stage 1, but rather old

pavement that went to the storage area earlier, from some other paving job. This is

because all processes where finished goods become part of the input to make more

finished goods (feedback) appear as a time series. Nothing is really fed back to the

past but fed forward to the future.

xij zdj
yrj

fgjfgj

Stage 1 Stage 2
Fig. 1.3 Two-stage

process with feedback
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Another example is bank branch operations where employees and assets are used

to generate deposits in the first stage, which become inputs to a second stage which

generates loans and profits as outputs. Part of the profits generated in the second

stage is then re-invested in the first stage, as capital to finance the ongoing

operation, and constituting a form of self-regenerative process.

Liang et al. (2011) develop a base model where the (additive) average of two

stages’ efficiency scores is defined as the overall efficiency as in Chen

et al. (2009b). This base average model can be regarded as a centralized model

(Liang et al. 2008). To adopt the concept of leader-follower approach, Liang

et al. (2011) then develop a bi-level model.

In addition to the notation used in the previous sections related to Fig. 1.1,

we have outputs fgj (g ¼ 1, 2, . . ., p) that flow back to stage 1 and become part of the

set of inputs to the first stage. We refer to the fgj as feedback variables. The zdj and fgj
can then be regarded as dual-role variables in the sense of Cook et al. (2006) and

Cook and Zhu (2007).

Using additive efficiency decomposition, model (1.2) becomes

Max
1

2

XD
d¼1

hdzd0

Xm
i¼1

vixi0 þ
Xp
g¼1

wg f g0

þ

Xp
g¼1

wgf g0 þ
Xs
r¼1

uryr0

XD
d¼1

hdzd0

0
BBBB@

1
CCCCA

s:t:

XD
d¼1

hdzdj

Xm
i¼1

vixij þ
Xp
g¼1

wgf gj

� 1

Xp
g¼1

wg f gj þ
Xs
r¼1

uryrj

XD
d¼1

hdzdj

� 1

vi,wg, hd, ur � 0

ð1:17Þ

where vi, ur, wg and hd are unknown weights. Note that it is assumed each stage

applies the same weights hd on the intermediate measures and wg on the feedback

variables fgj.
To create a more tractable version of (1.17) (which, in its current form, is highly

nonlinear), we propose the following change of variables in the spirit of Charnes

and Cooper (1962). Specifically, let t1 ¼ 1Xm
i¼1

vixi0þ
Xp
g¼1

wgf g0

, t2 ¼ 1XD
d¼1

hdzd0

, and

β ¼ t1
t2
, νi ¼ t1vi, ς1d ¼ t1hd, ω1

g ¼ t1wg, μr ¼ t2ur, ς2d ¼ t2hd, ω2
g ¼ t2wg. Note that

ς1d
ς2
d

¼ ω1
g

ω2
g
¼ t1

t2
¼ β, and then model (1.17) is equivalent to the following problem:
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Max
1

2
β þ

Xp
g¼1

ω2
g f g0 þ

Xs
r¼1

μryr0

 !

s:t: β
XD
d¼1

ς2dzdj �
Xm
i¼1

vixij � β
Xp
g¼1

ω2
g f gj � 0

Xp
g¼1

ω2
g f gj þ

Xs
r¼1

μryrj �
XD
d¼1

ς2dzdj � 0

Xm
i¼1

vixi0 þ β
Xp
g¼1

ω2
g f g0 ¼ 1

XD
d¼1

ς2dzd0 ¼ 1

νi, ς2d,ω
2
g, μr � 0

ð1:18Þ

Note that β ¼ t1
t2
¼

XD
d¼1

hdzd0

Xm
i¼1

vixi0þ
Xp
g¼1

wgf g0

� 1, and β > 0, i.e. β ∈ (0, 1]. Now, let

νi ¼ βυi, ςd ¼ ς2d, ωg ¼ ω2
g. Model (1.18) is then equivalent to the following

model:

Max
1

2
β þ

Xp
g¼1

ωg f g0 þ
Xs
r¼1

μryr0

 !

s:t:
XD
d¼1

ςdzdj �
Xm
i¼1

υixij �
Xp
g¼1

ωg f gj � 0

Xp
g¼1

ωg f gj þ
Xs
r¼1

μryrj �
XD
d¼1

ςdzdj � 0

β
Xm
i¼1

υixi0 þ
Xp
g¼1

ωg f g0

 !
¼ 1

XD
d¼1

ςdzd0 ¼ 1

νi, ςd,ωg, μr � 0

ð1:19Þ

Given that model (1.19) is still a nonlinear problem, we can view it as a

parametric linear programming program, with β∈(0, 1] as the parameter. One can

search over β, and pick values that are optimal to model (1.19).

In model (1.19), at optimality, the chosen β and the resultingXp
g¼1

ω�
g f g0 þ

Xs
r¼1

μ�r yr0 are efficiency scores for stages 1 and 2, respectively. Yet, it
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is likely that model (1.19) has alternative optimal solutions, meaning that efficiency

scores for the two stages may not be uniquely determined. Due to our search

approach, we actually obtain all possible pairs of β and
Xp
g¼1

ω�
g f g0 þ

Xs
r¼1

μ�r yr0 that

are optimal solutions to model (1.19). Therefore, we can select one pair as our

efficiency scores. For example, we can choose a pair β and
Xp
g¼1

ω�
g f g0 þ

Xs
r¼1

μ�r yr0

that minimizes the efficiency gap between the two stages. Alternatively, we can

choose a pair of efficiency scores that has the maximum β value (stage 1’s efficiency

is maximized), or maximum
Xp
g¼1

ω�
g f g0 þ

Xs
r¼1

μ�r yr0 (stage 2’s efficiency is

maximized).

Note that in fact, for a given β, model (1.19) is equivalent to

ψ ¼ Max
Xp
g¼1

ωg f g0 þ
Xs
r¼1

μryr0

s:t:
XD
d¼1

ςdzdj �
Xm
i¼1

υixij �
Xp
g¼1

ωg f gj � 0

Xp
g¼1

ωg f gj þ
Xs
r¼1

μryrj �
XD
d¼1

ςdzdj � 0

β
Xm
i¼1

υixi0 þ
Xp
g¼1

ωg f g0

 !
¼ 1

XD
d¼1

ςdzd0 ¼ 1

νi, ςd,ωg, μr � 0

ð1:20Þ

For some chosen β, model (1.20) (or model (1.19)) may be infeasible. Letting

βmax be the largest β for which model (1.20) is feasible, we have

Theorem 5 For any β∈(0, βmax], β is feasible for model (1.20) and model (1.19)
has optimal solutions and optimal value.

Proof See Liang et al. (2011).

To find optimal solutions to model (1.19), we can start with a small β (say 0.001)
as the initial point and set a small increment Δs (¼ 0.001). Theorem 5 indicates that

we solve model (1.20) for each βi ¼ β0 + Δs � i (i ¼ 0, 1, 2, . . .) until β ¼ 1 or

model (1.20) is infeasible.

The previous model is based upon the arithmetic mean of the efficiency scores of

the two individual stages. In other words, the relative importance of the two stages

are assumed to be equal. Liang et al. (2011) also develop a bi-level model in which

they model the performance of the two-stage process by viewing the stages

consecutively rather than simultaneously. For example, stage 1 can be considered

more important or a dominant stage.
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Following the bi-level logic, it becomes necessary to deal with the presence of

variables on both the output and input sides. Liang et al. (2011) adopt the assump-

tion that regardless of which stage, first or second, is given priority, if a variable

appears as an input in one stage and an output in another, we determine the

weighting (importance) of that variable wherever it plays the role of output.

Hence, the weights ‘h’ for the intermediate variables ‘z’ will be determined in the

stage 1 problem, where they (the z-variables) play the role of outputs; those for

the feedback variables ‘f’ will be determined in the stage 2 problem, where they

(the f-variables) assume an output role. This requirement becomes clear in Liang

et al.’s (2011) empirical application involving Chinese Universities. For example,

the number of SCI papers published and awards received are two outputs from stage

1, and research funds received is an output from stage 2, and is the feedback

measure. Each University will want to maximize these measures regardless of

whether the first or second stage is given the first priority.

Given the above discussion, if stage 1 is more important, then the efficiency of

stage 1 is given first priority and the efficiency of stage 2 depends on that of stage

1. We therefore establish the following bi-level programming model:

P1:ð Þ θA ¼ Max
vi, hd

XD
d¼1

hdzd0

Xm
i¼1

vixi0 þ
Xp
g¼1

wg f g0

where wg solve :

P2:ð Þ θB ¼ Max
wg, ur

Xp
g¼1

wg f g0 þ
Xs
r¼1

uryr0

XD
d¼1

hdzd0

s:t:

XD
d¼1

hdzdj

Xm
i¼1

vixij þ
Xp
g¼1

wg f gj

� 1

Xp
g¼1

wg f gj þ
Xs
r¼1

uryrj

XD
d¼1

hdzdj

� 1

vi,wg, hd, ur � 0

ð1:21Þ

Model (1.21) treats the first stage as the dominant stage. However, the second

stage still gets the first priority to improve the feedback measures.
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Letting t1 ¼ 1Xm
i¼1

vixi0þ
Xp
g¼1

wg f g0

, t2 ¼ 1XD
d¼1

hdzd0

, model (1.21) is equivalent to

the following model:

P1:ð Þ θA ¼ Max
vi, hd

XD
d¼1

t1hdzd0

where wg solve:

P2:ð Þ θB ¼ Max
wg, ur

Xp
g¼1

t2wg f g0 þ
Xs
r¼1

t2uryr0

s:t:
XD
d¼1

t1hdzdj �
Xm
i¼1

t1vixij þ
Xp
g¼1

t1wg f gj

 !
� 0

Xp
g¼1

t2wg f gj þ
Xs
r¼1

t2uryrj

 !
�
XD
d¼1

t2hdzdj � 0

Xm
i¼1

t1vixi0 þ
Xp
g¼1

t1wg f g0 ¼ 1

XD
d¼1

t2hdzd0 ¼ 1

vi, hd ,wg, ur � 0

ð1:22Þ

Let β ¼ t1
t2

and note that 0 < t1
t2
¼

XD
d¼1

hdzd0

Xm
i¼1

vixi0þ
Xp
g¼1

wg f g0

� 1, thus β ∈ (0, 1].

Substitute t1 ¼ βt2 and model (1.22) becomes:

P1:ð Þ θA ¼ Max
vi, hd

XD
d¼1

βt2hdzd0

where wg solve:

P2:ð Þ θB ¼ Max
wg, ur

Xp
g¼1

t2wg f g0 þ
Xs
r¼1

t2uryr0

s:t:
XD
d¼1

βt2hdzdj �
Xm
i¼1

βt2vixij þ
Xp
g¼1

βt2wg f gj

 !
� 0

Xp
g¼1

t2wg f gj þ
Xs
r¼1

t2uryrj

 !
�
XD
d¼1

t2hdzdj � 0

Xm
i¼1

βt2vixi0 þ
Xp
g¼1

βt2wg f g0 ¼ 1

XD
d¼1

t2hdzd0 ¼ 1

vi, hd,wg, ur � 0

ð1:23Þ
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Let υi ¼ vit2, ςd ¼ hdt2, ωg ¼ wgt2, μr ¼ urt2, model (1.23) is now equivalent to

the following model:

P1:ð Þ θA ¼ Max
υi, ςd

β

where ωg solve:

P2:ð Þ θB ¼ Max
ωg, μr

Xp
g¼1

ωg f g0 þ
Xs
r¼1

μryr0

s:t:
XD
d¼1

ςdzdj �
Xm
i¼1

υixij þ
Xp
g¼1

ωg f gj

 !
� 0

Xp
g¼1

ωg f gj þ
Xs
r¼1

μryrj

 !
�
XD
d¼1

ςdzdj � 0

β
Xm
i¼1

υixi0 þ
Xp
g¼1

ωg f g0

 !
¼ 1

XD
d¼1

ςdzd0 ¼ 1

υi, ςd,ωg, μr � 0

ð1:24Þ

For model (1.24), the first goal is to maximize the efficiency score of stage 1, θA,
and the second goal is to maximize the efficiency score of stage 2, θB, when the first
goal is achieved.

Similarly, we can develop the following bi-level programming problem when

stage 2 is more important.

Models (1.24) are bi-level programming problems where some of the constraints

are nonlinear. Liang et al. (2011) point out the model has its own unique features

such that the level-two program uses neither its optimal solutions nor its optimal

objective function value as the optimal feedback to the objective function of the

level-1 program.

Note that when β is a given value, solving the sub-programming problem (P2) of

model (1.24) is equivalent to solving model (1.20). Liang et al. (2011) show that the

optimal value to model (1.20) is a non-increasing continuous function of β.
Recall that model (1.19) is solved by searching over βi ¼ β0 + Δs � i (i ¼ 0,

1, 2, . . .). For each βi we denote the optimal value to model (1.20) as θBi . Namely,

when model (1.19) is solved, we already have obtained a set of optimal ( βi, θBi ) for
each βi. Therefore, we can obtain the solutions to model (1.24) based upon the

following procedures.

For the solution to model (1.24), we select the largest βi, maxi βi ¼ βAmax, and its

corresponding optimal value to model (1.20), denoted as θB*, from set {(βi, θBi )}.
Liang et al. (2011) show that this pair of ( βAmax, θ

B*) is uniquely determined. Thus, the

efficiency score for stage 1 is θA ¼ βAmax and efficiency score for stage 2 is θ
B ¼ θB*.
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1.8 Conclusions

In the current chapter, we only focus on a sub-set of modeling approaches and

techniques in dealing with DMUs that have two stage network structures. We note

that there are variations to the simple two-stage process as shown in Fig. 1.1. For

example, Du et al. (2011) use a Nash bargaining game model to model Fig. 1.1.

Chen et al. (2010b) study a modified version of Fig. 1.1 where shared input

resources are used in both stages of operations. For example, in hospital operations,

some of the input resources such as equipment, personnel, and information tech-

nology are used in the first stage to generate medical records to track treatments,

tests, drug dosages, and costs. Premachandra et al. (2012) study another modifica-

tion of Fig. 1.1 where there are additional independent inputs to the second stage.

While the underlying two stage network process is very similar in Premachandra

et al. (2012) and Li et al. (2012), their modeling techniques are very different.

The following chapters provide a more in-depth discussion regarding DEA

methodologies on network structures. Some recent applications include Avkiran

(2009) and Chen et al. (2012).
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Chapter 2

Network DEA Pitfalls: Divisional Efficiency

and Frontier Projection

Yao Chen, Wade D. Cook, Chiang Kao, and Joe Zhu

Abstract Recently network DEA models have been developed to examine the

efficiency of DMUs with internal structures. The internal network structures range

from a simple two-stage process to a complex system where multiple divisions are

linked together with intermediate measures. In general, there are two types of

network DEA models. One is developed under the standard multiplier DEA models

based upon the DEA ratio efficiency, and the other under the envelopment DEA

models based upon production possibility sets. While the multiplier and envelop-

ment DEA models are dual models and equivalent under the standard DEA, such is

not necessarily true for the two types of network DEA models. Pitfalls in network

DEA are discussed with respect to the determination of divisional efficiency,

frontier type, and projections. We point out that the envelopment-based network

DEA model should be used for determining the frontier projection for inefficient
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DMUs while the multiplier-based network DEA model should be used for deter-

mining the divisional efficiency. Finally, we demonstrate that under general net-

work structures, the multiplier and envelopment network DEA models are two

different approaches. The divisional efficiency obtained from the multiplier

network DEA model can be infeasible in the envelopment network DEA model.

This indicates that these two types of network DEA models use different concepts

of efficiency. We further demonstrate that the envelopment model’s divisional

efficiency may actually be the overall efficiency.

Keywords Data envelopment analysis (DEA) • Efficiency • Network • Intermedi-

ate measure • Link • Frontier

2.1 Introduction

Data envelopment analysis (DEA) is used to identify best practices or (efficient)

frontier decision making units (DMUs), in the presence of multiple inputs and

outputs (Charnes et al. 1978). DEA provides not only efficiency scores for ineffi-

cient DMUs, but also provides for frontier projections for such units onto an

efficient frontier. In recent years, a number of DEA studies have focused on

DMUs with internal network structures. For example, Cook et al. (2010) review

DEA models for treating two-stage network structures. Others have developed

DEA-based models for more complicated network structures (see Färe and

Grosskopf (2000) and Tone and Tsutsui (2009)). While the focus of the current

study is not to review all the existing network DEA approaches, we note that many

of these approaches require significant modifications to the standard DEA struc-

tures. Therefore, a rational question to ask is whether the network DEA model

retains the property of the standard DEA model, namely that it yields both (divi-

sional) efficiency scores and a frontier projection in a single model.

Following a thorough review of the existing network DEA approaches, Chen

et al. (2013) conclude that there are two types of structures based upon the standard

DEA models used. One type is the multiplier-based network DEA models which

calculate the overall network efficiency by integrating the ratio efficiency of each

division in the network via geometric or arithmetic averages. Such a network model is

then converted into a linear program that looks like the DEA multiplier model. The

other type is developed by using the production possibility set for each division in the

network.The resultingmodel takes on the appearanceof theDEAenvelopmentmodel.

In the standard DEA context, themultiplier model is equivalent to the envelopment

model which yields the DEA projection and the efficiency due to the linear program-

ming duality. However, under the network structure, such duality may not lead to a

particular pair of network multiplier and envelopment models, where frontier pro-

jections and divisional efficiency scores are generated in a single networkDEAmodel.

The current chapter first uses a simple two-stage network structure to demon-

strate that under the condition of constant returns to scale (CRS), the envelopment
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network DEA model does not necessarily provide information on divisional

efficiency and only provides information on the frontier projection. This can be a

pitfall when we use the envelopment network DEA approach. Such a pitfall is

caused by the fact that the envelopment-based network DEA approach does not

account for the intermediate measures (or links) in calculating the divisional

efficiency. While the multiplier-based network DEA models provide both overall

and divisional efficiency scores, their duals may not yield correct information on

frontier projections without proper adjustments to those dual models.

Note in the standard DEA approach, variable returns to scale (VRS) is achieved

by adding a convexity constraint into the CRS envelopment model or equivalently a

free variable into the multiplier model. We demonstrate that under the network

DEA model, the above equivalence no longer holds. We further show that envel-

opment and multiplier network DEA models are two very different approaches

using different efficiency concepts. Further, divisional efficiency obtained from the

multiplier network DEA model can be infeasible on the envelopment side. We also

demonstrate that the envelopment model’s divisional efficiency may actually be the

overall efficiency.

The rest of the chapter is organized as follows. Section 2.2 briefly introduces the

multiplier and envelopment-based network DEA models under a simple two-stage

network structure, where outputs from the first stage (division) are the only inputs to

the second stage (division). Sections 2.3 and 2.4 then discuss the pitfalls for

determining divisional efficiencies and frontier projections. In Sect. 2.5 we examine

the VRS case. Section 2.6 is devoted to discussing network DEA models under

general network structures. Conclusions follow in Sect. 2.7.

2.2 Two-Stage Network DEA

For simplicity, we consider a generic two-stage process as shown in Fig. 2.1, for

each of a set of n DMUs. We assume each DMUj( j ¼ 1, 2, . . ., n) has m inputs xij,
(i ¼ 1, 2, . . ., m) to the first stage, and D outputs zdj, (d ¼1, 2, . . ., D) from that

stage. These D outputs then become the inputs to the second stage, hence behaving

as intermediate measures. The outputs from the second stage are yrj, (r¼1, 2, . . ., s).

For DMUj we denote the efficiency ratios for the first stage (division) as θ1j and

the second as θ2j . Based upon the input-oriented DEA model of Charnes

et al. (1978), we have the following standard DEA models for each stage (division):

xij,i = 1,2,...,m zdj,d = 1,2,...,D yrj,r = 1,2,...,s

Stage 1 Stage 2

DMUj, j = 1,2,...,n

Fig. 2.1 Two-stage process
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θ1j ¼ max

XD
d¼1

wdzdj

Xm
i¼1

vixij

and θ2j ¼ max

Xs
r¼1

uryrj

XD
d¼1

ewdzdj

ð2:1Þ

Subject to Subject toXD
d¼1

wdzdj

Xm
i¼1

vixij

� 1

Xs
r¼1

uryrj

XD
d¼1

ewdzdj

� 1

where vi, wd, ewd, and ur are unknown non-negative weights. In order to model the

two-stage network based upon the two efficiency ratios defined in (2.1) the vari-

ables wd are set equal to ewd as in Kao and Hwang (2008) and in Liang et al. (2008).

As a result, the two-stage overall efficiency ratio can be defined as θ1j • θ2j which is

equal to θj ¼

Xs
r¼1

uryro

Xm
i¼1

vixio

. To calculate the overall efficiency of θj, Kao and Hwang

(2008) present the following model (this model is called centralized model in Liang

et al. (2008))

Max θ1j � θ2j ¼

Xs
r¼1

uryro

Xm
i¼1

vixio

s:t: θ1j � 1 and θ2j � 1 and wd ¼ ewd

ð2:2Þ

Model (2.2) can be converted into the following linear program

Max
Xs
r¼1

uryro

s:t:
Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, . . . , n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, . . . , n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � , i ¼ 1, 2, . . . ,m; ur � , r ¼ 1, 2, . . . , s

ð2:3Þ
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In a similar manner, we can develop output-oriented models. Model (2.3) yields

the overall efficiency. After the overall efficiency is obtained, divisional efficiency

can be obtained via efficiency decomposition (see Kao and Hwang (2008)).

Specifically,

If we denote the optimal value to model (2.3) as θ�o, then we have θ
�
o ¼ θ1�o � θ2�o .

Note that optimal multipliers from model (2.3) may not be unique, meaning that θ1�o
and θ2�o may not be unique. To test for uniqueness, we can first determine the

maximum achievable value of θ1�o via

θ1þo ¼ Max
XD
d¼1

wdzdo

s:t:
Xs
r¼1

uryro ¼ θ�o

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, . . . , n

Xs
r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, . . . , n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � 0, i ¼ 1, 2, . . . ,m; ur � 0, r ¼ 1, 2, . . . , s

It then follows that the minimum of θ2�o is given by θ2�o ¼ θ�o
θ1þo

. This also gives an

efficiency decomposition of θ�o ¼ θ1þo � θ2�o .

Liang et al. (2008) provide a procedure for testing the uniqueness of efficiency

decomposition. The maximum of θ2�o , which we denote by θ2þo , can be calculated in

a manner similar to the above, and the minimum of θ1�o is then calculated as

θ1�o ¼ θ�o/θ
2þ
o . Note that θ1�o ¼ θ1þo if and only of θ2�o ¼ θ2þo . Note also that if

θ1�o ¼ θ1þo or θ2�o ¼ θ2þo , then θ1�o and θ2�o are uniquely determined via model (2.3).

Model (2.3) is based upon the ratio DEA efficiency and then is converted into a

DEAmultiplier-type linear program. Therefore, we can refer to this type of network

DEA approach as multiplier-based. On the other hand, Tone and Tsutsui (2009)

develop a slacks-based network DEA model by using the production possibility

sets, where the intermediate measures zdj(d ¼ 1, . . ., D) are called links. Relative

to Fig. 2.1, the constraints for the slacks-based model take the form:

Xn
j¼1

λjxij þ s�i ¼ xio i ¼ 1, . . . , m

Xn
j¼1

μjyrj � sþr ¼ yro r ¼ 1, . . . , s

Xn
j¼1

λjzdj ¼
Xn
j¼1

μjzdj d ¼ 1, . . . , D

ð2:4Þ
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In Tone and Tsutsui (2009), models based upon (2.4) are referred to as the “fixed

link” case.

Note that zdo are outputs from the first stage and are inputs to the second stage.

Therefore, based upon the standard DEA model, the production possibility set can

be defined as

Xn
j¼1

λjxij þ s�i ¼ xio i ¼ 1, . . . , m

Xn
j¼1

μjyrj � sþr ¼ yro r ¼ 1, . . . , s

Xn
j¼1

λjzdj � ezdo d ¼ 1, . . . , D

Xn
j¼1

μjzdj � ezdo d ¼ 1, . . . , D

ð2:5Þ

where we use ezdo to denote unknown decision variables for the intermediate

measures (or links as referred to in Tone and Tsutsui (2009)). As in Tone and

Tsutsui (2009), these measures can be increased or decreased in the optimal

solution of a network DEA model based upon (2.5). Tone and Tsutsui (2009)

refer to (2.5) as the “free link” case.

The difference between (2.4) and (2.5) (or between “fixed link” and “free link”)

is very minor. The slacks-based (envelopment) network DEA models based upon

(2.4) and (2.5) will yield identical optimal slack values if the constraints related toezdo become binding at optimality. Otherwise, if these constraints are not binding,

then the two models based upon (2.4) and (2.5) will yield different optimal slack

values. If one uses a radial measure, the difference between (2.4) and (2.5) is

negligible with respect to the radial efficiency scores. Therefore, in the discussion

to follow, we will not specifically distinguish “fixed link” and “free link” for the

intermediate measures.

A version of the input-oriented envelopment network DEA model under “free

link” intermediate measures can be written as

Max
Xm
i¼1

s�i
xio

Subject to 5ð Þ
ð2:6Þ

Since the intermediate measures are the only outputs from stage-1, and the only

inputs to stage-2, Tone and Tsutsui’s (2009) input-oriented slacks-based network

DEA model will not have the divisional efficiency for stage 2. In other words, the

divisional efficiency for stage 1 should be regarded as the overall efficiency, based

upon Tone and Tsutsui’s (2009) definition under either “fixed link” or “free link”.

In a similar manner, Tone and Tsutsui’s (2009) output-oriented slacks-based
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network DEA model will not have the divisional efficiency for stage 1, namely the

divisional efficiency for stage 2 is the overall efficiency.

Moreover, as shown in Chen et al. (2009b), model (2.3) is equivalent to the

following linear program, where the intermediate measures are treated as “free

link” defined in Tone and Tsutsui (2009).

min eθ
s:t:

Xn
j¼1

λjxij � eθxio i ¼ 1, . . . , m

Xn
j¼1

μjyrj � yro r ¼ 1, . . . , s

Xn
j¼1

λjzdj � ezdo d ¼ 1, . . . , D

Xn
j¼1

μjzdj � ezdo d ¼ 1, . . . , D

ezdo � 0, d ¼ 1, . . . , D
λj � 0, j ¼ 1, . . . , n
μj � 0, j ¼ 1, . . . , neθ � 1

ð2:7Þ

Model (2.7) can be viewed as the radial version of the two-stage network DEA

model of Tone and Tsutsui’s (2009) based upon (2.5). In this case, model (2.7), like

the input-oriented slacks-based network DEA model (2.6), can only generate the

overall efficiency. In this regard, θ* cannot be treated as the divisional efficiency of
stage 1.

Models developed based upon (2.4) or (2.5) can be called envelopment DEA

network models, as they are similar to the standard envelopment DEA model

format. If we add ∑ λj ¼ ∑ μj ¼ 1 into (2.4) or (2.5), the existing DEA literature

claims that the VRS envelopment network DEAmodel is obtained, since this is how

VRS envelopment model is obtained under the standard DEA model. However, we

believe that this issue needs to be further examined.

2.3 Two-Stage Network: Divisional Efficiency Pitfall

Consider the numerical example given in Table 2.1 where we have five DMUs and

two intermediate measures. Table 2.2 reports the optimal slacks and intermediate

measures when (2.4) and (2.5) are used. The last three columns report the overall

efficiency based upon (2.2), and its efficiency decomposition for divisional effi-

ciency scores based upon Kao and Hwang (2008) and Liang et al. (2008).

It can be seen that the envelopment-based network DEA model can generate a

score for overall efficiency and frontier projections, and the multiplier-based
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two-stage network DEA model (2.2) or (2.4) is able to generate the divisional

efficiency scores for both stages. In other words, under the network DEA approach,

both multiplier and envelopment-based models are needed to generate (i) overall

efficiency, (ii) divisional efficiency, and (iii) frontier projections.

Under (2.5), model (2.2) or its equivalent model (2.7) yields the identical optimal

intermediatemeasures asmodel (2.6). This also implies that the input-oriented slacks-

based network DEA model does not yield information on divisional efficiency.

For the output-oriented situation, we can obtain the similar conclusion that while

the multiplier network DEA model can decompose the overall efficiency into

divisional efficiency scores, the slacks-based or envelopment network DEA

model only yields information on the overall efficiency along with the frontier

projection.

We finally consider the non-oriented case. For example, for (2.4) or (2.5), we can

use sum of slacks or the ratio form from Tone and Tsutsui (2009). For example, we

can have the following non-oriented envelopment network DEA model.

Max
Xm
i¼1

s�i
xio

þ
Xs
r¼1

sþr
yro

Subject to 4ð Þ or 5ð Þ
ð2:8Þ

Table 2.1 Numerical

example for two-stage

network

DMU X1 X2 Z1 Z2 Y1 Y2

1 2 4 3 4 7 8

2 12 9 4 3 9 12

3 3 4 5 4 10 12

4 7 9 6 12 21 16

5 4 8 10 11 18 16

Table 2.2 Optimal slacks and intermediate measures

DMU s1 s2 z1 z2 s1 s2 Overall Stage 1 Stage 2

Equation (2.5)

1 0.9037 1.8074 2.7407 3.0148 0 0 0.54815 0.60000 0.91358

2 10.4 5.8 4 4.4 0 0 0.35556 0.35556 1.00000

3 1.3704 0.7407 4.0740 4.4814 0 0 0.81481 1.00000 0.81481

4 3.7692 2.5384 8.0769 8.8846 0 7.4769 0.71795 0.71795 1.00000

5 1.2308 2.4615 6.9231 7.6154 0 4.1231 0.69231 1.00000 0.69231

Equation (2.4)

1 0.8991 1.7982 2.7523 3.0275 0.1560 0

2 10.348 5.6972 4.1284 4.5412 1.7339 0

3 1.3486 0.6972 4.1284 4.5412 0.7339 0

4 3.7692 2.5384 8.0769 8.8846 0 7.4769

5 1.2308 2.4615 6.9231 7.6153 0 4.1231
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Or, it appears that we can build a radial version of (2.8), that is

min α� β

s:t:
Xn
j¼1

λjxij � αxio i ¼ 1, . . . , m

Xn
j¼1

μjyrj � βyro r ¼ 1, . . . , s

Xn
j¼1

λjzdj � ezdo d ¼ 1, . . . , D

Xn
j¼1

μjzdj � ezdo d ¼ 1, . . . , D

ezdo � 0, d ¼ 1, . . . , D
λj � 0, j ¼ 1, . . . , n
μj � 0, j ¼ 1, . . . , n
α � 1, β � 1

ð2:9Þ

where α and β represent the divisional efficiency scores for stages 1 and 2 respec-

tively. Model (2.9) assumes “free link”. If “fixed link” is assumed, we use
Xn
j¼1

λjzdj

¼
Xn
j¼1

μjzdj in model (2.9).

However, as shown in Chen et al. (2009b), α* ¼ 1 and 1/β* is equal to the

overall efficiency obtained from model (2.2) at optimality. This indicates that α and

β actually do not represent the divisional efficiency scores. This implies that the

slack based measures cannot be used to represent the divisional efficiency scores in

model (2.8).

Table 2.3 reports the results from (2.8). Both (2.4) (“fixed link”) and (2.5) (“free

link”) yield identical optimal slacks and intermediate measures, namely, the

inequality constraints in (2.5) are binding at optimality. It can be seen from

the input slacks that DMUs 1 and 5 are efficient and DMUs 2, 3, and 4 are weakly

efficient. This corresponds to the situation α* ¼ 1. Based upon the last two columns

of Table 2.2, stage 1 in DMU5 is not efficient, for example.

The above phenomenon can be regarded as a two-stage network DEA pitfall in

calculating divisional efficiency. It is recommended that the envelopment-based

Table 2.3 Slacks and

intermediate measures based

on non-oriented model

DMU s��
1 s��

2 z1* z2* sþ�
1 sþ�

2

1 0 0 5 5.5 6 6.533333

2 7.5 0 11.25 12.375 20.25 20.7

3 1 0 5 5.5 3 2.533333

4 2.5 0 11.25 12.375 8.25 16.7

5 0 0 10 11 8 13.06667
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network DEA model, for example, Tone and Tsutsui’s (2009), be used to calculate

the frontier projection, and the multiplier-based approach is used to calculate the

overall and divisional efficiencies.

This pitfall can be due to the fact that the envelopment-based network

DEA model does not consider the optimal intermediate measures in its calculation

of the divisional efficiency. In the current study, we argue that divisional efficiency

should be based upon the DEA ratio efficiency as defined in (2.1) where (optimal)

intermediate measures are considered. This is due to the fact that once the optimal

intermediate measures are determined, they become inputs (or outputs) to a

division.

2.4 Two-Stage Network: Frontier Projection Pitfall

While the envelopment-based network DEA model provides a frontier projection

for inefficient DMUs, the dual to the multiplier-based network DEAmodel does not

necessarily provide the frontier projection. For example, the dual to model (2.3) is

Minθ

s:t:
Xn
j¼1

λjxij � θxio i ¼ 1, 2, . . . ,m

Xn
j¼1

μjyrj � yro r ¼ 1, 2, . . . ,m

Xn
j¼1

�
λj � μj

�
zdj � 0 d ¼ 1, 2, . . . ,D

λj, μj � 0 θ � 1

ð2:10Þ

As shown in Chen et al. (2010) or Chap. 4, (θ*xio, zdo, yro) is not on the frontier

as the projection generated by model (2.10), and we have to determine an optimal

zdo. Based upon the discussion in the previous section, we know that for an

inefficient DMU to be projected onto the network DEA frontier, its intermediate

measures will have to be adjusted (increased or decreased). In fact, Chen

et al. (2010) show that model (2.10) is equivalent to model (2.7). Therefore, the

dual to the multiplier-based network DEA model (namely model (2.10)) has to

be adjusted as model (2.7) in order to calculate the optimal intermediate measures

so that we obtain the correct frontier projection as (θ�xio,ez�do, yro) or

(θ*xio, ∑ λ�j zij, yro).
Since Fig. 2.1 presents a simple network structure, we are able to modify the

model (2.10) to model (2.7). In a complicated network structure, such task may not

be possible.
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Such frontier projections have an interesting aspect. We consider the two-stage

network structure involving 24 Taiwanese non-life insurance companies studied in

Kao and Hwang (2008). The two stages represent premium acquisition and profit

generation respectively. The inputs to the first stage are operational expenses and

insurance expenses, and the outputs from the second stage are underwriting profit

and investment profit. There are two intermediate measures between the two stages,

namely direct written premiums and reinsurance premiums.

Table 2.4 reports a set frontier projection points based upon model (2.7).

Table 2.5 reports the overall efficiency and its decomposition based upon model

(2.3). Note that none of the DMUs are efficient.

Because of the existence of intermediate measures, we cannot apply the standard

DEA to each stage separately. However, since we now have the frontier, we should

be able to apply the standard DEA to each stage after we include the projected

DMUs in Table 2.4. In other words, we now have a set of 48 DMUs, of which 24 are

projections of the original DMUs.

The last two columns of Table 2.5 report the CRS efficiency scores. Interest-

ingly, these scores are equal to the standard CRS scores when the original 24 DMUs

are evaluated. That is,, the added projected DMUs do not change the CRS efficiency

scores. Note that the projected DMUs are obtained from the network DEA model

and represent the frontier for the two-stage process. Such a frontier cannot be

obtained from the standard CRS model.

The above discussion may indicate that the network DEA model behaves very

differently from the standard DEA model, although it is built upon the standard

DEA model.

Finally, we point out that one may argue that the dual variables to the multiplier

model (2.3) could be used to obtain the frontier projections. However, without the

help of transforming the model (2.10) (which is the dual to model (2.3)) to model

(2.7), we cannot obtain the frontier projections directly based upon the dual vari-

ables. The same is true that we cannot obtain the divisional efficiency directly based

upon the dual variables to the envelopment model (2.7). In other words, both

models (2.3) and (2.7) are needed to calculate the divisional efficiency and frontier

projections. We will further demonstrate this point in the next section.

2.5 Two-Stage Network: Variable Returns to Scale

Discussions in Sects. 2.3 and 2.4 are based upon CRS. Under the standard DEA

approach, by adding the convexity constraint (e.g. ∑ λj ¼ 1), we obtain the envel-

opment model under VRS. Note that under the standard DEA approach, the VRS

multiplier model is obtained by introducing a free variable. The issue here is

whether the multiplier network model is equivalent to the envelopment network

model under the VRS condition. To address such an issue is computationally

difficult because model (2.2) for VRS version cannot be converted into a linear

program. An alternative approach is to use an additive form of weighed average of
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divisional efficiency scores (Chen et al. 2009a). However, Chen et al. (2009a)

discover that CRS scores are greater than the related VRS scores for several

DMUs in the case of 24 Taiwanese non-life insurance companies. This may

indicate that the properties related to returns to scale in the standard DEA model

do not apply in network DEA.

Kao and Hwang (2011) recently developed an alternative approach to study

efficiency decomposition under both CRS and VRS conditions. Based upon model

(2.3), we denote E0, E
1
0, and E2

0 to be the system, stage 1 , and stage 2 CRS

efficiencies of the two-stage system, respectively. Now, let T0, T
1
0, and T20 be the

respective technical efficiencies (under VRS), and S0, S
1
0, and S20 the respective

scale efficiencies. Since the outputs of the first stage are the inputs of the second, if

one wants to improve the efficiency of the first stage via increasing its outputs, then

the efficiency of the second stage will be affected. Therefore, Kao and Hwang

(2011) used the input-oriented VRS model to calculate T10 and the output-oriented

VRS model to calculate T20, so that the intermediate products can remain intact. As

in the conventional case, S10 ¼ E1
0/T

1
0 and S20 ¼ E2

0/T
2
0. Note that the former is an

input-oriented scale efficiency and the latter output-oriented one. The technical

and scale efficiencies of the overall system are the products of those of the first and

second stages, respectively, i.e., T0 ¼ T10 � T20 and S0 ¼ S10 � S20.

Table 2.5 Overall efficiency and its decomposition

DMU Overall efficiency Stage 1 Stage 2 New 1 New 2

1 0.69915 0.99246 0.70446 0.99248 0.71337

2 0.62473 0.99845 0.62570 0.99845 0.62748

3 0.68995 0.68995 1.00000 0.68996 1.00000

4 0.30420 0.72430 0.41999 0.72431 0.43232

5 0.76691 0.83043 0.92351 0.83752 1.00000

6 0.38968 0.96062 0.40566 0.96369 0.40566

7 0.27654 0.67093 0.41217 0.75208 0.53784

8 0.27517 0.66302 0.41502 0.72559 0.51135

9 0.22326 0.99966 0.22334 1.00000 0.29196

10 0.46593 0.86146 0.54086 0.86153 0.67360

11 0.16390 0.64637 0.25357 0.74053 0.32667

12 0.75958 1.00000 0.75958 1.00000 0.75958

13 0.20780 0.67142 0.30949 0.81068 0.54349

14 0.28859 0.66968 0.43094 0.72461 0.51782

15 0.61380 0.99990 0.61386 1.00000 0.70473

16 0.32015 0.88558 0.36152 0.90720 0.38475

17 0.35997 0.62734 0.57380 0.72331 1.00000

18 0.25880 0.79353 0.32614 0.79353 0.37366

19 0.41118 1.00000 0.41118 1.00000 0.41578

20 0.54653 0.93301 0.58577 0.93321 0.90137

21 0.20078 0.73211 0.27424 0.75049 0.27951

22 0.58950 0.58950 1.00000 0.58950 1.00000

23 0.42030 0.84245 0.49890 0.85005 0.55992

24 0.13480 0.42883 0.31434 1.00000 0.33509
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To calculate the input-oriented VRS technical efficiency of stage 1 and the

output-oriented VRS technical efficiency of stage 2, the production possibility

based envelopment models are:

min: θ
s:t:

Xn

j¼1
λjXij � θXi0X n

j¼1
λjZdj � Zd0X n

j¼1
λj ¼ 1X n

j¼1
μjZdj � Zd0X n

j¼1
μjYrj � Yr0

ð2:11Þ

min: η
s:t:

Xn

j¼1
λjXij � Xi0Xn

j¼1
λjZdj � Zd0Xn

j¼1
μjZdj � Zd0Xn

j¼1
μjYrj � Yr0=ηXn

j¼1
μj ¼ 1

ð2:12Þ

Based on Kao and Hwang (2011), T10 and T20 are calculated as follows:

T1
0 ¼ max:

XD

d¼1
ewdZd0 � ew0

� �
=
Xm

i¼1
vieXi0 T1

0 ¼ max:
X s

r¼1
urŶ r0=

XD

d¼1
ŵ dZd0 þ ŵ 0

� �
s:t:

X s

r¼1
urYr0=

Xm

i¼1
viXi0 ¼ E0 s:t:

X s

r¼1
urYr0=

Xm

i¼1
viXi0 ¼ E0XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0

XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0X s

r¼1
urYrj �

XD

d¼1
wdZdj � 0

X s

r¼1
urYrj �

XD

d¼1
wdZdj � 0XD

d¼1
ewdZdj � ew0

� �
�
Xm

i¼1
vieXij � 0

X s

r¼1
urŶrj �

XD

d¼1
ŵ dZdj þ ŵ 0 � 0

� �

The linearized forms for calculating T10 and its dual are:

T1
0 ¼ max:

XD

d¼1
ewdZd0 � ew0 dual min: θ1

s:t:
Xm

i¼1
vieXi0 ¼ 1 θ1

Xn

j¼1
αjXij � θ1Xi0

E0

Xm

i¼1
viXi0 �

X s

r¼1
urYr0 ¼ 0 η

Xn

j¼1
αj ¼ 1XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0 λj

Xn

j¼1
αjZdj � Zd0X s

r¼1
urYrj �

XD

d¼1
wdZdj � 0 μj

Xn

j¼1
λjXij � ηE0Xi0XD

d¼1
ewdZdj � ew0 �

Xm

i¼1
vieXij � 0 αj

Xn

j¼1
μjYrj � ηYr0Xn

j¼1
λj � μj
� �

Zdj � 0
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From the dual, which is an envelopment model, it is clear that ∑ n
j¼1αjZdj,

∑ n
j¼1αjXij, ∑ n

j¼1λjXij, ∑ n
j¼1μjYrj, and ∑ n

j¼1λjZpj (or ∑
n
j¼1μjZpj) are the projections

of VRS-Zd0, VRS-Xi0, CRS-Xi0, CRS-Yr0, and CRS-Zd0, respectively. The CRS

efficiency of stage two is η, which is equal to 1/E2
0. The CRS efficiency of stage one

is E1
0, or ηE0(¼η � E1

0 � E2
0).

Obviously, the dual model is very different from the envelopment-based model

(2.11). Under careful inspection, one finds that the last three sets of constraints have

nothing to do with calculating θ1, and can thus be deleted. In other words, VRS

technical efficiency can be calculated independently of the CRS efficiencies.

Similarly, the linearized forms for T20 and its dual are:

T2
0 ¼ max:

X s

r¼1
û rYr0 dual min: θ2

s:t:
XD

d¼1
ŵ dZd0 þ ŵ 0 ¼ 1 θ2 s:t:

Xn

j¼1
βjZdj � θ2Zd0

E0

Xm

i¼1
viXi0 �

X s

r¼1
urYr0 ¼ 0 η

Xn

j¼1
βj ¼ θ2XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0 λj

Xn

j¼1
βjYrj � Yr0X s

r¼1
urYrj �

XD

d¼1
wdZdj � 0 μj

Xn

j¼1
λjXij � ηE0Xi0X s

r¼1
û rYrj �

XD

d¼1
ŵ dZdj � ŵ 0 � 0 βj

Xn

j¼1
μjYrj � ηYr0Xn

j¼1
λj � μj
� �

Zdj � 0

The projections for VRS-Zd0 and VRS-Yr0 are
Xn

j¼1
(βj/θ2)Zdj and

Xn

j¼1
(βj/θ2)

Yrj, respectively. Other interpretations are similar to that of the first stage. Again,

the VRS technical efficiency can be calculated independently of the CRS

efficiencies.

The models for stages one and two can be combined as:

Max:
XD

d¼1
ewdZd0 � ew0

� �
þ

X s

r¼1
û rYr0

� �
dual min: θ1 þ θ2

s:t:
Xm

i¼1
vieXi0 ¼ 1 θ1 s:t:

Xn

j¼1
αjXij � θ1Xi0,

Xn

j¼1
βjZdj � θ2Zd0XD

d¼1
ŵ dZd0 þ ŵ 0 ¼ 1 θ2

Xn

j¼1
αj ¼ 1,

Xn

j¼1
βj ¼ θ2

E0

Xm

i¼1
viXi0 �

X s

r¼1
urYr0 ¼ 0 η

Xn

j¼1
αjZdj � Zd0,

Xn

j¼1
βjYrj � Yr0XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0 λj

Xn

j¼1
λjXij � ηE0Xi0X s

r¼1
urYrj �

XD

d¼1
wdZdj � 0 μj

Xn

j¼1
μjYrj � ηYr0XD

d¼1
ewdZdj � ew0 �

Xm

i¼1
vieXij � 0 αj

Xn

j¼1
λj � μj
� �

Zdj � 0X s

r¼1
û rYrj �

XD

d¼1
ŵ dZdj � ŵ 0 � 0 βj

The interpretations are straightforward. Note that θ1 and θ2 are independent, and
can thus be calculated separately. If the model is developed under the envelopment
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form, then it will be something similar to model (2.9) with the convexity constraints

of ∑ λj ¼ 1 and ∑ μj ¼ 1, which is obviously different from the dual of the VRS

multiplier model derived here.

If there are multiple solutions, such that the decomposition of E0 ¼ E1
0 � E2

0 is

not unique, then stage one (or stage 2) must be calculated first, then calculate

the second stage by requiring the CRS efficiency of stage one is equal to E1
0, i.e.XD

D¼1
wdZd0

.Xm

i¼1
viXi0 ¼ E1

0.

The above discussion reveals the following interesting observation. While in the

standard DEA model, the multiplier and envelopment models are equivalent, in

the two-stage network DEA, such equivalence does not exist. This indicates that the

multiplier-based and envelopment-based network DEA models are two different

approaches. We will further illustrate this point in the next section. The next section

will show that under general network structures, the multiplier and envelopment

network models not only use different efficiency concepts, but also do not corre-

spond with each other.

2.6 Multiplier Versus Envelopment Network DEA: Pitfall

We now assume that in addition to the intermediate measures (zdj, (d¼1, 2, . . .,D)),
there are inputs to the second stage pictured in Fig. 2.1. We denote these inputs to

the second stage shown as xstage�2
hj (h ¼1, 2, . . ., H), using the same notations from

Li et al. (2012). Figure 2.1 then becomes

Model (2.2) now becomes

max θ o
1 � θ o

2 ¼ max

XD
d¼1

wdzdo

Xm
i¼1

vixio

�

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
stage�2
ho

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
stage�2
hj

� 1 8j

vi,wd,Qh, ur � 0, 8i, d, h, r

ð2:13Þ
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where θo1 and θo2 represent the ratio efficiencies for stages 1 and 2, respectively.

Note that the “link” between the two stages is indicated by the same weights

wd for the intermediate measures. Due to the additional inputs to the second stageXH
h¼1

Qhx
stage�2
ho

 !
, model (2.13) cannot be converted into a linear program.

Li et al. (2012) introduce a heuristic method to solve this problem.

Model (2.13) is regarded as the multiplier model. To establish the envelopment

DEA network model for Fig. 2.2, we follow Tone and Tsutsui (2009) and provide

the following model based upon the concept of the production possibility set.

Note that in this case, the intermediate measures are treated as “fixed link”.

min θ1 þ θ2

s:t:
Xn
j¼1

λjxij � θ1xio i ¼ 1, . . . , m

Xn
j¼1

λjzdj ¼
Xn
j¼1

μjzdj d ¼ 1, . . . , D

Xn
j¼1

μjx
stage�2
hj � θ2xstage�2

ho h ¼ 1, . . . , H

Xn
j¼1

μjyrj � yro r ¼ 1, . . . , s

θ1, θ2 � 1

λjμj � 0

ð2:14Þ

We use radial measures θ1, θ2 rather than slacks-based measures in model

(2.14), because in the standard DEA approach, the radial measure in the envelop-

ment model is equivalent to the ratio efficiency defined in the multiplier model.

The issue here is whether θ1* and θ2* obtained from model (2.14) represent the

efficiency scores for stages 1 and 2. To address this issue, we need to compare

models (2.13) and (2.14). Since as demonstrated in Li et al. (2012), model (2.13) can

only be converted into a nonlinear program, we are not able to compare model (2.13)

and the dual to model (2.14). Note however that the data set used in Li et al. (2012)

yields a unique efficiency decomposition (divisional efficiency). Therefore, we can

compare the divisional efficiency scores obtained from models (2.13) and (2.14).

Table 2.6 provides the data for the R&D system for the 30 Provincial Level

Regions in China used in Li et al. (2012). The two stages are technology

Stage 1 Stage 2 

zdj,d = 1…D

xij,i = 1,…m yrj,r = 1…s

xhj      ,h = 1,…Hstage−2

Fig. 2.2 Two-stage process

with additional inputs to the

second stage
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development process, and economic application process. The inputs to the first

stage are: R&D expenditure (R&DE), R&D personnel (R&DP) and the proportion

of regional science and technology funds in regional total financial expenditure

(S&TF/TFE). The intermediate measures are the number of patents and the number

of papers. The second stage also has an input of contract value (CV) in technology

market. The outputs from the second stage are GDP, total exports (TE), urban per

capita disposable annual income (UPCDAI), and gross output of high-tech industry

(GOHI).

Columns 2 and 3 of Table 2.7 report the unique divisional efficiency scores

obtained from model (2.13) under Li et al.’s (2012) algorithm. Columns 4 and

5 report the divisional efficiency scores from model (2.14). We observe that except

Table 2.7 Divisional efficiency scores

Multiplier model (2.13) Envelopment model (2.14) Envelopment

model feasibilityaDMU Stage 1 Stage 2 Stage 1 Stage 2

1 1 0.1598 0.1598 0.0238

2 1 0.2489 0.2337 0.2595

3 0.8950 0.5365 0.4802 0.1447

4 0.6774 0.5704 0.3864 0.1756

5 0.6697 0.3895 0.1949 0.4453

6 0.5668 1 0.5668 1

7 1 0.2207 0.2213 0.1266

8 1 1 1 1

9 0.9398 1 0.9398 1

10 1 1 1 1

11 0.8885 0.8351 1 0.4819

12 0.9328 0.2648 0.2271 0.2818

13 0.8493 0.7373 0.9878 0.2529

14 0.9060 0.2816 0.2551 0.2815

15 1 0.3685 0.2421 0.4707

16 0.9225 1 0.9225 1

17 0.5644 0.9914 0.8329 0.5330

18 0.7152 0.4947 0.6137 0.2059

19 0.6671 0.3668 0.2447 0.2159

20 0.4573 1 0.4706 0.0957 Infeasible

21 0.7101 0.8176 0.6612 0.7281

22 0.5708 0.5156 0.6670 0.1194

23 1 0.1941 0.1896 0.1970

24 1 0.4566 0.5071 0.4055

25 1 0.5846 0.9922 0.1486

26 0.7293 0.9171 0.5854 1

27 1 1 1 1

28 0.3599 1 0.3626 1 Infeasible

29 0.4300 1 0.4300 1

30 1 1 1 1
aWe test for whether the divisional efficiency scores based upon multiplier model (2.13) are

feasible solution for θ1, θ2 in model (2.14)
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for 8 DMUs (6, 8, 9, 10, 16, 27, 29, 30), divisional efficiency scores from models

(2.13) and (2.14) are very different. This indicates that models (2.13) and (2.14)

produce different results under general network structures.

We next test whether the divisional efficiency scores for each DMU obtained

from the multiplier model (2.13) are feasible solutions for θ1 and θ2 in the

envelopment model (2.14). The last column in Table 2.7 indicates that DMUs

20 and 28’s model (2.13) divisional efficiency scores are infeasible under model

(2.14). However, all DMUs’ divisional efficiency scores obtained from model

(2.14) are feasible scores under model (2.13). In particular, model (2.14) yields

projection points. If we apply model (2.13) to the projection points obtained from

model (2.14), each DMU is efficient.

The above study indicates that (i) the multiplier and envelopment network

DEA models are different with respect to defining divisional efficiency, and

(ii) the projection points based upon the envelopment network DEA model are

efficient under the multiplier network DEA model.

To further illustrate the above points, we modify the objective function of model

(2.14) from (θ1 + θ2) to (θ1 + θ2)/2, which will not affect the solution. Then the

dual of model (2.14) becomes:

Min: θ1 þ θ1
� �

=2 dual max:
X s

r¼1
urYr0

s:t
Xn

j¼1
λjXij � θ1Xi0 vi s:t:

Xm

i¼1
viXi0 ¼ 1=2Xn

j¼1
μjX

stage�2
hj � θ2Xstage�2

h0 qh
XH

h¼1
qhX

stage�2
h0 ¼ 1=2Xn

j¼1
μjYrj � Yr0 ur

XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0Xn

j¼1
λj � μj
� �

Zdj ¼ 0 wd

X s

r¼1
urYrj �

XD

d¼1
wdZdj

�
XH

h¼1
qhX

stage�2
hj � 0

θ1, θ2 free in sign: wd free in sign:

Since the system efficiency can be defined as ∑ s
r¼1urYr0/ ð∑m

i¼1viXi0 +

∑H
h¼1qhX

stage�2
h0 Þ, the constraint of the dual should be ð∑m

i¼1viXi0 + ∑ H
h¼1qhX

stage�2
h0 Þ

¼ 1, rather than ∑m
i¼1viXi0 ¼ 1/2 and ∑H

h¼1qhX
stage�2
h0 ¼ 1/2. This indicates that

model (2.14) is too restrictive to provide correct solutions. (The objective func-

tion, (θ1 + θ2)/2, intends to represent the system efficiency.) Moreover, the mul-

tiplier wd should be positive. If we take these conditions into consideration,

we would require that ð∑m
i¼1viXi0 + ∑H

h¼1qhX
stage�2
h0 Þ ¼ 1, or ∑ m

i¼1viXi0 ¼ π and

∑H
h¼1qhX

stage�2
h0 ¼ 1 � π, and wd to be positive. Then the dual becomes:
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max
X s

r¼1
urYr0 dual min θ2

s:t:
Xm

i¼1
viXi0 ¼ π θ1 s:t:

Xn

j¼1
λjXij � θ1Xi0XH

h¼1
qhX

stage�2
h0 ¼ 1� π θ2

X n

j¼1
μjX

2
hj � θ2Xstage�2

h0XD

d¼1
wdZdj �

Xm

i¼1
viXij � 0 λj θ1 ¼ θ2X s

r¼1
urYrj �

XD

d¼1
wdZdj

�
XH

h¼1
qhX

stage�2
hj � 0 μj

X n

j¼1
μjYrj � Yr0

π free in sign
X n

j¼1
λj � μj
� �

Zdj � 0

θ1, θ2 free in sign

Although, theoretically, π is free in sign, the constraint of ∑m
i¼1viXi0 ¼ π ensures

it to be positive (and so is 1 � π). The dual indicates that θ1 and θ2 are equal and do
not represent divisional efficiencies, but rather they represent overall system

efficiency.

The above discussion indicates that the so-called divisional efficiency scores in

the envelopment model are not efficiency scores for divisions under the concept of

ratio DEA efficiency, whether the network structure is a simple two-stage process

or a general one.

2.7 Conclusions

The current chapter presents several pitfalls in network DEAmodeling. We start the

discussion with a simple two-stage network structure where only intermediate

measures exist between the two stages and the first stage has inputs only and the

second stage outputs only. This simple structure allows one to (i) establish an

equivalence between the multiplier-based and envelopment-based network DEA

models, and (ii) demonstrate the difference between the multiplier-based and

envelopment-based network DEA models.

Under a general network structure, we demonstrate that the outcomes from the

multiplier and envelopment models are not necessarily equivalent. The divisional

efficiency scores obtained from the multiplier model can be infeasible under the

envelopment model under the condition of CRS. We demonstrate that the divisional

efficiency scores based upon the envelopment model do not necessarily represent

divisional efficiencies, and may actually be the overall efficiency. This indicates

that cautions needs to be taken when developing a network DEA model using

production possibility sets.

It is our view that overall efficiency along with divisional efficiencies should be

defined under the DEA multiplier (ratio) model, as in Kao and Hwang (2008) and
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Liang et al. (2008), for example. Such a definition is related to other definitions of

efficiency used in engineering and science, as well as in business and economics.

For example, the CCR efficiency was modeled on the definition from “combustion”

engineering, where efficiency is defined as “the ratio of actual amount of heat

liberated . . . to the maximum amount which could be liberated” (Charnes

et al. (1978)). Many of the business efficiency measures appear in the form of

ratios, such as earnings per share and profit per employee.

While in conventional DEA, the envelopment model or the distance function-

based efficiency is equivalent to multiplier (ratio) efficiency, in the case of network

DEA, the distance function-based envelopment models do not necessarily yield

information on divisional efficiency. Although the envelopment network DEA

models might give the appearance of providing optimal divisional efficiency, we

show that in reality the envelopment efficiency is a measure of overall efficiency.

As a result of the current study, many existing production possibility set-based

network DEA models including Tone and Tsutsui’s (2009) slacks-based approach

need to be re-examined with respect to their rationale for the (divisional) efficiency

definition. Our study indicates that current envelopment models are not able to

calculate divisional efficiencies. However, this does not mean that it is impossible

to calculate divisional efficiencies by using envelopment models; rather there

would appear to be a need to develop new envelopment-based models for

accomplishing this task.

Finally, due to the fact that we are not able to obtain multiplier divisional

efficiency scores under the condition of VRS (because the resulting model cannot

be solved as a linear program), we cannot perform such a comparison under the

condition of VRS. Therefore, it is important to develop algorithms that will enable

one to derive multiplier-based divisional efficiency under VRS.
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Chapter 3

Efficiency Decomposition in Network Data

Envelopment Analysis

Chiang Kao

Abstract In order to measure the efficiency of systems composed of several

processes more appropriately, various network data envelopment analysis (DEA)

models have been developed. One type of the model, which is able to calculate the

system and process efficiencies at the same time, is relational. This paper discusses

the relationship between the system and process efficiencies measured from this

model, and derives five properties. The first is general to all types of network

structure, which states that the efficiency slack of the system is the sum of those

of the component processes. This implies that a system is efficient if and only if all

its component processes are. The second to fourth correspond to three types of

structure, series, parallel, and dynamic. The last states that any unstructured system

can be transformed into a series of parallel structures for efficiency decomposition.

Numerical examples are used to help explain the idea of each type of decomposi-

tion. Efficiency decomposition enables decision makers to identify the processes

that cause the inefficiency of a system, and thus to make effective changes to it.

Keywords Data envelopment analysis • Network • Efficiency decomposition

• Relational model

3.1 Introduction

Data envelopment analysis (DEA), first developed by Charnes et al. (1978), is a

technique for measuring the relative efficiency of a set of decision making units

(DMUs) that apply multiple inputs to produce multiple outputs. In its original

settings, only the inputs supplied to the system and the outputs produced from it

C. Kao (*)

Department of Industrial and Information Management, National Cheng

Kung University, Tainan, Taiwan

e-mail: ckao@mail.ncku.edu.tw

W.D. Cook and J. Zhu (eds.), Data Envelopment Analysis,
International Series in Operations Research & Management Science 208,

DOI 10.1007/978-1-4899-8068-7_3, © Springer Science+Business Media New York 2014

55

mailto:ckao@mail.ncku.edu.tw


are considered, neglecting the operations and interrelations of the processes within

the system. The system is thus called a black-box system, and the associated model

a black-box one.

Figure 3.1 shows a black-box system, where inputs Xij, i ¼ 1, . . . , m, are
utilized to produce outputs Yrj, r ¼ 1, . . . , s, for each DMU j, j ¼ 1, . . . , n. The
input-oriented model for measuring the efficiency of DMU k under the assumption

of constant returns to scale can be formulated as (Charnes et al. 1978):

ECCR
k ¼ max:

Xs
r¼1

urYrk

s:t:
Xm
i¼1

viXik ¼ 1

Xs
r¼1

urYrj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m ð3:1Þ

where ur and vi are virtual multipliers, and ε is a small non-Archimedean number

imposed to avoid ignoring any factor in calculating efficiency (Charnes and Cooper

1984). Larger values of ECCR
k imply a better performance, and a value of 1 is

considered as efficient.

Usually a production system is composed of several interrelated processes. If the

operations of the component processes are ignored, then Model (3.1) may produce

efficiency scores that are misleading. When the internal structure is considered, one

faces a network system. Figure 3.2 shows a general network system, where each

process p, p ¼ 1, . . . , q, uses exogenous inputs X
ðpÞ
i , i ∈ I(p), supplied from outside

the system, and endogenous inputs Z
ðpÞ
f , f ∈ M

ðpÞ
I , produced by other processes, to

produce outputs Y
ðpÞ
r , r ∈ O(p), as the final outputs of the system, and endogenous

outputs Z
ðpÞ
g , g ∈ M

ðpÞ
O , to be utilized by other processes. Z

ðpÞ
f (or Z

ðpÞ
g ) are also called

intermediate products. The whole system has m inputs, s outputs, and

h intermediate products. The sets I(p), O(p), M
ðpÞ
I , and M

ðpÞ
O contain the indices of

the inputs, outputs, intermediate products used, and intermediate products pro-

duced, respectively, for process p.
Comparing the black-box system of Fig. 3.1 with the network system of

Fig. 3.2, it is noted that, for each DMU j, the sum of the exogenous inputs of all

q processes is equal to the inputs of the system, ∑q
p¼1X

ðpÞ
ij ¼ Xij, i ¼ 1, . . . , m, and

the sum of the exogenous outputs of all q processes is equal to the outputs of the

i=1,...,m r=1,...,s

YrXi
Fig. 3.1 Block-box system

56 C. Kao



system, ∑q
p¼1Y

ðpÞ
rj ¼ Yrj, r ¼ 1, . . . , s. Moreover, the sum of the intermediate

products used by all q processes is equal to the sum of the intermediate products

produced by all q processes; that is, all intermediate products are produced and

consumed within the system.

Several models for measuring the efficiency of a network system have been

developed (see, for example, the reviews and classifications in Castelli et al. (2010)

and Kao and Hwang (2010)). Some models can measure the system and process

efficiencies at the same time, and derive mathematical relationships between them,

based on which the most effective way to improve the efficiency of a DMU can be

identified. This paper applies the relational model of Kao (2009a) for network

systems to decompose the system efficiency into process efficiencies. For structured

systems, including series, parallel, and dynamic ones, mathematical relationships

exist between the system and process efficiencies. Unstructured systems can thus

be transformed into structured ones, and the relationships within them derived.

In the next section, we will briefly review the relational DEA model for network

systems. The process of efficiency decomposition for series, parallel, dynamic, and

general unstructured network systems is then discussed.

3.2 Relational Network DEA Model

In a network system, the same input Xi may be used by several processes, and the

same output Yr may be produced by different processes. The relational model

requires the same factor, either input Xi or output Yr, to have the same multiplier

vi or ur. The rationale is that the same factor should have the same market value,

no matter which process it is associated with. This concept also applies to the

intermediate product, and so the same intermediate product Zf should have the

same multiplier wf associated with it, no matter whether it plays the role of

input or output, and no matter which process it is associated with. If different

multipliers are used for the same factor, then all processes are actually working

independently. In contrast, using the same multiplier relates one process

with another.

p

Xi
( p),i ∈ I( p)

f ∈ MI
( p) g ∈ MO

( p)

Yr
( p),r ∈ O( p)

Zf
( p) Zg

( p) …

1

q

…
 

1

q

Fig. 3.2 General network

system
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The difference between the network and black-box models is that the former

takes the operations of the component processes into account. Referring to Fig. 3.2,

the operation of each process p is described by the following constraint:

X
r∈O pð Þ

urY
pð Þ
rj þ

X
g∈M

pð Þ
O

wgZ
pð Þ
gj

0
B@

1
CA�

X
i∈I pð Þ

viX
pð Þ
ij þ

X
f∈M

pð Þ
I

wf Z
pð Þ
fj

0
B@

1
CA � 0,

p ¼ 1, . . . , q, j ¼ 1, . . . , n

That is, the aggregate output should be less than or equal to the aggregate input.

Adding this set of constraints to Model (3.1) and inserting slack variables obtains

the following relational network DEA model:

Ek ¼ max:
Xs
r¼1

urYrk

s:t:
Xm
i¼1

viXik ¼ 1

Xs
r¼1

urYrj �
Xm
i¼1

viXij þ sj ¼ 0, j ¼ 1, . . . , n

X
r∈O pð Þ

urY
pð Þ
rj þ

X
g∈M

pð Þ
O

wgZ
pð Þ
gj �

X
i∈I pð Þ

viX
pð Þ
ij þ

X
f∈M

pð Þ
I

wf Z
pð Þ
fj

0
B@

1
CA

þ s
pð Þ
j ¼ 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n

ur, vi,wf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , h ð3:2Þ

Let (u�r , v
�
i , w

�
f , s

�
k , s

ðpÞ�
k ) be an optimal solution to Model (3.2). The system and

process efficiencies for DMU k are:

Ek ¼
X s

r¼1
u�r YrkXm

i¼1
v�i Xik

¼
Xs
r¼1

u�r Yrk

E
pð Þ
k ¼

X
r∈O pð Þu

�
r Y

pð Þ
rk þ

X
g∈M

pð Þ
O

w�
gZ

pð Þ
gkX

i∈I pð Þv
�
i X

pð Þ
ik þ

X
f∈M

pð Þ
I

w�
f Z

pð Þ
fk

, p ¼ 1, . . . , q

For each DMU j, the sum of the constraints associated with the q component

processes is:
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Xq
p¼1

X
r∈O pð Þ

urY
pð Þ
rj þ

X
g∈M

pð Þ
O

wgZ
pð Þ
gj

0
B@

1
CA�

X
i∈I pð Þ

viX
pð Þ
ij þ

X
f∈M

pð Þ
I

wf Z
pð Þ
fj

0
B@

1
CA

2
64

3
75

¼
Xs
r¼1

urYrj �
Xm
i¼1

viXij

because
Xq

p¼1
X
ðpÞ
ij ¼ Xij,

X q

p¼1
Y
ðpÞ
rj ¼ Yrj, and all of the intermediate products

produced in the system have been consumed. This implies that the constraints

associated with the system in Model (3.2) for all DMUs are redundant. Moreover,

the slack variable associated with the system of a DMU is equal to the sum of those

associated with its processes, i.e., s�k ¼
Xq

p¼1
s
ðpÞ�
k . Therefore, we have the follow-

ing property.

Property 1 For a network system, the efficiency slack corresponding to the system

is equal to the sum of those corresponding to the process.

This property also implies that a system is efficient if and only if all its

component processes are.

Cook et al. (2010) proposed a way to decompose the system efficiency into a

weighted average of the process efficiencies. The key point is that their system

efficiency is defined differently from the conventional one, so that decomposition is

possible. Kao (2013b) also proposed a way to achieve the same goal, and it was

slacks-based measures (Tone and Tsutsui 2009), rather than the conventional

radial ones.

In the following sections, we will discuss the efficiency decomposition for

systems with specific structures, including series, parallel, and dynamic, and then

general unstructured systems, based on Model (3.2).

3.3 Series Systems

The simplest network system, which is also the most widely discussed in the

literature, is the two-stage one, where the first stage (process) utilizes all the inputs

supplied from outside of the system to produce some intermediate products for the

second stage (process) to produce the final outputs of the system. Two types of

efficiency decomposition have been proposed, the multiplicative one of Kao and

Hwang (2008) and the additive one of Chen et al. (2009). Both can be extended to

series systems of more than two stages. However, it should be noted that the system

efficiency in Chen et al. (2009) is defined differently from the conventional one, in

order to make the additive decomposition possible.

Figure 3.3 shows a series system of q processes, where all of the intermediate

products produced by a process are utilized by its successor. The intermediate

products used by the first process, Z
ð0Þ
f , are the inputs of the system, Xi, and the
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intermediate products produced by the last process, Z
ðqÞ
f , are the final outputs of the

system, Yr. Each process, except the first, does not consume exogenous inputs, and

all processes, except the last, do not produce exogenous outputs. If we treat Xi as

Z
ð0Þ
f and Yr as Z

ðqÞ
f , then the series system is a special network system, where each

process p does not have inputs X
ðpÞ
i , nor outputs Y

ðpÞ
r . For this well-structured

system, the general network model (3.2) can be formulated more compactly as:

Ek ¼ max:
X

f∈M qð Þ
wf Z

qð Þ
fk

s:t:
X

f∈M 0ð Þ
wf Z

0ð Þ
fk ¼ 1

X
f∈M qð Þ

wf Z
qð Þ
fj �

X
f∈M 0ð Þ

wf Z
0ð Þ
fj þ sj ¼ 0, j ¼ 1, . . . , n

X
f∈M pð Þ

wf Z
pð Þ
fj �

X
f∈M p�1ð Þ

wf Z
p�1ð Þ
fj þ s

pð Þ
j ¼ 0, p ¼ 1, . . . , q

ur, vi, wf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , h ð3:3Þ

Denote (u�r , v
�
i , w

�
f , s

�
k , s

ðpÞ�
k ) as an optimal solution. The system and process

efficiencies are:

Ek ¼
X

f∈M qð Þw
�
f Z

qð Þ
fkX

f∈M 0ð Þw
�
f Z

0ð Þ
fk

E
pð Þ
k ¼

X
f∈M pð Þw

�
f Z

pð Þ
fkX

f∈M p�1ð Þw
�
f Z

p�1ð Þ
fk

, p ¼ 1, . . . , q

When all q process efficiencies are multiplied together, one obtains:

Yq
p¼1

E
pð Þ
k ¼

Yq
p¼1

X
f∈M pð Þw

�
f Z

pð Þ
fkX

f∈M p�1ð Þw
�
f Z

p�1ð Þ
fk

2
4

3
5 ¼

X
f∈M qð Þw

�
f Z

qð Þ
fkX

f∈M 0ð Þw
�
f Z

0ð Þ
fk

Fig. 3.3 Series system
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which is the system efficiency. Thus, for series systems, one has the following

property, in addition to the general efficiency decomposition of s�k ¼
X q

p¼1
s
ðpÞ�
k ,

stated in Property 1.

Property 2 The system efficiency in series systems is the product of all process

efficiencies.

Consider a series system of three processes, where the first process consumes

inputs X1(Z
ð0Þ
1 ) and X2(Z

ð0Þ
2 ) to produce intermediate product Z

ð1Þ
3 , the second

process consumes Z
ð1Þ
3 to produce intermediate product Z

ð2Þ
4 , and the third process

consumes Z
ð2Þ
4 to produce the final outputs Y1(Z

ð3Þ
5 ) and Y2(Z

ð3Þ
6 ). Table 3.1 shows the

data of an example of five DMUs, labeled as A ~ E. By setting the

non-Archimedean number ε to 0.0001, the efficiencies of the black-box system

for the five DMUs are calculated via Model (3.1), with the results shown in the

second column of Table 3.2. Three DMUs, A, C, and D are efficient. By taking into

account the operations of the three processes, that is, applying Model (3.2), none of

the five DMUs is efficient, as is seen in the results shown in column three of

Table 3.2. Clearly, the network model is more discriminative, as it identifies DMU

A (from A, C, and D) as the one with the best performance.

The last three double-columns show the efficiencies of the three processes and

their associated efficiency slacks. The results verify Property 1, that the efficiency

slack of the system is equal to the sum of those of the process. Using DMU E to

explain this, one has 0.3334 ¼ 0.1112 + 0.0889 + 0.1333. Property 2, which states

that the system efficiency is the product of the process efficiencies, is also verified:

Table 3.1 Data for the series system example

DMU

Input Intermediate product Output

X1(Z1
(0)) X2(Z2

(0)) Z3
(1) Z4

(2) Y1(Z5
(3)) Y2(Z6

(3))

A 1 3 2 3 2 2

B 2 3 3 5 2 2

C 4 2 3 4 3 2

D 4 3 3 5 3 3

E 3 5 4 6 3 3

Table 3.2 Results of the series system example

DMU

Black-box Network system Process 1 Process 2 Process 3

ECCR
k Ek (sk) Ek

(1) (s
ð1Þ
k ) Ek

(2) (sk
(2)) Ek

(3) (sk
(3))

A 1 0.9 (0.1) 1 (0) 0.9 (0.1) 1 (0)

B 0.8571 0.6667 (0.3333) 1 (0) 1 (0) 0.6667 (0.3333)

C 1 0.8 (0.2) 1 (0) 0.8 (0.2) 1 (0)

D 1 0.8 (0.2) 0.8 (0.2) 1 (0) 1 (0)

E 0.7941 0.6666 (0.3334) 0.8888 (0.1112) 0.9 (0.0889) 0.8333 (0.1333)
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0.6666 ¼ 0.8888 � 0.9 � 0.8333. From the efficiency scores or the efficiency

slacks of a DMU, one can identify the process that affects the system efficiency

the most. For example, Process 3 has the smallest efficiency score and the largest

efficiency slack, and thus improving the efficiency of this process will be the most

effective way to improve the system efficiency of this DMU.

3.4 Parallel Systems

Series and parallel are the two basic structures of network systems. Surprisingly,

parallel systems are not as widely discussed as series systems in the literature (refer

to the review of Kao and Hwang (2010)). Kao (2009b, 2012) followed the relational

model of Kao (2009a) to derive a relationship between the system and process

efficiencies, in that the former is a weighted average of the latter, either from the

input or output side. Here, we will only discuss these from the input side.

Consider a parallel system with q processes operating independently, as shown

in Fig. 3.4, where process p uses inputs X
ðpÞ
i , i ∈ I(p) to produce outputs Y

ðpÞ
r ,

r ∈ O(p). The sum of the inputs used by all q processes is equal to the system

inputs,
Xq

p¼1
X
ðpÞ
ij ¼ Xij. Similarly, the sum of the outputs produced by all

q processes is equal to the system outputs,
Xq

p¼1
Y
ðpÞ
rj ¼ Yrj. The parallel system

does not have intermediate products to connect different processes. Some studies

(Beasley 1995; Färe et al. 1992, 1997) discuss the best way of allocating the total

inputs Xi to different processes so that the system will be more efficient. The

processes in this case are interrelated. When the operations of the processes are

considered, the following constraints, one corresponding to one process, are added

to Model (3.1):

X
r∈O pð Þ

urY
pð Þ
rj �

X
i∈I pð Þ

viX
pð Þ
ij � 0, p ¼ 1, . . . , q

Fig. 3.4 Parallel system
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The network model for parallel systems thus becomes:

Ek ¼ max:
Xs
r¼1

urYrk

s:t:
Xm
i¼1

viXik ¼ 1

Xs
r¼1

urYrj �
Xm
i¼1

viXij þ sj ¼ 0, j ¼ 1, . . . , n

X
r∈O pð Þ

urY
pð Þ
rj �

X
i∈I pð Þ

viX
pð Þ
ij þ s

pð Þ
j ¼ 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m ð3:4Þ

Let (u�r , v�i , s�k , s
ðpÞ�
k ) be an optimal solution. The system and process

efficiencies are:

Ek ¼
X s

r¼1
u�r YrkXm

i¼1
v�i Xik

¼
Xs
r¼1

u�r Yrk

E
pð Þ
k ¼

X
r∈O pð Þu

�
r Y

pð Þ
rkX

i∈I pð Þv
�
i X

pð Þ
ik

, p ¼ 1, . . . , q

If we define the weight ω(p) for process p as the aggregate input consumed

by process p in that consumed by all q processes, i.e. ω pð Þ ¼
X

i∈I pð Þv
�
i X

pð Þ
ik =Xm

i¼1
v�i Xik, then the average of the process efficiencies weighted by ω(p) can be

derived as:

Xq
p¼1

ω pð ÞE pð Þ
k ¼

Xq
p¼1

X
i∈I pð Þv

�
i X

pð Þ
ikXm

i¼1
v�i Xik

 ! X
r∈O pð Þu

�
r Y

pð Þ
rkX

i∈I pð Þv
�
i X

pð Þ
ik

0
@

1
A

2
4

3
5

¼
Xq
p¼1

X
r∈O pð Þu

�
r Y

pð Þ
rkXm

i¼1
v�i Xik

0
@

1
A ¼

X s

r¼1
u�r YrkXm

i¼1
v�i Xik

which is the system efficiency. Thus, in addition to Property 1, the efficiencies in a

parallel system also possess the following property.

Property 3 The system efficiency for a parallel system is equal to the weighted

average of the process efficiencies, where the weight associated with process p is

the aggregate input consumed by process p in that consumed by all q processes.

Suppose there is a parallel system of three processes. The first process applies

input X1 to produce output Y1, the second process applies inputs X1 and X2 to produce

outputs Y1 and Y2, and the third process applies input X2 to produce output Y2.
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There are five DMUs to be evaluated, with the data shown in Table 3.3. By applying

Model (3.1), the conventional black-box CCR efficiencies are calculated as shown in

the second column of Table 3.4, where three DMUs, A, B, and E, are efficient. The
network model (3.4), on the other hand, finds no efficient DMUs. However, it is able

to distinguish DMU B as the best, A the second, and E the third. The two inefficient

DMUs evaluated by the black-box model are still evaluated as the worst by the

network model.

The efficiencies of the three processes, efficiency slacks (in parentheses), and

weights (in square brackets) are shown in the last three double-columns of

Table 3.4. Based on Property 1, the efficiency slack of the system must be equal

to the sum of those of the three processes, and this is easily verified. For example,

DMU A has an efficiency slack of 0.24 for the system, which is exactly the sum of

those of the three processes, 0.1, 0, and 0.14. Furthermore, according to Property 3,

the system efficiency is a weighted average of the process efficiencies. For DMU A,
the weights for the three processes are 3v1 ¼ 0.18, v1 + 2v2 ¼ 0.44, and

2v2 ¼ 0.38. The total weight is 4v1 + 4v2 ¼ 1. The weighted average of the three

process efficiencies is 0.18(0.4444) + 0.44(1) + 0.38(0.6316) ¼ 0.76, which is

exactly the value of the system efficiency.

3.5 Dynamic Systems

Another type of network systems that also can be described systematically is

dynamic systems (Chen and Dalen 2010; Jaenicke 2000; Nemoto and Goto 1999;

Tone and Tsutsui 2010), where a DMU repeats the same operation from period to

period, and two consecutive periods are connected by carryovers.

Figure 3.5 shows the structure of the dynamic system, where each period

(process) p consumes inputs X
ðpÞ
i and carryover Z

ðp�1Þ
f to produce outputs Y

ðpÞ
r and

carryover Z
ðpÞ
f . If we examine the structure carefully, we will find that it is the

structure of the series system in Fig. 3.3 overlapped with that of the parallel system

in Fig. 3.4. Horizontally, it is a series system where each process consumes

intermediate products (carryovers) produced by the proceeding process to produce

the same ones for the succeeding process to use. Vertically, it is a parallel system

where each process consumes the same exogenous inputs to produce the same

Table 3.3 Data for the

parallel system example
DMU

Process 1 Process 2 Process 3

X1
(1) Y1

(1) X1
(2) X2

(2) Y1
(2) Y2

(2) X2
(3) Y2

(3)

A 3 2 1 2 2 3 2 2

B 2 3 1 4 2 4 2 1

C 4 3 3 2 2 4 3 2

D 3 3 3 3 3 2 3 3

E 3 4 4 3 4 3 2 3
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exogenous outputs. Kao (2013a) developed a relational model to calculate the

system and process efficiencies of this system.

Referring to Fig. 3.5, the inputs to the system are a little different from those of

the conventional black-box one. In addition to the conventional inputs of
X q

p¼1

X
ðpÞ
ij ¼ Xij, the dynamic system has initial carryovers of Z

ð0Þ
f . Similarly, in addition

to the conventional outputs of
X q

p¼1
Y
ðpÞ
rj ¼ Yrj, it has terminal carryovers of Z

ðqÞ
f .

The constraint corresponding to each process p is:

Xs
r¼1

urY
pð Þ
rj þ

Xh
f¼1

wf Z
pð Þ
fj

 !
�

Xm
i¼1

viX
pð Þ
ij þ

Xh
f¼1

wf Z
p�1ð Þ
fj

 !
� 0, p ¼ 1, . . . , q:

The complete model is:

Ek ¼ max:
Xs
r¼1

urYrk þ
Xh
f¼1

wf Z
qð Þ
fk

s:t:
Xm
i¼1

viXik þ
Xh
f¼1

wf Z
0ð Þ
fk ¼ 1

Xs
r¼1

urYrj þ
Xh
f¼1

wf Z
qð Þ
fj �

Xm
i¼1

viXij þ
Xh
f¼1

wf Z
0ð Þ
fj

 !

þ sj ¼ 0, j ¼ 1, . . . , n

Xs
r¼1

urY
pð Þ
rj þ

Xh
f¼1

wf Z
pð Þ
fj �

Xm
i¼1

viX
pð Þ
ij þ

Xh
f¼1

wf Z
p�1ð Þ
fj

 !

þ s
pð Þ
j ¼ 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n

ur, vi,wf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , h ð3:5Þ

Fig. 3.5 Dynamic system
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For each DMU j, the sum of the constraints associated with the q processes is:

Xq
p¼1

Xs
r¼1

urY
pð Þ
rj þ

Xh
f¼1

wf Z
pð Þ
fj

 !
�

Xm
i¼1

viX
pð Þ
ij þ

Xh
f¼1

wf Z
p�1ð Þ
fj

 !" #

¼
Xs
r¼1

urYrj þ
Xh
f¼1

wf Z
qð Þ
fj

 !
�

Xm
i¼1

viXij þ
Xh
f¼1

wf Z
0ð Þ
fj

 !
ð3:6Þ

which is just the constraint corresponding to the system. Therefore, similar to the

previous network models, the constraints corresponding to the system are redun-

dant, and the efficiency slack of the system, sj, is the sum of those of the processes,

s
ðpÞ
j . The system and process efficiencies, according to Model (3.5) are:

Ek ¼
X s

r¼1
u�r Yrk þ

Xh

f¼1
w�
f Z

qð Þ
fkXm

i¼1
v�i Xik þ

Xh

f¼1
w�
f Z

0ð Þ
fk

¼
Xs
r¼1

u�r Yrk þ
Xh
f¼1

w�
f Z

qð Þ
fk ¼ 1� s�k

E
pð Þ
k ¼

X s

r¼1
u�r Y

pð Þ
rk þ

X h

f¼1
w�
f Z

pð Þ
fkXm

i¼1
v�i X

pð Þ
ik þ

Xh

f¼1
w�
f Z

p�1ð Þ
fk

, p ¼ 1, . . . , q

where (u�r , v�i , w�
f , s�k , s

ðpÞ�
k ) is an optimal solution. Dividing both sides of

equation (3.6) by (∑m
i¼1v

�
i Xik + ∑h

f¼1w
�
f Z

ð0Þ
fk ) and multiplying the left-hand side by

an identity of (∑m
i¼1v

�
i X

ðpÞ
ik + ∑h

f¼1w
�
f Z

ðp�1Þ
fk )/(∑m

i¼1v
�
i X

ðpÞ
ik + ∑h

f¼1w
�
f Z

ðp�1Þ
fk ) for period p

results in:

Xq
p¼1

E
pð Þ
k � 1

� � Xm
i¼1

v�i X
pð Þ
ik þ

Xh
f¼1

w�
f Z

p�1ð Þ
fk

 !� Xm
i¼1

v�i Xik þ
Xh
f¼1

w�
f Z

0ð Þ
fk

 !" #
¼ Ek � 1

Denoting ω(p) ¼ (∑m
i¼1v

�
i X

ðpÞ
ik + ∑ h

f¼1w
�
f Z

ðp�1Þ
fk )/(∑m

i¼1v
�
i Xik + ∑ h

f¼1w
�
f Z

ð0Þ
fk ), the

above equation becomes:

Xq
p¼1

ω pð Þ 1� E
pð Þ
k

� �h i
¼ 1� Ek

Note that the sum of ω(p) over p ¼ 1, . . . , q is: ∑ q
p¼1ω

(p) = 1 + ∑q
p¼2

∑h
f¼1w

�
f Z

ðp�1Þ
fk /(∑m

i¼1v
�
i Xik + ∑ h

f¼1w
�
f Z

ð0Þ
fk ), which is greater than 1. We thus obtain

the following property.
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Property 4 The complement of the system efficiency for a dynamic system is a

linear, and not necessarily a convex, combination of those of the process

efficiencies.

Consider a dynamic system of three periods, where each DMU applies two

inputs, X1 and X2, to produce two outputs, Y1 and Y2, with a carryover Z. Table 3.5
contains the data of five hypothetical DMUs. When the black-box Model (3.1) is

applied (with Z(0) as another input and Z(3) as another output), four DMUs, A ~ D,
are evaluated as efficient, as shown in the second column of Table 3.6. If the

network Model (3.5) is applied, then no DMU is efficient; however, the system

efficiencies, as shown in the third column of Table 3.6, are able to distinguish their

performance. The last three double-columns show the results for the three periods,

including efficiency scores, efficiency slacks (in parentheses), and weights

(in square brackets).

To check whether Property 1 holds or not for this dynamic system, we simply

add the efficiency slacks of the three periods to see if the sum is equal to that of the

system. Using DMU E to explain this, the sum of the three periods is 0.2960+

0.0368 + 0.0007, or 0.3335, which is just the efficiency slack of the system. Other

DMUs can be checked similarly.

According to Property 4, the complement of the system efficiency is a linear

combination of those of the three processes. To see this, the complement of the

system efficiency for DMU E is 1 � EE ¼ 0.3335, and the sum of those of the three

processes multiplied by their respective weights is 0.4448(1 � 0.3347) + 0.3339

(1 � 0.8897) + 0.2233(1 � 0.9969), or 0.3334 (¼1 � 0.6666). (Note that there is

a slight difference caused by truncation.) The number under the system efficiency,

in square brackets, is the total weight of the three processes. Only DMUs A and

E have a total weight close to 1, indicating that their complement of the system

efficiency is close to the weighted average of those of the three processes.

3.6 Unstructured Systems

Network systems that cannot be described systematically, as the preceding three

structures can be, are considered as unstructured systems. Since the decomposition

of this type of system depends on the related structure, we will use an example to

explain this. The application of this idea to systems with other structures should

then be straightforward.

Consider the structure shown in Fig. 3.6, which has been discussed in the

literature (Färe and Grosskopf 1996, 2000; Färe et al. 2007). The system has

three processes, where Process 1 consumes inputs X1 and X2 to produce output

Y1, Process 2 consumes inputs X1 and X2 to produce output Y2, and Process

3 consumes a part of Y1, denoted as Y
ðIÞ
1 , and a part of Y2, denoted as Y

ðIÞ
2 , to produce

output Y3. The outputs of the system are the remaining parts of Y1 and Y2, denoted as
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Y
ðOÞ
1 and Y

ðOÞ
2 , respectively, and Y3. Following Model (3.2), the model for measuring

the system and process efficiencies is formulated as:

Ek ¼ max: u1Y
Oð Þ
1k þ u2Y

Oð Þ
2k þ u3Y3k

s:t: v1X1k þ v2X2k ¼ 1

u1Y
Oð Þ
1j þ u2Y

Oð Þ
2j þ u3Y3j

� �
� v1X1j þ v2X2j

� �þ sj ¼ 0, j ¼ 1, . . . , n

u1Y1j � v1X
1ð Þ
1j þ v2X

1ð Þ
2j

� �
þ s

1ð Þ
j ¼ 0 j ¼ 1, . . . , n

u2Y2j � v1X
2ð Þ
1j þ v2X

2ð Þ
2j

� �
þ s

2ð Þ
j ¼ 0, j ¼ 1, . . . , n

u3Y3j � v1X
3ð Þ
1j þ v2X

3ð Þ
2j þ u1Y

Ið Þ
1j þ u2Y

Ið Þ
2j þ s

3ð Þ
j ¼ 0, j ¼ 1, . . . , n

� �
u1, u21, u3, v1, v2 � ε

ð3:7Þ

After the optimal multipliers u�1, u
�
2, u

�
3, v

�
1, and v

�
2 are calculated from this model,

the efficiencies of the system and three processes are obtained as:

Ek ¼ u�1Y
Oð Þ
1k þ u�2Y

Oð Þ
2k þ u�3Y3k

v�1X1k þ v�2X2k

E
1ð Þ
k ¼ u�1Y1k

v�1X
1ð Þ
1k þ v�2X

1ð Þ
2k

E
2ð Þ
k ¼ u�2Y2k

v�1X
2ð Þ
1k þ v�2X

2ð Þ
2k

E
3ð Þ
k ¼ u�3Y3k

v�1X
3ð Þ
1k þ v�2X

3ð Þ
2k þ u�1Y

Ið Þ
1k þ u�2Y

Ið Þ
2k

Fig. 3.6 Example of

unstructured network

system
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Since the constraint corresponding to the system is the sum of those

corresponding to the three processes, the efficiency slack of the system is the sum

of those of the process, s�k ¼ s
ð1Þ�
k + s

ð2Þ�
k + s

ð3Þ�
k , as stated in Property 1.

Another way to decompose the system efficiency, proposed by Kao (2009a), is

to express the system as a series of subsystems by introducing dummy processes,

where each subsystem is composed of processes connected in parallel. Then, by

applying Property 2 for decomposing efficiencies for series systems, and Property 3

for parallel systems, the system efficiency can be expressed as a function

of process efficiencies. Figure 3.7 shows a transformation of this system, which

is composed of two subsystems connected in series and each subsystem is com-

posed of a set of processes connected in parallel, where squares and circles

represent real and dummy processes, respectively. A dummy process does not

exist in the original system, and is used solely for representation. The system has

two inputs, X1 and X2. The first subsystem has three processes, real 1 and 2 and

dummy 4, where Process 1 consumes X
ð1Þ
1 and X

ð1Þ
2 to produce Y1, Process 2 con-

sumes X
ð2Þ
1 and X

ð2Þ
2 to produce Y2, and Process 4 consumes X

ð3Þ
1 and X

ð3Þ
2 to produce

the same items X
ð3Þ
1 and X

ð3Þ
2 as outputs. The outputs of this subsystem, Y1, Y2, X

ð3Þ
1 ,

and X
ð3Þ
2 , are then used by the second subsystem, which also has two processes,

real 3 and dummy 5. In this subsystem, Process 3 consumes X
ð3Þ
1 , X

ð3Þ
2 , Y

ðIÞ
1 , and Y

ðIÞ
2

to produce Y3, and Process 5 consumes Y
ðOÞ
1 and Y

ðOÞ
2 to produce the same items

Y
ðOÞ
1 and Y

ðOÞ
2 . The outputs of this subsystem, Y

ðOÞ
1 , Y

ðOÞ
2 , and Y3, are the outputs of

the system.

Since the outputs and inputs are the same for each dummy process, the

corresponding constraint is redundant, and the process is always efficient, with an

efficiency score of 1. For example, the constraint corresponding to dummyProcess 4 is

(v1X
ð3Þ
1j + v2X

ð3Þ
2j ) � (v1X

ð3Þ
1j + v2X

ð3Þ
2j ) � 0, which certainly holds, and the efficiency

Fig. 3.7 Series-parallel transformation of the example unstructured system
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for DMU k is (v�1X
ð3Þ
1k + v�2X

ð3Þ
2k )/(v

�
1X

ð3Þ
1k + v�2X

ð3Þ
2k ), which is definitely equal to 1. The

efficiency of each subsystem is the aggregate output divided by the aggregate input:

EI
k ¼

u�1Y1k þ u�2Y2k þ v�1X
3ð Þ
1k þ v�2X

3ð Þ
2k

v�1X1k þ v�2X2k

EII
k ¼ u�1Y

Oð Þ
1k þ u�2Y

Oð Þ
2k þ u�3Y3k

u�1Y1k þ u�2Y2k þ v�1X
3ð Þ
1k þ v�2X

3ð Þ
2k

To restrict the subsystem efficiency to be less than or equal to one, the aggregate

outputmust be no greater than the aggregate input, which for the two subsystems are:

u1Y1j þ u2Y2j þ v1X
3ð Þ
1j þ v2X

3ð Þ
2j

� �
� v1X1j þ v2X2j

� � � 0, j ¼ 1, . . . , n

u1Y
Oð Þ
1j þ u2Y

Oð Þ
2j þ u3Y3j

� �
� u1Y1j þ u2Y2j þ v1X

3ð Þ
1j þ v2X

3ð Þ
2j

� �
� 0, j ¼ 1, . . . , n

By deleting identical terms, they become:

u1Y1j þ u2Y2j � v1X
1ð Þ
1j þ v2X

1ð Þ
2j þ v1X

2ð Þ
1j þ v2X

2ð Þ
2j

� �
� 0, j ¼ 1, . . . , n

u3Y3j � v1X
3ð Þ
1j þ v2X

3ð Þ
2j þ u1Y

Ið Þ
1j þ u2Y

Ið Þ
2j

� �
� 0, j ¼ 1, . . . , n

which are exactly the sum of the two constraints corresponding to Processes 1 and

2, and that corresponding to Process 3 formulated in Model (3.7), respectively.

Therefore, they are redundant, and need not repeat in the model.

Clearly, the product of the two subsystem efficiencies is equal to the system

efficiency, EI
k � EII

k ¼ Ek, as required by Property 2 for series systems. Further-

more, since each subsystem has a parallel structure, according to Property 3, the

subsystem efficiency is a weighted average of those of the component processes:

EI
k ¼ ω 1ð ÞE 1ð Þ

k þ ω 2ð ÞE 2ð Þ
k þ ω 4ð ÞE 4ð Þ

k ¼ ω 1ð ÞE 1ð Þ
k þ ω 2ð ÞE 2ð Þ

k þ 1� ω 1ð Þ � ω 2ð Þ� �
EII
k ¼ ω 3ð ÞE 3ð Þ

k þ ω 5ð ÞE 5ð Þ
k ¼ ω 3ð ÞE 3ð Þ

k þ 1� ω 3ð Þ� �
where ω(1) ¼ (v�1X

ð1Þ
1k + v�2X

ð1Þ
2k )/(v

�
1X1k + v�2X2k), ω

(2) ¼ (v�1X
ð2Þ
1k + v�2X

ð2Þ
2k )/(v

�
1X1k +

v�2X2k), and ω(4) ¼ (v�1X
ð3Þ
1k + v�2X

ð3Þ
2k )/(v

�
1X1k + v�2X2k) for Subsystem I, and ω(3) ¼

(v�1X
ð3Þ
1k + v�2X

ð3Þ
2k + u�1Y

ðIÞ
1k + u�2Y

ðIÞ
2k )/(v

�
1X

ð3Þ
1k + v�2X

ð3Þ
2k + u�1Y1k + u�2Y2k) and ω(5) ¼

(u�1Y
ðOÞ
1k + u�2Y

ðOÞ
2k )/(v�1X

ð3Þ
1k + v�2X

ð3Þ
2k + u�1Y1k + u�2Y2k) ¼ 1 � ω(3) for Subsystem II.

In sum, we have E[ω(1)E
ð1Þ
k + ω(2)E

ð2Þ
k + (1 � ω(1) � ω(2))][ω(3)E

ð3Þ
k + (1 � ω(3))].
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This series-parallel type of representation can be applied to other network

systems. The idea is to find the longest path of the system being considered.

The number of processes in the path will be the number of subsystems, and

each subsystem will be composed of a number of processes plus one dummy

process, where the latter is used to carry the inputs to be used in later stages

and the outputs already produced. With this representation, the system efficiency

can be decomposed into the process efficiencies according to the following

property.

Property 5 For general network systems, the system efficiency is the product of a

set of subsystem efficiencies, where the subsystem efficiency is a weighted average

of some process efficiencies and 1.

Table 3.7 contains a set of data taken from Färe et al. (2007). To make it more

complicated, two more DMUs, D and E, are added. By applying Model (3.1), the

black-box efficiencies for the five DMUs are calculated, with the results shown in

column two of Table 3.8. Of the five DMUs, three are efficient. The network Model

(3.7), on the other hand, identifies DMU D as the best, followed by B and A.
Interestingly, this model ranks DMU C the second, in contrast to the worst, as

ranked by the black-box model. The results are shown in the third column of

Table 3.8.

The last two sets of columns show the results of the efficiencies of the two

subsystems. First, it is noted that the product of the two subsystem efficiencies is

equal to the system efficiency. Using DMU E to explain this, we have

0.8261 � 0.7401 ¼ 0.6114. Second, the efficiency slack of the system is equal to

the sum of those of the three processes. For DMU E, this is 0.3886 ¼ 0.0870 +

0.0870+ 0.2147. Third, the efficiency of the subsystem is the average of those of the

component processes weighted by ω(p). For Subsystem I of DMU E, this is

0.8261 ¼ 0.3043 � 0.7143 + 0.3913 � 0.7778 + (1 � 0.3043 � 0.3913) and for

Subsystem II it is 0.7401 ¼ 0.8026 � 0.6762 + (1 � 0.8026). Combining these

two results, the system efficiency is decomposed as: 0.6114 ¼ [0.3043 � 0.7143 +

0.3913 � 0.7778 + (1 � 0.3043 � 0.3913)] � [0.8026 � 0.6762 + (1 � 0.8026)].

The other four DMUs can be verified similarly.

Table 3.7 Data for the example unstructured system

DMU X1 (X1
(1)X1

(2)X1
(3)) X2 (X2

(1)X2
(2)X2

(3)) Y1 (Y1
(I )Y1

(O)) Y2 (Y2
(I )Y2

(O)) Y3

A 6 (1 2 3) 7 (2 3 2) 4 (2 2) 4 (2 2) 2

B 9 (2 3 4) 5 (1 2 2) 3 (1 2) 3 (2 1) 3

C 9 (2 3 4) 8 (2 3 3) 5 (3 2) 5 (2 3) 4

D 8 (2 3 3) 6 (2 1 3) 5 (3 2) 4 (1 3) 4

E 7 (2 3 2) 9 (3 3 3) 5 (3 2) 4 (3 1) 3
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3.7 Conclusion

Network production systems are very common in the real world. Ignoring the

operations of their internal processes by applying conventional black-box models

may overstate the efficiency of such systems. More seriously, some results may also

be misleading. This paper measures the efficiency of network systems using the

relational model of Kao (2009a), and decomposes the system efficiency into

process efficiencies. Since the operations of the processes have been taken into

account, the network models have stronger discriminating power than the black-box

one in ranking the performance of a set of DMUs. The decomposition is expressed

by mathematical relationships. Based on the decomposition, the processes that

cause the inefficiency of the system are identified, and the most effective way to

improve the efficiency of a DMU is obtained.

Several properties are obtained in decomposing the system efficiency of differ-

ent structures. First, for any network system, the efficiency slack of the system is

equal to the sum of those of the component processes. A consequence of this is that

a system is efficient if and only if all its component processes are. Second, for series

systems, the system efficiency is the product of the process efficiencies. Third, for

parallel systems, the system efficiency is a weighted average of the process effi-

ciencies. Fourth, the system efficiency is a linear, and not necessarily convex,

combination of the process efficiencies.

Series and parallel are the two basic structures of network systems. Any network

system can be expressed as a series of subsystems, where each subsystem is

composed of a set of processes connected in parallel. Based on the properties of

efficiency decomposition for series and parallel structures, a relationship between

the system and process efficiencies is then obtained. A decomposition is thus

possible for other unstructured network systems, but it is dependent on the structure

of the system. Property 5 states that the system efficiency is the product of a set of

subsystem efficiencies, where the subsystem efficiency is a weighted average of

some process efficiencies and 1. How many processes are included in each

subsystem depends on the structure of the network system.

The efficiency decomposition discussed in this paper is based on the relational

model of Kao (2009a). In that paper, the models for network systems are classified

as independent, connected, and relational. Whether there are different ways of

decomposition for the other two types of models is a direction for future studies.

In addition to radial measures of efficiency, there is the slacks-based measure

(SBM) proposed by Tone and Tsutsui (2009). In addition, Kao (2013b) recently

decomposed the system efficiency of general network systems measured from an

SBM model into a weighted average of the process efficiencies. Whether there are

different ways of decomposition for other non-radial efficiency measures is another

avenue for future research.
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Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34, 35–49.
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Chapter 4

Two-Stage Network Processes:

DEA Frontier Identification

Yao Chen, Wade D. Cook, and Joe Zhu

Abstract The current chapter focuses on how to identify DEA frontier when

decision making units (DMUs) are in forms of two-stage network processes. In

these two stage network processes, all the outputs from the first stage are interme-

diate measures that make up the inputs to the second stage. Due to the existence of

intermediate measures, the usual procedure of adjusting the inputs or outputs by the

efficiency scores, as in the standard DEA approach, does not necessarily yield a

frontier projection. The current chapter presents an approach for determining the

frontier points for inefficient DMUs within the framework of two-stage network

processes.
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4.1 Introduction

Data envelopment analysis (DEA) is an approach for identifying best practices of

peer decision making units (DMUs), in the presence of multiple inputs and outputs

(Charnes et al. 1978). DEA provides not only efficiency scores for inefficient

DMUs, but also provides for efficient projections for inefficient units onto the

best-practice frontier. In recent years, a number of DEA studies have focused on

two-stage network processes (see Chap. 1).

Consider a generic two-stage process as shown in Fig. 4.1, for each of a set of

nDMUs. We assume eachDMUj ( j ¼ 1, 2, . . ., n) hasm inputs xij, (i ¼ 1, 2, . . .,m)
to the first stage, and D outputs zdj, (d ¼ 1, 2, . . ., D) from that stage. These

D outputs then become the inputs to the second stage, hence behaving as interme-

diate measures. The outputs from the second stage are yrj, (r ¼ 1, 2, . . ., s).
As pointed out by a number of authors, including Kao and Huang (2008), Lewis

and Sexton (2004), and Castelli et al. (2010), adjusting the inputs and outputs by the

efficiency scores in a two-stage process is generally not sufficient to yield a frontier

projection. Chen et al. (2009) present a model similar to that of Kao and Huang

(2008), but in an additive format. However, as with the multiplicative setup, the

usual input and output adjustments do not yield the efficient frontier here either. For

many of the cases addressed in the DEA literature dealing with structured DMUs,

this will be the situation.

In the sections to follow we show that the overall efficiency scores resulting from

KaoandHwang (2008) andLianget al. (2008) are not direct indicators of potential input

reductions or output increases not realized by the inefficient DMUs, e.g. how much

more output each DMU can produce given its present inputs, or how much each DMU

could reduce its input-use while still producing the same output. In other words, the

resultingDEA scores do not provide complete information on how to project inefficient

DMUs onto the DEA frontier for a specific two-stage network process. Although we

know the efficiency scores, we still do not know where the DEA frontier is.

This chapter presents the work of Chen et al. (2010) who develop an approach for

determining the DEA frontier or DEA projections for inefficient DMUs under the

framework of Kao and Hwang (2008) and Liang et al. (2008). We revisit Kao and

Hwang’s (2008) application involving Taiwanese non-life insurance companies and

illustrate the fact that none of the DMUs are efficient, meaning that the usual DEA

projections fail to identify the frontier.We thenpresent the approachofChenet al. (2009)

for determining theDEA frontier for the two-stage processes, and illustrate this using the

aforementioned data set. Conclusions are given in the last section.

xij,i = 1,2,,,,m zdj,d = 1,2,...,D yrj,r = 1,2,...,s

Stage 1 Stage 2

DMUj, j = 1,2,...,n

Fig. 4.1 Two-stage process
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4.2 Input- and Output-Oriented DEA Models

for Two-Stage Network Processes

4.2.1 Input Orientation

For DMUj we denote the efficiency ratios for the first stage as θ1j and the second as

θ2j . Based upon the input-oriented DEA model of Charnes et al. (1978), we define

θ1j ¼

XD
d¼1

wdzdj

Xm
i¼1

vixij

and θ2j ¼

Xs

r¼1

uryrj

XD
d¼1

ewdzdj

ð4:1Þ

where vi, wd, ewd, and ur are unknown non-negative weights. It is assumed that wd

are set equal to ewd as in Kao and Hwang (2008) and Liang et al. (2008). As a result,

the two-stage overall efficiency ratio is defined as θ1j • θ2j which is equal to

θj ¼

Xs

r¼1

uryro

Xm
i¼1

vixio

. To calculate the overall efficiency of θj, Kao and Hwang (2008)

and Liang et al. (2008) present the following (centralized) model

Max θ1j � θ2j ¼

Xs

r¼1

uryro

Xm
i¼1

vixio

s:t: θ1j � 1 and θ2j � and wd ¼ ewd:

ð4:2Þ

Applying the usual Charnes-Cooper transformation, model (4.2) can be

converted into the following linear program

Max
Xs

r¼1

uryro

s:t:
Xs

r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

wd � 0, d ¼ 1, 2, . . . ,D; vi � , i ¼ 1, 2, . . . ,m; ur � , r ¼ 1, 2, . . . , s

ð4:3Þ
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The dual to model (4.3) can be expressed as

Minθ

s:t:
Xn
j¼1

λjxij � θxio i ¼ 1, 2, . . . ,m

Xn
j¼1

μjyrj � yro r ¼ 1, 2, . . . ,m

Xn
j¼1

�
λj � μj

�
zdj � 0 d ¼ 1, 2, . . . ,D

λj, μj � 0, θ � 1

ð4:4Þ

4.2.2 Output Orientation

The output-oriented version of the above model is given by:

Min

Xm
i¼1

vixij0

Xs

r¼1

uryrj0

s:t: θ1j � 1 and θ2j � 1 for all j

wd ¼ ewd for all d,

ð4:5Þ

which is equivalent to the linear programming formulation

Min
Xm
i¼1

vixio

s:t:
Xs

r¼1

uryrj �
XD
d¼1

wdzdj � 0 j ¼ 1, 2, ::::, n

XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xs

r¼1

uryro ¼ 1

wd, d ¼ 1, 2, . . . ,D; vi, i ¼ 1, 2, . . . ,m; ur, r ¼ 1, 2, . . . , s � 0

ð4:6Þ

The dual to model (4.6) can be expressed as
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Maxϕ

s:t:
Xn
j¼1

λjxij � xio i ¼ 1, 2, . . . ,m

Xn
j¼1

μjyrj � ϕyro r ¼ 1, 2, . . . ,m

Xn
j¼1

�
λj � μj

�
zdj � 0 d ¼ 1, 2, . . . ,D

λj, μj � 0 ϕ � 1

ð4:7Þ

Note that both the input- and output-oriented two-stage DEA models (4.4) and

(4.7) are identical to the standard DEA envelopment model if λj ¼ μj.
To illustrate their model, Kao and Hwang (2008) present a numerical example

with three DMUs A, B, and C which use 2, 4, and 5 units of input X to produce 1.5,

4, and 4 units of intermediate product Z at stage 1, which in turn become inputs to

stage 2 to produce 1.5, 5, and 6 units of output Y, respectively. It is shown that

DMU A has an overall score of 0.5, indicating that this DMU would be able to

produce twice as much if it used its inputs efficiently. In this example the overall

DEA efficiency scores show how much more output each DMU can produce given

its present inputs, or how much each DMU could reduce its input-use while still

producing the same output. i.e., the overall efficiency scores obtained from model

(4.4) (or (4.7)) are intended to identify the DEA frontier points. The following

discussion shows that this can be not true and that we, therefore, need alternative

models to determine the frontier points for two-stage processes.

4.3 DEA Frontier

We here revisit the two-stage application involving 24 Taiwanese non-life insur-

ance companies studied in Kao and Hwang (2008). The two stages represent

premium acquisition and profit generation respectively. The inputs to the first

stage are operational expenses and insurance expenses, and the outputs from the

second stage are underwriting profit and investment profit. There are two interme-

diate measures between the two stages, namely direct written premiums and

reinsurance premiums. The data appear in Table 4.1.

The second and third columns of Table 4.2 report the overall efficiency scores

obtained from models (4.4) and (4.7), respectively. It can be seen that θ�j ¼ 1/ϕ�
j for

all the DMUs, as expected under the condition of constant returns to scale (CRS).

As in the standard DEA approach, we first calculate the DEA projections by

multiplying the current inputs (outputs) with the related optimal values θ* (ϕ*)
while keeping the intermediate measures constant. We then apply these DEA

projections to models (4.4) and (4.7) to examine whether they are efficient. Note

that the current study does not consider potential DEA slacks in the projections.
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We now consider two cases. In Case I, all the DMUs are first replaced by the

projected DMUs and thenmodels (4.4) and (4.7) are applied. Namely, in model (4.4),

for all j, x1j and x2j are replaced with θ�j x1j and θ
�
j x2j and all the intermediate measures

and outputs are kept unchanged, and in model (4.7), for all j, y1j and y2j are replaced
with ϕ�

j y1j and ϕ�
j y2j, and all the intermediate measures and inputs are kept

unchanged. The fourth column of Table 4.2 reports the input-oriented scores obtained

frommodel (4.4) and the fifth column of Table 4.2 displays the output-oriented scores

obtained from model (4.7). It can be seen that none of the projected DMUs are

efficient. It can also be seen that the newly obtained θ�j is no longer equal to 1/φ
�
j .

In Case II, we only replace the DMU under evaluation by its projection in models

(4.4) and (4.7). Namely, we applymodels (4.4) and (4.7) to the projectedDMUo, and

the data for otherDMUj ( j 6¼ o) remain unchanged. The seventh column of Table 4.2

Table 4.2 DEA scores

DMU

Input-

oriented

Output-

oriented

Efficiency scores for projected DMUs

Case Ia Case IIb

Input-

oriented

Output-

oriented

1/Output-

oriented

score

Input-

oriented

Output-

oriented

1/Input-

oriented

score

1 0.6992 1.4301 0.2202 1.4722 0.6792 0.7134 1.0075 1.4018

2 0.6248 1.6006 0.2296 1.5634 0.6396 0.6275 1.0015 1.5937

3 0.6900 1.4492 0.2206 1.4492 0.6900 1 1.4492 1

4 0.3042 3.2871 0.2295 1.5614 0.6405 0.4323 1.3805 2.3131

5 0.7670 1.3038 0.2199 1.4843 0.6737 0.9738 1.1940 1.0269

6 0.3897 2.5662 0.2364 1.6220 0.6165 0.4057 1.0377 2.4651

7 0.2766 3.6156 0.2229 1.5405 0.6491 0.5378 1.3296 1.8593

8 0.2752 3.6341 0.2177 1.5665 0.6384 0.5113 1.3782 1.9556

9 0.2233 4.4787 0.2192 1.5226 0.6568 0.2920 1 3.4251

10 0.4660 2.1461 0.2311 1.6117 0.6205 0.6627 1.1607 1.5090

11 0.1639 6.1005 0.1965 1.7292 0.5783 0.3267 1.3504 3.0612

12 0.7596 1.3165 0.2366 1.5135 0.6607 0.7596 1 1.3165

13 0.2078 4.8121 0.2053 1.7447 0.5732 0.5435 1.2335 1.8400

14 0.2886 3.4645 0.2192 1.5261 0.6553 0.5178 1.3800 1.9312

15 0.6138 1.6291 0.2295 1.7451 0.5730 0.7047 1 1.4190

16 0.3202 3.1235 0.2233 1.6082 0.6218 0.3847 1.1023 2.5991

17 0.3600 2.7777 0.2181 1.5901 0.6289 0.8066 1.3825 1.2397

18 0.2588 3.8634 0.2209 1.5260 0.6553 0.3737 1.2602 2.6762

19 0.4112 2.4319 0.2367 1.7495 0.5716 0.4158 1 2.4051

20 0.5466 1.8297 0.2093 1.8341 0.5452 0.7891 1.0716 1.2673

21 0.2008 4.9806 0.2251 1.8015 0.5551 0.2795 1.3324 3.5777

22 0.5895 1.6963 0.2122 1.6963 0.5895 1 1.6963 1

23 0.4203 2.3790 0.2206 1.4492 0.6900 0.5599 1.1764 1.7860

24 0.1348 7.4178 0.2351 1.7297 0.5781 0.3351 1.2652 2.9843
aCase I: all DMUs are replaced with their projections
bCase II: only the DMU under evaluation is replaced with its projection, and the data for other

DMUs remain unchanged
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reports the input-oriented scores obtained frommodel (4.4) and the eighth column of

Table 4.2 displays the output-oriented scores obtained from model (4.7). It can be

seen that except for DMUs 3 and 22 (under the input-orientation), and DMUs 9, 12,

15 and 19 (under the output-orientation), none of the projected DMUs are efficient.

Also, models (4.4) and (4.7) do not identify the same efficient DMUs. It can also be

seen that the output-oriented score is not equal to the reciprocal of the input-oriented

score for all the DMUs, as expected under the condition of CRS.

Under the standard DEA approach, Case I and Case II should yield identical

results. However, Case I and Case II yield very different results under both models

(4.4) and (4.7). Thus, models (4.4) and (4.7) only yield an overall efficiency score,

but fail to provide the complete information on how to project inefficient DMUs on

to the DEA frontier.

To address this deficiency, Chen et al. (2010) propose a model that is equivalent

to model (4.4) (or model (4.7)) and generates a set of new inputs, outputs and

intermediate measures that constitute an efficient point (projection) under model

(4.4) (or (4.7)).

To this end, consider the input-oriented model (4.4). For each DMUo, we

introduce ezdo (d ¼ 1, . . ., D), representing a set of new intermediate measures to

be determined. We then break the constraints
Xn
j¼1

λj � μj
� �

zdj � 0 into two new sets

of constraints

Xn
j¼1

λjzdj � ezdo d ¼ 1, . . . , D

Xn
j¼1

μjzdj � ezdo d ¼ 1, . . . , D

The first new set of constraints treats the ezdo as “outputs”, and the second set

treats the ezdo as “inputs”. We now propose the following DEA type model:

mineθ
s:t:

Xn
j¼1

λjxij � eθxio i ¼ 1, . . . , m

Xn
j¼1

μjyrj � yro r ¼ 1, . . . , s

Xn
j¼1

λjzdj � ezdo d ¼ 1, . . . , D

Xn
j¼1

μjzdj � ezdo d ¼ 1, . . . , D

ezdo � 0, d ¼ 1, . . . , D

λj � 0, j ¼ 1, . . . , n

μj � 0, j ¼ 1, . . . , n

eθ � 1

ð4:8Þ

86 Y. Chen et al.



Chen et al. (2010) show that model (4.8) and model (4.4) yield the same

efficiency score, and model (4.8) provides an efficient projection.

In fact, the dual to model (4.8) can be expressed as:

Max
Xs

r¼1

uryro

s:t:
Xs

r¼1

uryrj �
XD
d¼1

w2
dzdj � 0 j ¼ 1, 2, . . . , n

XD
d¼1

w1
dzdj �

Xm
i¼1

vixij � 0 j ¼ 1, 2, ::::, n

Xm
i¼1

vixio ¼ 1

w2
d � w1

d � 0, d ¼ 1, 2, . . . ,D

w1
d ,w

2
d � 0, d ¼ 1, 2, . . . ,D; vi � , i ¼ 1, 2, . . . ,m; ur � , r ¼ 1, 2, . . . , s

ð4:9Þ
Note that in model (4.8), the constraintsezdo � 0 are redundant, hence we can omitezdo � 0, and let theezdo be unrestricted variables. Then, the constraint w2

d � w1
d � 0,

d ¼ 1, 2, . . ., D in model (4.9) becomes w2
d ¼ w1

d meaning that we put the same

weightswd on the zdj in both settings (as outputs from stage 1 and as inputs to stage 2),

as inmodel (4.2). Thus, problem (4.9) above is identical to problem (4.3). This further

indicates that model (4.8) yields the same overall efficiency score as model (4.4).

Based upon model (4.8), the projection point for DMUo is given by (eθ�xio, ez�dj,
yro) which is efficient under models (4.8) and (4.4), namely the optimal objective

function value for model (4.8) is equal to unity for this projection.

In a similar manner, we can show that in the output-oriented case, model (4.7) is

equivalent to the following model

maxeϕ
s:t:

Xn
j¼1

λjxij � xio i ¼ 1, . . . , m

Xn
j¼1

μjyrj � eϕyro r ¼ 1, . . . , s

Xn
j¼1

λjzdj � ezdo d ¼ 1, . . . , D

Xn
j¼1

μjzdj � ezdo d ¼ 1, . . . , D

ezdo � 0, d ¼ 1, . . . , D

λj � 0, j ¼ 1, . . . , n

μj � 0, j ¼ 1, . . . , n

ϕ � 1

ð4:10Þ
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Model (4.10) yields a set of new inputs, outputs and intermediate measures that

render the DMU efficient under model (4.7).

From model (4.8) or (4.10), it can be seen that in addition to the overall

efficiency scores, we have to obtain a set of optimal intermediate measures (z).

Models (4.4) and (4.7) do not immediately yield the set of optimal z values that are

on the DEA frontier, rather we have to use model (4.8) or (4.10) to determine the

frontier points for two-stage processes.

Table 4.3 reports the optimal intermediate measures for both orientations,

obtained from models (4.8) and (4.10). If we apply the new (projected) DMUs

with the intermediate measures reported in Table 4.3 and θ�j x1j and θ�j x2j (or ϕ
�
j y1j

and ϕ�
j y2j) to model (4.4) (or (4.7)) under either Case I or Case II, the overall

efficiency scores are all equal to one.

Note that under the input-oriented models, for DMUs 3 and 22, model (4.8)

indicates the newly obtained intermediate measures are equal to the original values.

This is confirmed by the fact that model (4.4) identifies DMUs 3 and 22 as efficient

under the Case II. The same situation is found for DMU12 under the output-

oriented models.

Table 4.3 Optimal intermediate measures for DEA frontier

DMU

Input-oriented (model 8) Output-oriented (model 10)

z1 z2 z1 z2

1 5,129,409 673,373.7 7,335,749 963,015.6

2 6,287,502 827,782.2 10,063,742 1,324,944

3 4,776,548 560,244 6,922,331 811,924.1

4 1,332,365 174,166.4 4,379,619 572,502.8

5 30,127,364 4,177,166 39,280,374 5,446,233

6 3,807,167 435,393.8 9,769,924 1,117,304

7 3,738,287 654,045.2 13,516,290 2,364,791

8 5,553,015 1,009,007 20,180,210 3,666,832

9 2,166,576 351,793.5 9,703,191 1,575,536

10 4,417,507 671,133.1 9,480,468 1,440,327

11 941,872.5 263,658.4 5,745,796 1,608,421

12 7,166,191 849,582.4 9,434,406 1,118,489

13 2,649,297 644,399.8 12,748,722 3,100,926

14 2,749,750 454,687.7 9,526,595 1,575,280

15 5,663,750 634,667.6 9,226,915 1,033,948

16 1,899,396 188,102.5 5,932,758 587,537.6

17 3,504,900 725,272.3 9,735,516 2,014,580

18 1,356,947 224,515.2 5,242,330 867,375.7

19 474,800 108,242 1,154,679 263,236.6

20 302,964.9 63,960.38 554,326.4 117,026.5

21 68,296 9,610.947 340,151.7 47,867.8

22 52,063 14,574 88,313.65 24,721.65

23 137,689.9 16,149.72 327,564.3 38,420.2

24 159,644.2 32,943.34 1,184,206 244,366.5
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While DMUs 9, 15 and 19 are efficient under model (4.7), model (4.10)

identifies a set of different values on intermediate measures for DMUs 9, 15 and

19 (see the last two columns of Table 4.3). This indicates that multiple optimal

solutions exist for intermediate measures in models (4.8) and (4.10). In fact, if we

calculate model (4.10) using the original intermediate values and ϕ�
j y1j and ϕ

�
j y2j for

DMUs 9, 15, and 19, model (4.10) yields an efficiency score of 1.

4.4 Conclusions

This chapter presents the approach of Chen et al. (2010) for determining the DEA

frontier points (projections) for inefficient DMUs under the framework of the

DEA model for two-stage network processes. The current study is based upon

the assumption of CRS. Chen et al. (2009) develop a two-stage DEA model under

the condition of variable returns to scale (VRS) wherein the overall efficiency is

expressed as a (weighted) sum of the efficiencies of the individual stages. Although

overall VRS efficiency scores as well as scores for individual stages can be obtained

by using Chen et al. (2009), adjusting the inputs or outputs by the efficiency scores

is not sufficient to yield VRS frontier projections. Because Chen et al. (2009) focus

on the additive efficiency decomposition, the newly developed approach in the

current study cannot be (directly) applied. Further study is then needed to develop

models for determining the DEA frontier points for VRS inefficient DMUs.
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Chapter 5

Additive Efficiency Decomposition

in Network DEA

Yao Chen, Wade D. Cook, and Joe Zhu

Abstract In conventional data envelopment analysis (DEA), decision making

units (DMUs) are generally treated as a black-box in the sense that internal

structures are ignored, and the performance of a DMU is assumed to be a function

of a set of chosen inputs and outputs. A significant body of work has been directed

at problem settings where the DMU is characterized by a multistage process; supply

chains and many manufacturing processes take this form. The current chapter

presents DEA modeling approaches for network DEA where additive efficiency

decompositions are assumed for sub-units/processes/stages. In the additive effi-

ciency decomposition approach, the overall efficiency is expressed as a (weighted)

sum of the efficiencies of the individual stages. This approach can be applied under

both constant returns to scale (CRS) and variable returns to scale (VRS)

assumptions.
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5.1 Introduction

Data envelopment analysis (DEA) is a tool for measuring the relative efficiency of

peer decision making units (DMUs) that have multiple inputs and outputs. In many

cases, DMUs may have internal or network structures; see for example, Färe and

Grosskopf (1996), Castelli et al. (2004) and Tone and Tsutsui (2009). In the latter

case, the authors provide a slacks-based model that captures the overall efficiency

of the DMU, and provides, as well, measures for the components (referred to as

divisions) or stages that make up the DMU. The overall efficiency is expressed as a

weighted average of the component efficiencies, where weights are exogenously

imposed to reflect the perceived importance of the components. (see Chap. 11 for

detailed discussions.)

Based upon the work of Chen et al. (2009) and Cook et al. (2010), the current

chapter focuses on the derivation of a radial measure of efficiency that can be

decomposed into a convex combination of radial measures for the individual

components that make up the DMU. We note that in these two work, the weights

used for individual stage’s efficiency aggregation are variables, and not imposed

exogenously.

Chen et al. (2009) present a methodology for representing overall radial effi-

ciency of a DMU as an additive weighted average of the radial efficiencies of the

individual stages or components that make up the DMU. While the approach of

Chen et al. (2009) can be extended to DMUs that have more than two stages, such

an extension requires that the multi-stage processes share the unique feature that all

outputs from any stage represent the only inputs to the next stage. In other words,

except for the first stage, all other stages do not have their own independent inputs

(and/or outputs), that enter (exit) the process at that point. While these closed
systems do exist, the more prevalent case is that where each stage is open, that is
it has its own inputs (and/or outputs) in addition to the intermediate measures (that

exist in-between two stages).

Such open multistage structures are relatively common, particularly in

processing industries. Consider, for example, the situation in which a coal mining

company wishes to evaluate the efficiency of a set of collieries (mining operations)

in a large coal field. Typically, the process of delivering finished products to

the customer is multistage in nature. In crude terms, Stage 1 would involve the

extraction of the raw or run-of-mine (ROM) coal from underground or open pit coal

reserves. At the mine site, the ROM is generally put through a process where

screens separate the product into different size categories; e.g. a ‘more than one

inch in diameter’ category, and a ‘less than one inch’ category. The resulting ‘size

grades’, representing the outputs from this first stage, are then transported to an

on-site washing facility, which might be deemed Stage 2. The washing process filters
out any material below a certain specific gravity; this portion is unsuitable for sale

and is discarded. A portion of the remaining usable coal (outputs from Stage 2) is sold

to the open market as a finished product, and at management’s discretion (based

on estimates of the demand), the remaining product is sent to Stage 3, the crusher.
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The crushing process also produces waste or discard, with the remaining material,

sometimes referred to as ‘middlings’, being sold or blended with other materials

to make such products as briquettes. This latter process might be thought of as

Stage 4.
Numerous such examples from processing industries exist. In many cases a

portion of the outputs from one stage may be in ‘finished’ form and go to the

consumer market, with the remainder being reprocessed at the next stage to get a

more pure form of the product. The petrochemical industry, perfume manufacturing

and so on, are examples.

It is important to note that the models of Kao and Hwang (2008), Liang

et al. (2008) and Chen et al. (2009) concentrate specifically on pure serial processes.

Cook et al. (2010) develop linear models for DMUs that have multiple stages, with

each stage being open, having its own inputs and outputs. Cook et al. (2010) also

obtain an additive efficiency decomposition of the overall efficiency score. The

advantage of additive efficiency decomposition is that we can also study perfor-

mance under assumptions of both constant returns to scale (CRS) and variable

returns to scale (VRS).

The current chapter starts with the approach of Chen et al. (2009) where a simple

two-stage network process is studies. We then present the work of Cook

et al. (2010) where additive efficiency decomposition approach is applied to general

network structures. For ease of notation, we begin in Sect. 5.5 by examining open

serial systems. We then present a model for measuring the overall radial efficiency

of the general serial multi-stage process, and show that this measure can be

decomposed into radial measures of efficiency for the components or stages making

up the overall process. Section 5.6 then extends this model structure to include more

complex multistage processes. Our approach is illustrated in Sect. 5.7 with the

supply chain data set in Liang et al. (2006). As well, we re-evaluate the data set

provided in Tone and Tsutsui (2009).

5.2 A Two-Stage Network Process: Constant

Returns to Scale

Consider a two-stage process shown in Fig. 5.1. Suppose we have n DMUs, and that

eachDMUj( j ¼ 1, 2, . . ., n) hasm inputs to the first stage, xij(i ¼ 1, 2, . . ., m), and
D outputs from this stage, zdj, (d ¼ 1, 2, . . ., D). These D outputs then become the

inputs to the second stage, and are referred to as intermediate measures. The outputs

from the second stage are denoted yrj, (r ¼ 1, 2, . . ., s). Based upon the CRS model

(Charnes et al. 1978), the (CRS) efficiency scores forDMUjo in the first and second

stages can be calculated in the following two CRS models (5.1) and (5.2),

respectively:
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θ1jo ¼ max

XD
d¼1

ηA
d zdjo

Xm
i¼1

vixijo

s:t:

XD
d¼1

ηA
d zdj

Xm
i¼1

vixij

� 1 j ¼ 1, . . . , n

ηA
d , vi � 0

ð5:1Þ

θ2j ¼ max

Xs
r¼1

uryrjo

XD
d¼1

ηB
d zdjo

s:t:

Xs
r¼1

uryrj

XD
d¼1

ηB
d zdj

< 1, j ¼ 1, . . . , n

ηB
d , ur � 0

ð5:2Þ

The overall CRS efficiency score can be calculated from the following CRS

model (5.3)

xij,i = 1,2,...,m zdj,d = 1,2,...,D yrj,r = 1,2,...,s

Stage 1 Stage 2

DMUj, j = 1,2,...,nFig. 5.1 Two-stage process
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max

Xs
r¼1

uryrjo

Xm
i¼1

vixijo

s:t:

Xs
r¼1

uryrj

Xm
i¼1

vixij

� 1, j ¼ 1, . . . n

vi, ur � 0

ð5:3Þ

In Kao and Hwang’s (2008) and Liang et al. (2008) two-stage network DEA

approach, it is required that the input of the second stage to be the expected output

of the first stage, i.e., given the inputs to the first stage xij, that stage yields the

optimal intermediate measure
XD
d¼1

η�dzdj which is then used as the (aggregated) input

in the second stage. Thus, it is assumed that ηAd ¼ ηBd ¼ ηd, and the overall effi-

ciency of a DMU is given by:

θjo ¼ Max

XD
d¼1

ηdzdjo

Xm
i¼1

vixijo

�

Xs
r¼1

uryrj

XD
d¼1

ηdzdj

¼

Xs
r¼1

uryrj0

Xm
i¼1

vixij0

s:t:

XD
d¼1

ηdzdj

Xm
i¼1

vixij

� 1, j ¼ 1, . . . , n

Xs
r¼1

uryrj

XD
d¼1

ηdzdj

� 1, j ¼ 1, . . . , n

vi, ur, ηd � 0

ð5:4Þ
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It can be seen from the objective function of model (5.4) that the overall

efficiency is the product of the efficiencies of the two stages, i.e.,

θ1j0 � θ2j0 ¼

Xs
r¼1

u�oyrj0

Xm
i¼1

v�oxij0

¼ θjO , where θ1j0 ¼

XD
d¼1

η�dzdjo

Xm
i¼1

v�i xijo

and θ2j0 ¼

Xs
r¼1

u�r yrj

XD
d¼1

η�dzdj

and (*) denotes

optimal value from model (5.4).

Note ηAd ¼ ηBd is a key and rational assumption in that the value accorded the

outputs from the first stage should reasonably be assumed as their value when they

assume the additional role as inputs to the second stage. Without this assumption,

model (5.4) becomes a non-linear program, as the terms ∑ D
d¼1η

A
d zdo and ∑

D
d¼1η

B
d zdo

cannot be cancelled in the objective function. Also, without this assumption,

solving model (5.4) is equivalent to applying the CRS model to stages 1 and

2 independently, and then taking the geometric mean of the two CCR efficiency

scores. Throughout the chapter we therefore maintain the assumption that

∑ D
d¼1ηdzdo is to be the same for the two stages.

In the interest of modeling two-stage processes in a more general way, and

specifically to allow for VRS settings, we propose that rather than combine the

stages in a multiplicative (geometric) manner as in Kao and Hwang (2008)

and Liang et al. (2008), we use a weighted additive (arithmetic mean)

approach.

As will be explained below, the multiplicative and additive models are two

different, but equally valid ways of aggregating the components of a two-stage

process. Thus, we propose to define overall efficiency of the two stage

process as

w1 �
XD

d¼1
ηdzdj0Xm

i¼1
vixij0

þ w2 �
X s

r¼1
uryrj0XD

d¼1
ηdzdj0

, ð5:5Þ

Where w1 and w2 are user-specified weights such that w1 + w2 ¼ 1. These weights

are not optimization variables, but rather are functions of the optimization

variables.

We thus propose deriving the overall efficiency of the process by solving the

following problem:
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Max w1 �
XD

d¼1
ηdzdj0Xm

i¼1
vixij0

þ w2 �
X s

r¼1
uryrj0XD

d¼1
ηdzdj0

2
64

3
75

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

ηd , ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:6Þ

It is observed that model (5.6) cannot be turned into a linear program using

the usual Charnes and Cooper (1962) transformation. For example, if we let

t1 ¼ 1Xm

i¼1
vixij0

, t2 ¼ 1XD

d¼1
ηdzdj0

, and set π1d ¼ t1 � ηd, ωi ¼ t1 � vi, μr ¼ t2 �

ur, π2d ¼ t2 � ηd, then the transformations π1d ¼ t1 � ηd and π2d ¼ t2 � ηd imply a

linear relationship between π1d and π2d, namely, π1d ¼
X

i
ωixijoX

k
π1kzkjo

� π2d. Then, model

(5.6) becomes

Max w1 �
XD

d¼1
π1dzdj0 þ w2 �

X s

r¼1
μryrj0

h i
s:t:

Xm

i¼1
ωixij �

XD

d¼1
π1dzdj � 0XD

d¼1
π2dzdj �

X s

r¼1
μryrj � 0Xm

i¼1
ωixijo ¼ 1XD

d¼1
π2dzdjo ¼ 1

π1d ¼
X

i
ωi � xi, j0X

k
π1k � zk, j0

� π2d

π1d, π
2
d, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:7Þ

which is a non-linear program. We, therefore, seek an alternative way to convert

model (5.6) into a linear form, by appropriate choice of the w1 and w2.

Note that w1 and w2 are intended to represent the relative importance or

contribution of the performances of stages 1 and 2, respectively, to the overall

performance of the DMU. One argument is that the ‘size’ of a stage reflects its

importance, (as measured by its weight). One reasonable representation of size is
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the portion of total resources devoted to each stage. LettingXm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0 represent the total size of (amount of resources con-

sumed by) the two-stage process, and
Xm

i¼1
vixij0 and

XD

d¼1
ηdzdj0 , the sizes of the

stages 1 and 2 respectively, we define

w1 ¼
Xm

i¼1
vixij0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

and

w2 ¼
XD

d¼1
ηdzdj0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

ð5:8Þ

Then, the objective function of model (5.6) becomes:

XD

d¼1
ηdzdj0 þ

X s

r¼1
uryrj0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

ð5:9Þ

Under the CRS case, model (5.6) becomes

Max

XD

d¼1
ηdzdj0 þ

X s

r¼1
uryrj0Xm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:10Þ

Using the Charnes-Cooper transformation, model (5.10) is equivalent to

Max
X s

r¼1
μryrjo þ

XD

d¼1
πdzdjo

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj � 0Xm

i¼1
ωixijo þ

XD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:11Þ
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Once we obtain an optimal solution to (5.11), we can calculate efficiency scores

for the two individual stages. However, model (5.11) can have alternative optimal

solutions. As a result, the decomposition of the overall efficiency defined in (5.5)

may not be unique. We here follow Kao and Hwang’s (2008) approach to find a set

of multipliers which produces the largest first (or second) stage efficiency score

while maintaining the overall efficiency score.

We therefore propose the following procedure. Given the overall efficiency

obtained from (5.11) (denoted as θo), we calculate either the first stage’s efficiency
(θ1�j ) or the second stage’s efficiency (θ2�j ) first, and then derive from that the

efficiency of the other stage.

In case the first stage is to be given pre-emptive priority, the following model

determines its efficiency (θ1�o ), while maintaining the overall efficiency score at θo
calculated from model (5.11).

θ1�o ¼ Max

XD

d¼1
ηdzdjoXm

i¼1
vixijo

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

XD

d¼1
ηdzdjo þ

X s

r¼1
uryrjoXm

i¼1
vixijo þ

XD

d¼1
ηdzdjo

¼ θ0

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:12Þ

or equivalently,

θ1�o ¼ Max
XD

d¼1
πdzdjo

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj � 0

1� θoð Þ
XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo ¼ θoXm

i¼1
ωixijo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:13Þ
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The efficiency for the second stage is then calculated as

θ2o ¼
θo � w�

1 � θ1�o
w�
2

where w�
1 and w�

2 represent optimal weights obtained from model (5.11) by

way of (5.8).

Note that we here use (*) in θ1�o to indicate that the efficiency of the first stage is

given the pre-emptive priority and is optimized first. In this case, the resulting

second stage efficiency score is denoted as θ2o.
In case the second stage is to be given pre-emptive priority, the following model

determines the second stage’s efficiency (θ2�o ) while maintaining the overall effi-

ciency score at θo calculated from model (5.11).

θ2�o ¼ Max

X s

r¼1
uryrjoXD

d¼1
ηdzdjo

s:t:

XD

d¼1
ηdzdjXm

i¼1
vixij

� 1

X s

r¼1
uryrjXD

d¼1
ηdzdj

� 1

XD

d¼1
ηdzdjo þ

X s

r¼1
uryrjoXm

i¼1
vixijo þ

XD

d¼1
ηdzdjo

¼ θ0

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

ð5:14Þ

Model (5.14) is equivalent to

θ2�o ¼ Max
X s

r¼1
μryrjo

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj � 0XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo � θo

Xm

i¼1
ωixijo ¼ θoXD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

ð5:15Þ

and the efficiency for the first stage is calculated as
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θ1o ¼
θo � w�

2 � θ2�o
w�
1

:

Note that we here use (*) in θ2�o to indicate that second stage is given pre-emptive

priority in terms of its efficiency being optimized first. In this case, the resulting first

stage efficiency score is denoted as θ1o.
Finally, note that if θ1�o ¼ θ1o or θ

2�
o ¼ θ2o, then this indicates that we have a unique

efficiency decomposition.

5.3 Two-Stage Network DEA: Variable Returns to Scale

While the discussion in the previous section is based upon the assumption of CRS,

the above approach enables us to study the efficiency of two-stage processes under

VRS. The VRS efficiency scores for the two stages can be determined by the

following VRS models (Banker et al. 1984):

max E1
jo
¼

XD
d¼1

ηA
d zdjo þ uA

Xm
i¼1

vixijo

s:t:

XD
d¼1

ηA
d zdj þ uA

Xm
i¼1

vixij

� 1, j ¼ 1, . . . , n

ηA
d , vi � 0 uA free in sign

and

max E2
jo
¼

Xs
r¼1

uryrjo þ uB

XD
d¼1

ηB
d zdjo

s:t:

Xs
r¼1

uryrj þ uB

XD
d¼1

ηB
d zdj

< 1, j ¼ 1, . . . , n

ηB
d , ur � 0 and uB free in sign
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Note that the approach of Kao and Hwang (2008) and Liang et al. (2008) cannot

be extended to the VRS assumption, because E1
jo
� E2

jo
cannot be converted into a

linear form under the condition of ηAd ¼ ηBd , due to the free variable uA in the

numerator of E1
jo
. On the other hand, using our approach, we have the VRS overall

efficiency as using the weights defined under the CRS assumption

Max

XD

d¼1
ηdzdj0 þ uA þ

X s

r¼1
uryrj0 þ uBXm

i¼1
vixij0 þ

XD

d¼1
ηdzdj0

s:t:

XD

d¼1
ηdzdj þ uAXm

i¼1
vixij

� 1

X s

r¼1
uryrj þ uBXD

d¼1
ηdzdj

� 1

ηd, ur, vi � 0, j ¼ 1, 2, . . . , n

uA, uB, free in sign

ð5:16Þ

Note that this is an input-oriented model. If we use output-oriented VRS

models, the weights will be defined as w1 ¼
XD

d¼1
ηdzdj0X s

r¼1
uryrj0þ

XD

d¼1
ηdzdj0

and

w2 ¼
X s

r¼1
uiyrj0X s

r¼1
uiyrj0þ

XD

d¼1
ηdzdj0

.

Model (5.16) is equivalent to the following linear programming program

Max
X s

r¼1
μryrjo þ u1 þ

XD

d¼1
πdzdjo þ u2

s:t:
XD

d¼1
πdzdj �

Xm

i¼1
ωixij þ u1 � 0X s

r¼1
μryrj �

XD

d¼1
πdzdj þ u2 � 0Xm

i¼1
ωixijo þ

XD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

u1, u2 free in sign

ð5:17Þ
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Once we obtain the overall efficiency, models similar to (5.13) and (5.15) can be

developed to determine the efficiency of each stage. Specifically, assuming

pre-emptive priority for stage 1, the following model determines that stage’s

efficiency (E1�
o ), while maintaining the overall efficiency score at Eo calculated

from model (5.17).

E1�
o ¼ Max

XD

d¼1
πdzdjo þ u1

s:t:
XD

d¼1
πdzdj þ u1 �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj þ u2 �

XD

d¼1
πdzdj � 0

1� Eoð Þ
XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo þ u1 þ u2 ¼ EoXm

i¼1
ωixijo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

u1, u2 free in sign

ð5:18Þ

Similarly, if stage 2 is to be given pre-emptive priority, the following model

determines the efficiency (E2�
j ) for that stage, while maintaining the overall effi-

ciency score at Eo calculated from model (5.17).

E2�
o ¼ Max

X s

r¼1
μryrjo þ u2

s:t:
XD

d¼1
πdzdj þ u1 �

Xm

i¼1
ωixij � 0X s

r¼1
μryrj þ u2 �

XD

d¼1
πdzdj � 0XD

d¼1
πdzdjo þ

X s

r¼1
μryrjo � Eo

Xm

i¼1
ωixijo þ u1 þ u2 ¼ EoXD

d¼1
πdzdjo ¼ 1

πd, μr,ωi � 0, j ¼ 1, 2, . . . , n

u1, u2 free in sign

ð5:19Þ

Once the efficiency score for one of the stages is calculated using (5.18) or

(5.19), the score for the other stage can be derived in the similar manner as in

the CRS case.
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5.4 Two-Stage Network DEA: Application of Additive

Efficiency Decomposition

We here apply the above approach to the 24 Taiwanese non-life insurance compa-

nies studied in Kao and Hwang (2008). The two-stage process consists of premium

acquisition and profit generation. There are two inputs to the first stage which is

characterized by marketing of the insurance and generation of premiums, and two

outputs from the second stage which is characterized by investment and generation

of profit. The two inputs are operational expenses and insurance expenses, and the

outputs are underwriting profit and investment profit. There are also two interme-

diate measures between the two stages, namely direct written premiums and

reinsurance premiums. The data are provided in Table 5.1.

The CRS results from models (5.11), (5.13) and (5.15) are reported in Table 5.2.

The third column reports the overall CRS efficiency obtained from model (5.11).

The optimal weights from model (5.11) for each DMU are reported under columns

4 and 5. The rest of the columns report the efficiency score for each individual stage

based upon models (5.13) and (5.15).

It can be seen from Table 5.2 that we have unique efficiency decompositions for

all DMUs. This arises from the fact that models (5.13) and (5.15) yield identical

efficiency scores for the two stages. (Note that the uniqueness result is only true to

this specific data set.)

Since the overall efficiency definition presented herein is different from that

assumed by Kao and Hwang (2008), the overall efficiency scores from the two

approaches cannot be directly compared. The last three columns of Table 5.3 report

the CRS scores based upon Kao and Hwang’s (2008) approach. We, however, note

that except for 8 DMUs (7, 8, 11, 13, 14, 17, 21, and 24), our first and second stage’s

efficiency scores are identical to those of Kao and Hwang (2008). This indicates

that Kao and Hwang’s approach also yields unique efficiency decompositions for

the remaining 16 DMUs.

Table 5.3 reports the rankings of the CRS scores based upon our new approach

and Kao and Hwang’s (2008). It can be seen they do not yield the same exact

ranking. DMUs 9 and 14 show a big ranking difference. In fact, if we apply the

average to Kao and Hwang’s (2008) first and second stage scores, a different

ranking is obtained. However, the Spearman Rank Correlation coefficient for the

rankings in Table 5.3 is 0.971 which is significant at the 0.01 level, indicating an

approximately equal ranking based upon the two different approaches. It is also

the case that the Pearson Correlation Coefficient for the two sets of raw CRS scores

is 98 %.

We next turn to the case of VRS reported in Table 5.4. Two DMUs (5.5 and 5.22)

are VRS overall efficient. Also, we have unique VRS efficiency decompositions for

all DMUs, as the results obtained from models (5.18) and (5.19) are identical.

Under the standard DEA approach, the scores under the VRS assumption are not

less than the ones under CRS assumption. This is true as well for the overall

efficiency scores in our models. However, we note that this is not the case for
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DMUs 1, 12 and 20 for the first stage scores. This may be attributed to the fact that

the constraint spaces for (5.13) and (5.18) are not the same, and hence the inter-

mediate scores may not obey the conventional principles.

We finally note that w1 and w2 as defined in the current chapter, are variables

related to the inputs and the intermediate measures. By virtue of the optimization

process, it can turn out that either w1 ¼ 1 and w2 ¼ 0 or w1 ¼ 0 and w2 ¼ 1 at

optimality. To overcome this problem, we can require that w1 � α and w2 � α in

model (5.6), where α is a selected constant and 0 % < α � 50 %. Such additional

constraints can also be viewed as user’s preference regarding the relative impor-

tance of the two stages. If such additional constraints are need, we can then

study the sensitivity of the overall efficiency scores relative to changes in this

parameter α.
In the current chapter, however, there is no need to add additional constraints

of w1 � α and w2 � α into models (5.11) and (5.17), because non-zero weights

are obtained for both stages. We point out, however, that it is likely that model

(5.11) (or model (5.17)) can be infeasible with certain α values. For example, when

Table 5.2 CRS results

DMU

CRS overall

efficiency w1 w2 θ1�o θ2o θ1o θ2�o
1 Taiwan Fire 0.849 0.502 0.498 0.993 0.704 0.993 0.704

2 Chung Kuo 0.812 0.500 0.500 0.998 0.626 0.998 0.626

3 Tai Ping 0.817 0.592 0.408 0.690 1 0.690 1

4 China Mariners 0.596 0.580 0.420 0.724 0.420 0.724 0.420

5 Fubon 0.873 0.546 0.454 0.831 0.923 0.831 0.923

6 Zurich 0.689 0.510 0.490 0.961 0.406 0.961 0.406

7 Taian 0.580 0.571 0.429 0.752 0.352 0.752 0.352

8 Ming Tai 0.579 0.580 0.420 0.726 0.378 0.726 0.378

9 Central 0.612 0.500 0.500 1 0.223 1 0.223

10 The First 0.713 0.537 0.463 0.862 0.541 0.862 0.541

11 Kuo Hua 0.509 0.578 0.422 0.729 0.207 0.729 0.207

12 Union 0.880 0.500 0.500 1 0.760 1 0.760

13 Shingkong 0.557 0.552 0.448 0.811 0.243 0.811 0.243

14 South China 0.577 0.580 0.420 0.725 0.374 0.725 0.374

15 Cathay Century 0.807 0.500 0.500 1 0.614 1 0.614

16 Allianz President 0.639 0.530 0.470 0.886 0.362 0.886 0.362

17 Newa 0.613 0.580 0.420 0.723 0.460 0.723 0.460

18 AIU 0.587 0.558 0.442 0.794 0.326 0.794 0.326

19 North America 0.706 0.500 0.500 1 0.411 1 0.411

20 Federal 0.765 0.517 0.483 0.933 0.586 0.933 0.586

21 Royal & Sunalliance 0.541 0.571 0.429 0.751 0.262 0.751 0.262

22 Aisa 0.742 0.629 0.371 0.590 1 0.590 1

23 AXA 0.685 0.543 0.457 0.843 0.499 0.843 0.499

24 Mitsui Sumitomo 0.544 0.500 0.500 1 0.087 1 0.087
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α ¼ 40 %, model (5.11) is infeasible for DMU22 and when α¼ 50 %, model (5.11)

is infeasible for DMUs 1, 2, 5, 6, 10, 16, 20 and 23. This indicates that the input

mixes for these DMUs do not allow such weighting structures.

5.5 General Multi-stage Serial Processes

Consider the P-stage process pictured in Fig. 5.2. We denote the input vector to

stage 1 by zo. The output vectors from stage p (p ¼ 1, . . .,P) take two forms, namely

z1p and z2p. Here, z
1
p represents that output that leaves the process at this stage and is

not passed on as input to the next stage. The vector z2p represents the amount of

output that becomes input to the next (p + 1) stage. These types of intermediate

measures are called links in Tone and Tsutsui (2009). In addition, there is the

provision for new inputs z3p to enter the process at the beginning of stage p + 1.

Specifically, when p ¼ 2,3,. . ., we define

Table 5.3 Ranking of CRS scores

Kao and Hwang’s (2008) results

DMU Our ranking Ranking First stage Second stage Overall efficiency

1 3 3 0.993 0.704 0.699

2 5 5 0.998 0.626 0.625

3 4 4 0.690 1 0.690

4 16 15 0.724 0.420 0.304

5 2 1 0.831 0.923 0.767

6 11 12 0.961 0.406 0.390

7 18 17 0.671 0.412 0.277

8 19 18 0.663 0.415 0.275

9 15 20 1 0.223 0.223

10 9 9 0.862 0.541 0.466

11 24 23 0.647 0.253 0.164

12 1 2 1 0.760 0.760

13 21 21 0.672 0.309 0.208

14 20 16 0.670 0.431 0.289

15 6 6 1 0.614 0.614

16 13 14 0.886 0.362 0.320

17 14 13 0.628 0.574 0.360

18 17 19 0.794 0.326 0.259

19 10 11 1 0.411 0.411

20 7 8 0.933 0.586 0.547

21 23 22 0.732 0.274 0.201

22 8 7 0.590 1 0.590

23 12 10 0.843 0.499 0.420

24 22 24 0.429 0.314 0.135
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(i) zj1pr the rth component (r ¼ 1,.... Rp) of the Rp -dimensional output vector for

DMU j flowing from stage p, that leaves the process at that stage, and is not

passed on as an input to stage p + 1.

(ii) zj2pk the kth component (k ¼ 1, . . . Sp) of the Sp -dimensional output vector for

DMU j flowing from stage p, and is passed on as a portion of the inputs to

stage p + 1.

(iii) zj3pi the ith component (i ¼ 1, . . . Ip) of the Ip -dimensional input vector for

DMU j at the stage p + 1, that enters the process at the beginning of that stage.

Note that in the last stage P, all the outputs are viewed as zj1pr, as they leave the

process.

We denote the multipliers (weights) for the above factors as

(i) upr is the multiplier for the output component zj1pr flowing from stage p.

(ii) ηpk is the multiplier for the output component zj2pk at stage p, and is as well the

multiplier for that same component as it becomes an input to stage p + 1.

Table 5.4 VRS results

DMU

VRS overall

efficiency w1 w2 E1�
o E2

o E1
o E2�

o

1 Taiwan Fire 0.867 0.503 0.497 0.990 0.743 0.990 0.743

2 Chung Kuo 0.856 0.500 0.500 1 0.711 1 0.711

3 Tai Ping 0.818 0.587 0.413 0.690 1 0.690 1

4 China Mariners 0.599 0.581 0.419 0.726 0.424 0.726 0.424

5 Fubon 1 0.483 0.517 1 1 1 1

6 Zurich 0.732 0.511 0.489 0.964 0.490 0.964 0.490

7 Taian 0.684 0.571 0.429 0.752 0.593 0.752 0.593

8 Ming Tai 0.754 0.523 0.477 0.783 0.722 0.783 0.722

9 Central 0.639 0.501 0.499 1 0.276 1 0.276

10 The First 0.780 0.538 0.462 0.862 0.727 0.862 0.727

11 Kuo Hua 0.614 0.576 0.424 0.741 0.443 0.741 0.443

12 Union 0.887 0.511 0.489 0.968 0.803 0.968 0.803

13 Shingkong 0.804 0.494 0.506 0.846 0.763 0.846 0.763

14 South China 0.654 0.581 0.419 0.725 0.555 0.725 0.555

15 Cathay Century 0.940 0.503 0.497 1 0.880 1 0.880

16 Allianz President 0.676 0.526 0.474 0.911 0.417 0.911 0.417

17 Newa 0.840 0.581 0.419 0.724 1 0.724 1

18 AIU 0.618 0.517 0.483 0.850 0.369 0.850 0.369

19 North America 0.833 0.515 0.485 1 0.657 1 0.657

20 Federal 0.946 0.548 0.452 0.902 1 0.902 1

21 Royal & Sunalliance 0.679 0.575 0.425 0.913 0.362 0.913 0.362

22 Aisa 1 0.634 0.366 1 1 1 1

23 AXA 0.815 0.547 0.453 0.976 0.620 0.976 0.620

24 Mitsui Sumitomo 0.564 0.517 0.483 1 0.098 1 0.098
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(iii) νpi is the multiplier for the input component z j3pi entering the process at the

beginning of stage p + 1.

Thus, when p ¼ 2, 3, . . ., the efficiency ratio for DMU j (for a given set of

multipliers) would be expressed as:

θp ¼
XRp

r¼1

uprz
j1
pr þ

XSp
k¼1

ηpkz
j2
pk

 !
=
XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !
ð5:20Þ

Note that there are no outputs flowing into stage 1. The efficiency measure for

stage 1 of the process (namely, p ¼ 1), for DMUj becomes

θ1 ¼
XR1

r¼1

u1rz
j1
1r þ

XS1
k¼1

η1kz
j2
1k

 !.XI0
i¼1

ν0iz
j
0i ð5:21Þ

where z j0i are the (only) inputs to the first stage represented by the input vector zo.

We claim that the overall efficiency measure of the multistage process can

reasonably be represented as a convex linear combination of the P (stage-level)

measures, namely

θ ¼
XP
p¼1

wpθp where
XP
p¼1

wp ¼ 1.

As in Sect. 5.3, we use
XI0
i¼1

ν0iz
j
0i þ

XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !
to

represent the total size of or total amount of resources consumed by the entire

process, and we define the weight wp to be the proportion of the total input used at

the pth stage. We then have

Stage 1 Stage 2 Stage 3z0

z1
3 z2

3

z2
1z1

1

z1
2 z2

2

......

Fig. 5.2 Serial multi-stage DMU
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w1 ¼
XI0
i¼1

ν0iz
j
0i=

XI0
i¼1

ν0iz
j
0i

(
þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !)
,

wp ¼
XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !, XI0
i¼1

ν0iz
j
0i

(

þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !)
, p > 1

Thus, we can write the overall efficiency θ in the form

θ ¼
XP
p¼1

XRp

r¼1

uprz
j1
pr þ

XSp
k¼1

ηpkz
j2
pk

 !
=
XI0
i¼1

ν0iz
j
0i

(

þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !)
, ð5:22Þ

We then set out to optimize the overall efficiency θ of themultistage process, subject

to the restrictions that the individual measures θpmust not exceed unity, or in the linear

programming format, after making the usual Charnes and Cooper transformation,

max
XP
p¼1

XRp

r¼1

uprz
o1
pr þ

XSp
k¼1

ηpkz
o2
pk

 !

subject to

XI0
i¼1

ν0iz
o
0i

(
þ
XP
p¼2

XSp�1

k¼1

ηp�1kz
o2
p�1k þ

XIp
i¼1

νp�1iz
o3
p�1i

 !)
¼ 1

XR1

r¼1

u1rz
j1
1r þ

XS1
k¼1

η1kz
j2
1k

 !
�
XI0
i¼1

ν0iz
j
0i

XRp

r¼1

uprz
j1
pr þ

XSp
k¼1

ηpkz
j2
pk

 !
�

XSp�1

k¼1

ηp�1kz
j2
p�1k þ

XIp
i¼1

νp�1iz
j3
p�1i

 !
8j

upr, ηpk, νpi, ν0i � 0

ð5:23Þ

Note that we should impose the restriction that the overall efficiency scores for

each j should not exceed unity, but since these are redundant, this is unnecessary.

Note again that the wp, as defined above, are variables related to the inputs and

the intermediate measures. By virtue of the optimization process, it can turn out that

some wp ¼ 0 at optimality. To overcome this problem, one can impose bounding

restrictions wp � β, where β is a selected constant.
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5.6 General Multi-stage Processes

In the process discussed in the previous section it is assumed that the components of

a DMU are arranged in series as depicted in Fig. 5.2. There, at each stage p, the
inputs took one of two forms, namely (1) those that are outputs from the previous

stage p-1, and (2) new inputs that enter the process at the start of stage p. On the

output side, those (outputs) emanating from stage p take two forms as well, namely

(1) those that leave the system as finished ‘products’, and (2) those that are passed

on as inputs to the immediate next stage p + 1.
The model presented to handle such strict serial processes is easily adapted to

more general network structures. Specifically, the efficiency ratio for an overall

process can be expressed as the weighted average of the efficiencies of the indi-

vidual components. The efficiency of any given component is the ratio of the total

output to the total input corresponding to that component. Again, the weight wp to

be applied to any component p is expressed as

wp ¼ component p inputð Þ= total input across all componentsð Þ:

There is no convenient way to represent a network structure that would lend

itself to a generic mathematical representation analogous to model (5.23) above.

The sequencing of activities and the source of inputs and outputs for any given

component will differ from one type of process to another. However, as a simple

illustration, consider the following two examples of network structures:

5.6.1 Parallel Processes

Consider the process depicted in Fig. 5.3. Here, an initial input vector zo enters

component 1. Three output vectors exit this component, that is z11 leaves the process,

z21 is passed on as an input to component 2, and z31 as an input to component

3. Additional inputs z41 and z51 enter components 2 and 3 respectively, from outside

the process. Components 2 and 3 have z12 and z13, respectively as output vectors

which are passed on as inputs to component 4, where a final output vector z14 is the
result.

Component Efficiencies

Component 1 efficiency ratio: θ1 ¼ (u1z
1
1 + η21z

2
1 + η31z

3
1)/νozo

Component 2 efficiency ratio: θ2 ¼ η12z
1
2/(η

2
1z

2
1 + ν1z41)

Component 3 efficiency ratio: θ3 ¼ η13z
1
3/(η

3
1z

3
1 + ν2z51)

Component 4 efficiency ratio: θ4 ¼ u4z
1
4/(η

1
2z

1
2 + η13z

1
3)

Component Weights
Note that the total (weighted) input across all components is given by the sum of the

denominators of θ1 through θ4, namely
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I ¼ νozo þ η21z
2
1 þ ν1z

4
1 þ η31z

3
1 þ ν2z

5
1 þ η12z

1
2 þ η13z

1
3:

Now express the wp as:

w1 ¼ νozo=I
w2 ¼ η21z

2
1 þ ν1z41

� �
=I

w3 ¼ η31z
3
1 þ ν2z51

� �
=I

w4 ¼ η12z
1
2 þ η13z

1
3

� �
=I

With this, the overall network efficiency ratio is given by

θ ¼
X4
p¼1

wpθp ¼ u1z
1
1 þ η21z

2
1 þ η31z

3
1 þ η12z

1
2 þ η13z

1
3 þ u4z

1
4

� �
=I,

And one then proceeds, as in (5.4) above, to derive the efficiency of each DMU

and its components.

5.6.2 Non-immediate Successor Flows

In the previous example all flows of outputs from a stage or component either leave

the process entirely or enter as an input to an immediate successor stage. In Fig. 5.2,
stage p outputs flow to stage p + 1. In Fig. 5.3, the same is true except that there is

more than one immediate successor of stage 1.

Consider Fig. 5.4. Here, the inputs to stage 3 are of three types, namely outputs

from stage 2, inputs coming from outside the process, and outputs from a previous,

but not immediately previous stage. Again the above rationale for deriving weights

wp can be applied and a model equivalent to (5.23) solved to determine the

decomposition of an overall efficiency score into scores for each of the components

in the process.

3

2 

1 4 Z0

z1
5

z1
3

z1
2

z1
4

z1
1

z3
1

z4
1

z2
1

Fig. 5.3 Multi-stage DMU

with parallel processes
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5.7 General Multi-stage Processes: An Illustrative

Application

We here re-visit the supply chain data set used in Liang et al. (2006). This data set

consists of a two-stage process, or a seller-buyer supply chain. The inputs to the first

stage (seller) are labor (zj01), operating cost (z
j
02) and shipping cost (z

j
03). The outputs

from the first stage are number of product A shipped (zj211), number of product B

shipped (zj212) and number of product C shipped (zj213). This data set assumes that all

outputs from the first stage become inputs to the second stage, i.e., there is no z11.

There is one input to the second stage (buyer), labor (zj311), and two outputs from the

second stage, sales (zj121) and profits (zj122). Table 5.5 provides the data set.

In this case, we have, for DMUo

w1 ¼
X3
i¼1

ν0iz
o
0i=

X3
i¼1

ν0iz
o
0i þ

X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!
,

 

w2 ¼
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

 !
=
X3
i¼1

ν0iz
o
0i

 
þ
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!

Max
X3
k¼1

η2kz
o2
1k þ

X2
r¼1

u2rz
o1
2r

subject toX3
i¼1

ν0iz
o
0i þ

X3
k¼1

η1kz
o2
1k þ ν11z

o3
11 ¼ 1

X3
k¼1

η1kz
j2
1k �

X3
i¼1

ν0iz
j
0i, j ¼ 1, . . . , 10 for stage 1ð Þ

X2
r¼1

u2rz
j1
2r �

X3
k¼1

η1kz
j2
1k þ ν11z

j3
11, j ¼ 1, . . . , 10 for stage 2ð Þ

ð5:24Þ

1 2 3

Fig. 5.4 Non-immediate successor flows
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where efficiency scores for DMUo in stages 1 and 2 can be expressed as

θ1 ¼
X3
k¼1

η1kz
o2
1k=
X3
i¼1

ν0iz
o
0i

θ2 ¼
X2
r¼1

u2rz
o1
2r=

X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

 !

Table 5.6 reports the results from model (5.24) where the last two columns

display the efficiency scores derived from the cooperative model of Liang

et al. (2006). Note that the differences between the two approaches are not

significant. For example, the two approaches yield identical efficiency scores

for the two stages for DMUs, 2, 5, 6, and 9. The Liang et al. (2006) approach

is based upon a non-linear program and its solution is obtained by using heuristic

search. While the current approach uses a linear program and guarantees a global

optimal solution.

Note that the average of the two stages’ efficiency scores is used as the objective

function in Liang et al. (2006) non-linear model, namely, the weights for the two

individual efficiency scores are equal, w1 ¼ w2. The current approach yields

w1 ¼ w2¼ 0.5 for DMUs 4 and 7. Yet, our results are different from those obtained

from Liang et al. (2006). For example, in DMU 7, the efficiency score for the

second stage is 0.54762 compared to 0.81888 from Liang et al. (2006). This is due

to the fact that our choice of weights actually introduces some sort of value

judgment into the DEA model, and restricts the multiplier values in model (5.24).

This is why Liang et al. (2006) score is larger than ours when w1 ¼ w2 ¼ 0.5 in

optimality.

Table 5.5 Data set

Labor

Operating

cost

Shipping

cost

Product

A

Product

B

Product

C Labor Sales Profits

DMU zj01 zj02 zj03 zj211 zj212 zj213 zj311 zj121 zj122

1 9 50 1 20 10 5 8 100 25

2 10 18 10 10 15 7 10 70 20

3 9 30 3 8 20 2 8 96 30

4 8 25 1 20 20 10 10 80 20

5 10 40 5 15 20 5 15 85 15

6 7 35 2 35 10 5 5 90 35

7 7 30 3 10 25 8 10 100 30

8 12 40 4 20 25 4 8 120 10

9 9 25 2 10 10 5 15 110 15

10 10 50 1 20 15 9 10 80 20
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Note that weights wp( p ¼ 1, 2, . . ., P) defined are actually variables related to

the multiplier decision variables. We next, therefore, impose additional restrictions

on w1 and w2 in model (5.24) via

w1 ¼
X3
i¼1

ν0iz
o
0i=

X3
i¼1

ν0iz
o
0i

 
þ
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!( )
� β1

w2 ¼
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

 !
=
X3
i¼1

ν0iz
o
0i

 
þ
X3
k¼1

η1kz
o2
1k þ ν11z

o3
11

!( )
� β2

where β1 and β2 are user-specified parameters. In this way, we can perform

sensitivity analysis on w1 and w2.

We first impose β1 ¼ β2 and change β1 and β2 0.1–0.5 with a 0.1 increment each

time. Note that when β1 ¼ β2 ¼ 0.5, we explicitly require that w1 ¼ w2 ¼ 0.5 as in

Liang et al. (2006). Table 5.7 reports the results when β1 ¼ β2 ¼ 0.5. Both our

approach and Liang et al. (2006) yield identical efficiency scores for DMU9. Except

for DMU1, Liang et al. (2006) score is larger than ours when w1 ¼ w2 ¼ 0.5 in

optimality. For DMU1, the definition of our weights and restrictions on our weights

Table 5.6 Results

Our results (model (5.5)) Liang et al. (2006)

DMU Overall score w1 w2 θ1 θ2 θ1 θ2

1 0.92495 0.30843 0.69157 0.75666 1 1 0.89394

2 0.86486 0.51974 0.48026 0.92403 0.80082 0.92403 0.80082

3 0.85898 0.34817 0.65183 0.59497 1 0.69106 1

4 0.77381 0.5 0.5 1 0.54762 1 0.62786

5 0.62073 0.46194 0.53806 0.67595 0.57332 0.67595 0.57332

6 1 0.27992 0.72008 1 1 1 1

7 0.90405 0.5 0.5 1 0.80811 1 0.81888

8 0.92886 0.21477 0.78523 0.66875 1 0.74667 1

9 0.78091 0.43817 0.56183 0.5 1 0.5 1

10 0.75444 0.54281 0.45719 0.84226 0.65018 1 0.59596

Table 5.7 Results

with β1 ¼ 0.5, β2 ¼ 0.5
DMU Overall score w1 w2 θ1 θ2

1 0.86323 0.5 0.5 0.72645 1

2 0.85303 0.5 0.5 0.9222 0.78386

3 0.83629 0.5 0.5 0.67258 1

4 0.77381 0.5 0.5 1 0.54762

5 0.61749 0.5 0.5 0.67595 0.55903

6 0.99678 0.5 0.5 0.99357 1

7 0.90405 0.5 0.5 1 0.80811

8 0.81756 0.5 0.5 0.72772 0.9074

9 0.75 0.5 0.5 0.5 1

10 0.75435 0.5 0.5 0.85137 0.65732
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turn the efficient stage 1 under Liang et al. (2006) approach into an inefficient stage,

and the inefficient stage 2 under Liang et al. (2006) approach into efficient.

Table 5.8 reports the results for DMUs 2, 4, 5, 6, 7, 9 and 10 whose efficiency

scores along with the optimized weights remain unchanged when β1 ¼ β2 ¼ 0.1,

0.2, 0.3 and 0.4, respectively.

Table 5.9 reports the results for DMUs 1, 3 and 8whose efficiency scores changed

when β1 and β2 are changed (see the last column of Table 5.5). For DMUs 1 and

3, change in the efficiency scores does not occur until β1 ¼ β2 ¼ 0.4. For DMU

8, a change in the efficiency score for the first stage is observed when β1 ¼ β2¼ 0.3

and 0.4.

It can be seen that up to β1 ¼ β2¼ 0.3, most of the DMUs have the same weights

and efficiency scores with respect to different values of β1 and β2. As expected,
when β1 ¼ β2 ¼ 0.4, some of the resulting weights are different from the previous

cases. However, we note that the efficiency scores do not change significantly. We

also note that the efficiency scores for the second stage do not change when β1 and
β2 are increased from 0.1 to 0.4.

We also performed calculations when β1 is fixed at 0.2 and β2 is changed from

0.3 to 0.8 with an increment of 0.1 each time (results are not reported here). In

overall, the efficiency scores do not change significantly.

The above sensitivity analysis indicates that efficiency scores obtained based

upon our approach are robust with respect to our choice of weights.

We finally apply our approach to the numerical example used in Tone and

Tsutsui (2009). Table 5.10 provides the data. We have two intermediate measures

or outputs flow from one stage to the other. Table 5.11 reports the results. In this

case, if we do not impose a lower bound for the wp(p ¼ 1, 2, 3), we have some

Table 5.8 Results with

β1 ¼ β2 ¼ 0.1 (0.2, 0.3, 0.4)
DMU Overall score w1 w2 θ1 θ2

2 0.86486 0.51974 0.48026 0.92403 0.80082

4 0.77381 0.5 0.5 1 0.54762

5 0.62073 0.46194 0.53806 0.67595 0.57332

6 1 0.31591 0.68409 1 1

7 0.90405 0.5 0.5 1 0.80811

9 0.78091 0.43817 0.56183 0.5 1

10 0.75444 0.54281 0.45719 0.84226 0.65018

Table 5.9 Results for DMUs 1, 3, and 8

DMU Overall score w1 w2 θ1 θ2

1 0.92495 0.30843 0.69157 0.75666 1 β1 ¼ β2 ¼ 0.1, 0.2, 0.3

1 0.90182 0.4 0.6 0.75455 1 β1 ¼ β2 ¼ 0.4

3 0.85898 0.34817 0.65183 0.59497 1 β1 ¼ β2 ¼ 0.1, 0.2, 0.3

3 0.85186 0.4 0.6 0.62966 1 β1 ¼ β2 ¼ 0.4

8 0.92886 0.21477 0.78523 0.66875 1 β1 ¼ β2 ¼ 0.1, 0.2

8 0.91627 0.3 0.7 0.72091 1 β1 ¼ β2 ¼ 0.3

8 0.89238 0.4 0.6 0.73095 1 β1 ¼ β2 ¼ 0.4
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wp ¼ 1 at optimality (for DMUs B, D, I and J). Therefore, we impose wp > 0.1

(p ¼ 1, 2, 3) in model (5.23). Because our approach is different from Tone and

Tsutsui’s (2009) and our choice of weights introduces restrictions on the multi-

pliers, our results are different from theirs.

5.8 Conclusions

The current chapter introduces the DEA approaches of Chen et al. (2009) and Cook

et al. (2010) for DMUs that have a general multi-stage or network structure. We first

study the simple two-stage network processes where outputs form the first stage

become the only inputs to the second stage. We then examine pure serial networks

where each stage has its own inputs and two types of outputs. One type of output

from any given stage p is passed on as an input to the next stage, and the other type
exits the process at stage p. Work closely related to the current chapter is the

non-linear approach of Liang et al. (2006) where a two-member supply chain

structure is studied. While Liang et al. (2006) developed a heuristic search

Table 5.10 Data set in Tone and Tsutsui (2009)

Stage 1 Stage 2 Stage 3 Intermediate measure

Input 1 Input 2 Output 2 Input 3 Output 3 Link12 Link23

A 0.838 0.277 0.879 0.962 0.337 0.894 0.362

B 1.233 0.132 0.538 0.443 0.18 0.678 0.188

C 0.321 0.045 0.911 0.482 0.198 0.836 0.207

D 1.483 0.111 0.57 0.467 0.491 0.869 0.516

E 1.592 0.208 1.086 1.073 0.372 0.693 0.407

F 0.79 0.139 0.722 0.545 0.253 0.966 0.269

G 0.451 0.075 0.509 0.366 0.241 0.647 0.257

H 0.408 0.074 0.619 0.229 0.097 0.756 0.103

I 1.864 0.061 1.023 0.691 0.38 1.191 0.402

J 1.222 0.149 0.769 0.337 0.178 0.792 0.187

Table 5.11 Results on

three-stage process
Overall Stage 1 Stage 2 Stage 3 w1 w2 w3

A 0.579 0.410 0.646 0.971 0.46 0.41 0.13

B 0.386 0.211 0.339 0.414 0.10 0.10 0.80

C 1.000 1.000 1.000 0.999 0.42 0.48 0.10

D 0.917 0.225 0.942 1.000 0.10 0.10 0.80

E 0.478 0.167 0.501 0.953 0.36 0.42 0.22

F 0.598 0.470 0.656 0.984 0.51 0.37 0.11

G 0.762 0.551 0.717 0.983 0.24 0.44 0.32

H 0.675 0.711 0.599 0.843 0.46 0.44 0.10

I 0.922 0.245 1.000 0.990 0.10 0.64 0.26

J 0.476 0.249 0.423 0.511 0.10 0.10 0.80
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algorithm after converting the non-linear model into a parametric linear model,

their approach cannot be generalized into cases where supply chains have more than

two members. The approach of Cook et al. (2010) can, however, handle via a linear

model, situations where more than two stages are present.

In general, the intermediate measures are those that exist between two members

of the network. In many cases, the intermediate measures are obvious, as indicated

in our examples mentioned in the Introduction. Tone and Tsutsui (2009) provides

other good examples. Sometimes, the selection of intermediate measures is not so

obvious. The important thing is that intermediate measures are neither “inputs”

(to be reduced) nor “outputs” (to be increased), rather these measures need to be

“coordinated” to determine their efficient levels.

Note that models under Sects. 5.5 and 5.6 are developed under the assumption of

CRS. We should point out that these models can directly be applied to VRS by

adding the free-in-sign variable in our ratio efficiency definition, just as in the

standard VRS DEA model and the two stage network DEA approach discussed in

Sect. 5.3.
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Chapter 6

Scale Efficiency Measurement in Two-Stage

Production Systems

Chiang Kao and Shiuh-Nan Hwang

Abstract One important objective in measuring efficiency is to find the factors

that cause inefficiencies so that its performance can be improved. The conventional

data envelopment analysis approach is able to decompose the overall efficiency of

a system into the product of the technical and scale efficiencies when the internal

structure is ignored. For two-stage systems, where the inputs are supplied to the

first process to produce intermediate products for the second process to produce the

final outputs, the system efficiency can be decomposed into process efficiencies.

This paper further decomposes each process efficiency into the product of the

technical and scale efficiencies via an input-oriented model for the first process and

an output-oriented one for the second. The decomposition also reveals that the

overall efficiency of the two-stage system, when the operations of the two

processes are considered, is still the product of the technical and scale efficiencies.

The concept is illustrated using an example of 24 non-life insurance companies

in Taiwan.
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6.1 Introduction

Charnes et al. (1978) developed a data envelopment analysis (DEA) model, con-

ventionally referred to as the CCR model, to measure the relative efficiency of a set

of decision making units (DMUs) that use multiple inputs to produce multiple

outputs under the assumption of constant returns to scale (CRS). This model was

later extended by Banker et al. (1984), conventionally referred to as the BCC

model, to measure efficiency under the assumption of variable returns to scale

(VRS). The CCR model is able to detect inefficiency due to the aggregate effect of

insufficient technology and improper scale, while the BCC model is only used to

detect insufficient technology. By comparing the efficiency scores calculated from

these two models, the effects due to improper scale can be identified. The identified

sources of inefficiency can then enable decision makers to design suitable alterna-

tives to improve the performance of a system.

Conventional DEA models treat the system as a whole unit, and thus only the

inputs supplied to the system and the outputs produced from it are considered in

measuring efficiency. However, in many situations a system is composed of

several interrelated processes, with the outputs of one process being used by

some others for production, and ignoring the operations of the internal processes

will produce misleading results. In response to this, Färe and Grosskopf (2000)

proposed a network DEA model to take the operations of the internal processes

into account.

The simplest structure of network systems is a two-stage system, where all the

inputs are supplied to the first process to produce intermediate products for

the second process to produce the final outputs. Several models have been proposed

to measure the efficiency of this type of system (see the review of Cook et al. 2010),

and Kao (2009) classified these into independent, connected, and relational.

The independent model is typified by that presented in Seiford and Zhu (1999),

which treats the two stages as two independent DMUs, and their efficiencies are

calculated separately. Therefore, the scale efficiency of each process can be calcu-

lated by applying the CCR and BCC models. However, it is still not possible to

measure the scale efficiency of the system when considering the interrelation of the

two processes.

Färe and Grosskopf (2000) remains the most representative work with regard to

a connected model, in that the technologies of the two processes are considered in

measuring the overall efficiency of the system. Although the efficiency can be

measured under both CRS and VRS, how to calculate the scale efficiency is still a

problem, because the relationship between the overall, technical, and scale effi-

ciencies in the two-stage system is not known.

For relational models, the system and process efficiencies can be calculated at

the same time; moreover, there exist mathematical relationships between them.

For example, the model in Kao and Hwang (2008) shows a multiplicative relation-

ship between the system and process efficiencies, while that in Chen et al. (2009)

shows an additive one. The slacks-based measures model also exhibits an additive
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relationship (Tone and Tsutsui 2009; Kao 2013). For models with an additive

relationship, the efficiencies of both the system and processes can be calculated

under both CRS and VRS. However, similar to the case of the connected model, the

scale efficiency cannot be obtained from the other two, because the relationship

between the overall, technical, and scale efficiencies is not known. It thus seems

that only the multiplicative form of the relational model can be applied to measure

scale efficiencies, and Kao and Hwang (2011) proposed an approach to accomplish

this task.

The major problem in measuring scale efficiency from the overall and technical

efficiencies for the two-stage system is that the outputs of the first process are the

inputs of the second. If one wishes to improve the efficiency of the first process by

increasing its outputs, the efficiency of the second process will then be reduced due

to the increased amount of inputs. Similarly, if one tries to raise the efficiency score

of the second process by reducing the amount of its input, then the efficiency of the

first process will be decreased due to producing output. To resolve this conflict, Kao

and Hwang (2011) used an input-oriented model to measure the efficiency of the

first process by fixing the amount of the output and an output-oriented model to

measure the efficiency of the second process. In this way, the efficiency of the first

process can be improved by reducing the amount of the input and the second

process by increasing that of the output. The CCR and BCC models are then

applied to measure scale efficiencies for the two processes, which then represent

the scale efficiency of the system as a whole.

In the following sections, the input- and output-oriented DEA models are first

briefly reviewed. The measurement of the scale efficiencies is then illustrated

graphically using a simple example. After this, the models for measuring scale

efficiencies for general cases are developed, and the technical and scale efficiencies

of the system and two processes of non-life insurance companies in Taiwan are

calculated. Finally, some conclusions are drawn from the discussion of these

results.

6.2 Input- and Output-Oriented Models

Both the CCR and BCC models can be formulated from the input and output

sides. The objective of the former is to examine how much of the input can be

reduced while producing the same amount of output, while that of the latter is to

examine how much of the output can be increased by using the same amount of

input for production. In the following discussions, we use Xij, i ¼ 1, . . . , m
and Yrj, r ¼ 1, . . . , s to denote the ith input and rth output of the jth DMU,

j ¼ 1, . . . , n, respectively, with vi and ur being the virtual multipliers associated

with Xij and Yrj.
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6.2.1 Input-Oriented Model

Banker et al. (1984) developed the following model to measure the technical

efficiency of the kth DMU from the input side under VRS:

Ek ¼ max:
Xs
r¼1

urYrk � u0

s:t:
Xm
i¼1

viXik ¼ 1

Xs
r¼1

urYrj � u0

 !
�
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m

u0 unrestricted in sign ð6:1Þ

where ε is a small non-Archimedean number imposed to avoid ignoring any factor

(Charnes et al. 1979; Charnes and Cooper 1984). When the term u0 is omitted,

Model (6.1) becomes the CCR model (Charnes et al. 1978), and the corresponding

efficiency is the overall efficiency. The ratio of the overall efficiency to the

technical efficiency is the (input) scale efficiency.

Consider a one-input one-output example with five DMUs, labeled as A, B, C,D,
and E, as shown in Fig. 6.1. The straight line OBC and the connected line segments

ABCD are the production frontiers constructed under CRS and VRS, respectively.

DMUs A, B, C, and D are technically efficient, among which B and C are also

overall efficient. The input-oriented model calculates efficiencies based on the

amount of input consumed for production. The (input) overall and technical

X

A

B

C

D

O

Y 

ˆ

XE

EYE

YE

XE

YE

X̂E

Fig. 6.1 Input- and output-

oriented efficiency

measures
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efficiencies for DMU E are the ratios of X̂E to XE andXE to XE, respectively, and the

(input) scale efficiency is the ratio of the overall efficiency to the technical effi-

ciency, which is the ratio of X̂E to XE.

6.2.2 Output-Oriented Model

Banker et al. (1984) also developed a model for measuring efficiencies from the

output side under VRS, which can be formulated as:

1

Ek
¼ min:

Xm
i¼1

viXik þ v0

s:t:
Xs
r¼1

urYrk ¼ 1

Xm
i¼1

viXij þ v0

 !
�
Xs
r¼1

urYrj � 0, j ¼ 1, . . . , n

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m
v0 unrestricted in sign ð6:2Þ

where the efficiency is expressed in reciprocal form. The efficiency thus obtained is

the output-oriented technical one. Similar to the previous case, when the term v0 is
omitted, Model (6.2) becomes the CCR model, and the resulting measure is the

overall efficiency. The ratio of the overall efficiency to the (output) technical

efficiency is the (output) scale efficiency.

The output-oriented model measures efficiencies based on the amount of output

produced. For DMU E in Fig. 6.1, the output-oriented overall and technical

efficiencies are the ratios of YE to Ŷ E and YE to YE, respectively. The (output)

scale efficiency, which is the ratio of the overall efficiency to the (output) technical

efficiency, is the ratio of YE to ŶE.

Note that the overall efficiencies calculated from the input Model (6.1), with the

term u0 omitted, and output Model (6.2), with the term v0 omitted, are the same. The

technical and scale efficiencies calculated from these two models, however, may

not be the same. In the example shown in Fig. 6.1, only the DMUs using the frontier

facet BC to calculate efficiencies will result in the same measures.

6.3 Graphical Illustration

The two-stage system is a system composed of two processes connected in series,

where all the inputs are supplied to the first process to produce intermediate

products, and all of them in turn are used by the second process to produce the

final outputs of the system. Figure 6.2 shows a typical two-stage system, where

Zfj, f ¼ 1, . . . , g denote the intermediate products.
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Consider a simple example of five DMUs, A~E, where each applies one input

X to produce one intermediate product Z in the first process, and the intermediate

product Z is then used in the second process to produce one output Y. The left part of
Table 6.1 shows a set of hypothetical data for these five DMUs. The conventional

DEA approach ignores the operations of the two processes, assuming that output

Y is directly produced by input X. In this case, the production frontiers constructed

under CRS and VRS are the dashed straight line OD and connected line segments

ACDE, respectively, shown in Fig. 6.3. For DMU B, the overall and (output)

technical efficiencies are B/B* and B/B
�
, respectively, which produce an output

scale efficiency of B
�
/B*. The right part of Table 6.1 shows the overall, (output)

technical, and (output) scale efficiencies of the five DMUs.

The network DEA approach, on the other hand, takes the operations of the two

processes into consideration. Figure 6.4 depicts the production process in a counter-

clockwise orientation, where the right side shows that Process 1 applies input X to

produce intermediate product Z, and the left side shows that Process 2 applies

intermediate product Z to produce output Y. The superscripts associated with the

DMUs indicate the process. The straight linesOC1 andOD2 passing through the origin

are the production frontiers under CRS for Processes 1 and 2, respectively. Note that

here two production frontiers are constructed for the two processes, which is different

from the idea of using one frontier for the two processes, as in Chen et al. (2010).

On the right side, the kinked line A1C1E1 is the production frontier for Process

1 under VRS. The three DMUs on the frontier, A, C, and E, are thus technically

efficient. DMU C is also overall efficient, because it lies on the frontier constructed

Process 1 . 
. 
.

DMU j

Process 2 

Y1jZ1j

Y2jZ2j

YsjZgj

X1j

X2j

Xmj

. 

. 

.
.
. 
.

System 

Fig. 6.2 Two-stage system with inputs X, outputs Y, and intermediate products Z

Table 6.1 Data and efficiencies measured from output-oriented Model (6.2) for five DMUs of a

two-stage system

DMU Input X
Intermediate

product Z Output Y
Overall

efficiency

Technical

efficiency

Scale

efficiency

A 4 2 0.5 5/32 1 5/32

B 8 4 1.8 9/32 36/113 113/128

C 6 6 3.3 11/16 1 11/16

D 10 8 8 1 1 1

E 15 12 10.5 7/8 1 7/8
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under CRS. The other two DMUs, B and D, are technically inefficient. Consider

DMU B. Its overall and technical efficiencies measured from the input side are

B̂1ZB=B
1ZB (¼1/2) and B

1
ZB=B

1ZB (¼5/8), respectively, which produce an (input)

scale efficiency of B̂1ZB=B
1
ZB (¼4/5). These three types of efficiency for the other

four DMUs can be calculated similarly, with the results shown in Table 6.2 under

the heading of “Process 1.”

The left side of Fig. 6.4 shows the production of Process 2. Note that the vertical

axis represents the input of this process, the intermediate product Z, and the

D

C

B�

B

10

Y

10O X

B*

B

E=E

A=A

D

C

D̂

B̂

Ĉ

Ê

Â

Fig. 6.3 Different types

of production frontier

on the X-Y plane

E1

D1

B1

A1A2

B1B2

C1

ZB

C2
D2

E2

10

Z

Y 10 O 10

B2

ˆ
B1B2 ˆ

Fig. 6.4 Efficiency measurement for processes in a two-stage system
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horizontal axis shows the output Y of this process. The kinked line A2D2E2 is the

production frontier constructed under VRS, and DMUs A, D, and E are technically

efficient. For the two technically inefficient DMUs, B and C, consider B. Its overall

and technical efficiencies measured from the output side are B2ZB=B̂
2ZB (¼9/20)

and B2ZB=B
2
ZB (¼3/5), respectively, which result in an (output) scale efficiency of

B
2
ZB=B̂

2ZB (¼3/4). The efficiencies of the other four DMUs are measured simi-

larly, with the results shown in Table 6.2, under the heading of “Process 2.”

The results from the two processes can be aggregated to form that of the system.

Consider DMU B again. This DMU uses 8 units of input X to produce 1.8 units of

output Y (via 4 units of intermediate product Z ), with a rate of 1.8/8. If it is

technically efficient in both processes, then only 5 units of input X (corresponding

to B
1
) are needed to produce 3 units of output Y (corresponding to B

2
), with a rate of

3/5. This corresponds to point B on the X-Y plane of Fig. 6.3. Comparing the actual

rate of 1.8/8 to the technically efficient rate of 3/5, an overall technical efficiency of

[(1.8/8)/(3/5)], or 3/8, is obtained for the system. This efficiency is clearly the

product of the technical efficiency of the two processes, 5/8 and 3/5. By the same

token, if both processes are overall efficient, then DMU B only requires 4 units of

input X (corresponding to B̂1) to produce 4 units of output Y (corresponding to B̂2),

with a rate of 4/4. This corresponds to point B̂ on the X-Y plane of Fig. 6.3.

Comparing the actual rate of 1.8/8 to this overall efficient rate of 4/4, an overall

efficiency of [(1.8/8)/(4/4)], or 9/40, is obtained for the system. The ratio of the

overall efficiency to the technical efficiency of the system, (9/40)/(3/8) ¼ 3/5, is

the scale efficiency of the system. From the graphical relationship shown in

Fig. 6.4, this value is clearly the product of the scale efficiency of the two processes,

4/5 and 3/4. The efficiencies corresponding to the other four DMUs can be calculated

similarly, with the results shown in Table 6.2 under the heading of “System.”

From the discussion regarding the target points, we conclude that the straight

lineOÂ B̂ Ĉ D̂ Ê in Fig. 6.3 is the system frontier under CRS and the connected line

segmentA C D E is that under VRS. These two frontiers lie above their counterparts

OD and ACDE, respectively, constructed from the conventional DEA approach,

indicating that ignoring the operations of the processes will overstate the measured

efficiencies.

In this example, we find, first, the overall efficiency of the system is the product

of those of the two processes, second, the overall efficiency of each process is the

Table 6.2 System and process efficiencies for the example, taking into account the operations of

the processes

DMU

System Process 1 Process 2

Overall (Tech. Scale) Overall (Tech. Scale) Overall (Tech. Scale)

A 1/8 (1 1/8) 1/2 (1 1/2) 1/4 (1 1/4)

B 9/40 (3/8 3/5) 1/2 (5/8 4/5) 9/20 (3/5 3/4)

C 11/20 (3/5 11/12) 1 (1 1) 11/20 (3/5 11/12)

D 4/5 (9/10 8/9) 4/5 (9/10 8/9) 1 (1 1)

E 7/10 (1 7/10) 4/5 (1 4/5) 7/8 (1 7/8)
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product of their technical and scale efficiencies, third, the technical efficiency of the

system is the product of those of the two processes, and fourth, the scale efficiency

of the system is the product of those of the two processes.

6.4 Measurement Models for General Cases

To measure the efficiency of the two-stage system for DMU k, Kao and Hwang

(2008) proposed the following model:

ES
k ¼ max:

Xs
r¼1

urYrk

s:t:
Xm
i¼1

viXik ¼ 1

Xs
r¼1

urYrj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

Xg
f¼1

wf Zfj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

Xs
r¼1

urYrj �
Xg
f¼1

wf Zfj � 0, j ¼ 1, . . . , n

ur, vi,wf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , g

ð6:3Þ

where the three sets of constraints correspond to the system, Process 1, and Process

2, respectively. Since the constraints corresponding to the system are the sum of

those corresponding to the two processes, they are redundant, and can thus be

deleted.

At optimality, the system and process efficiencies, based on Model (6.3), are

calculated as:

ES
k ¼

Xs
r¼1

urYrk=
Xm
i¼1

viXik

E
1ð Þ
k ¼

Xg
f¼1

wf Zfk=
Xm
i¼1

viXik

E
2ð Þ
k ¼

Xs
r¼1

urYrk=
Xg
f¼1

wf Zfk

Clearly, the system efficiency is the product of the two process efficiencies; that

is, ES
k ¼ E

ð1Þ
k � E

ð2Þ
k .

Model (6.3) may produce multiple solutions for the two process efficiencies.

When this happens, the two process efficiencies do not have common bases for
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comparison. To make E
ð1Þ
j (and E

ð2Þ
j ) of different DMUs comparable, Kao and

Hwang (2008) suggested using the maximum value of E
ð1Þ
k or E

ð2Þ
k for comparison,

depending on which process is considered more important. Suppose the first process

is of major concern, and the maximum value of E
ð1Þ
k is sought. The objective

function of Model (6.3) is replaced by the formula of Process 1 efficiency, with

the system efficiency maintained at the level of ES
k obtained from Model (6.3).

In symbols, it is:

E
1ð Þ
k ¼ max:

Xg
f¼1

wf Zfk

s:t:
Xm
i¼1

viXik ¼ 1

Xs
r¼1

urYrk ¼ ES
k

Xm
i¼1

viXik

Xg
f¼1

wf Zfj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

Xs
r¼1

urYrj �
Xg
f¼1

wf Zfj � 0, j ¼ 1, . . . , n

ur, vi,wf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , g

ð6:4Þ

Note that in this formulation the constraints corresponding to the system have

been deleted for simplicity.

To calculate the (input) technical efficiency of Process 1, one simply replaces the

part related to the CCR model in Model (6.4) by that of BCC Model (6.1), and

the model is thus:

T
1ð Þ
k ¼ max:

Xg
f¼1

ewf Zfk � ew0

s:t:
Xm
i¼1

eviXik ¼ 1

Xs
r¼1

urYrk ¼ ES
k

Xm
i¼1

viXik

Xg
f¼1

wf Zfj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

Xs
r¼1

urYrj �
Xg
f¼1

wf Zfj � 0, j ¼ 1, . . . , n

Xg
f¼1

ewf Zfj � ew0

 !
�
Xm
i¼1

eviXij � 0, j ¼ 1, . . . , n

ur, vi,wf , ewf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , gew0 unrestricted in sign

ð6:5Þ

128 C. Kao and S.-N. Hwang



Models (6.4) and (6.5) can be combined to calculate the overall and (input)

technical efficiencies of Process 1 at the same time:

max:
Xg
f¼1

wf Zfk þ
Xg
f¼1

ewf Zfk � ew0

 !

s:t:
Xm
i¼1

viXik ¼ 1

Xm
i¼1

eviXik ¼ 1

Xs
r¼1

urYrk ¼ ES
k

Xm
i¼1

viXik

Xg
f¼1

wf Zfj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

Xs
r¼1

urYrj �
Xg
f¼1

wf Zfj � 0, j ¼ 1, . . . , n

Xg
f¼1

ewf Zfj � ew0

 !
�
Xm
i¼1

eviXij � 0, j ¼ 1, . . . , n

ur, vi,wf , ewf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , g

ew0 unrestricted in sign

ð6:6Þ

At optimality, the overall and (input) technical efficiencies of Profess 1 are

calculated as:

E
1ð Þ
k ¼

Xg
f¼1

wf Zfk

T
1ð Þ
k ¼

Xg
f¼1

ewf Zfk � ew0

Consequently, the input scale efficiency is calculated as their ratio:

S
1ð Þ
k ¼ E

1ð Þ
k =T

1ð Þ
k

Similarly, the (output) technical efficiency of Process 2 is calculated

by replacing the part related to the CCR model in Model (6.4) by that of output
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BCC Model (6.2), while maintaining the system efficiency at ES
k and Process

1 efficiency at E
ð1Þ
k :

1

T
2ð Þ
k

¼ min:
Xg
f¼1

ŵf Zfk þ ŵ0

s:t:
Xs
r¼1

ûrYrk ¼ 1

Xs
r¼1

urYrk ¼ ES
k

Xm
i¼1

viXik

Xg
f¼1

wf Zfk ¼ E
1ð Þ
k

Xm
i¼1

viXik

Xg
f¼1

wf Zfj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n

Xs
r¼1

urYrj �
Xg
f¼1

wf Zfj � 0, j ¼ 1, . . . , n

Xg
f¼1

ŵf Zfj þ ŵ0

 !
�
Xs
r¼1

ûrYrj � 0, j ¼ 1, . . . , n

ur , vi,wf , ŵf � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, f ¼ 1, . . . , g

ŵ0 unrestricted in sign

ð6:7Þ

At optimality, the (output) technical efficiency of Process 2 is:

T
2ð Þ
k ¼ 1=

Xg
f¼1

ŵf Zfk þ ŵ0

 !

and the corresponding (output) scale efficiency is:

S
2ð Þ
k ¼ E

2ð Þ
k =T

2ð Þ
k

If Process 2 is considered more important, then E
ð2Þ
k and the associated T

ð2Þ
k are

calculated first. The overall efficiency of Process 1 is calculated as E
ð1Þ
k ¼ ES

k /E
ð2Þ
k ,

and the technical and scale efficiencies are calculated by a similar procedure.

Combining the above discussions, one obtains the following properties:

ES
k ¼ E

1ð Þ
k � E

2ð Þ
k ¼ T

1ð Þ
k � S

1ð Þ
k

� �
� T

2ð Þ
k � S

2ð Þ
k

� �
ES
k ¼ Tk � Sk ¼ T

1ð Þ
k � T

2ð Þ
k

� �
� S

1ð Þ
k � S

2ð Þ
k

� �

where Tk and Sk are the technical and scale efficiencies of the system, respectively.
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6.5 Non-life Insurance Companies in Taiwan

Kao and Hwang (2008) developed a relational model to calculate the system and

process efficiencies for two-stage systems, and used an example of 24 non-life

insurance companies in Taiwan to illustrate it. In order to have a common basis for

comparison, the same data set is used in this paper to calculate the technical and

scale efficiencies of the system and processes.

The operations of a non-life insurance company can be separated into two

processes, premium acquisition and profit generation. In the first process, clients

are attracted to pay direct written premiums, and reinsurance premiums are

received from other insurance companies. In the second process, premiums are

loaned and invested to earn profit. The inputs are classified into two categories:

Operating expenses (X1): salaries of the employees and various costs incurred in

daily operations.

Insurance expenses (X2): expenses paid to agencies, brokers, and solicitors, and

other expenses associated with marketing insurance.

The intermediate products considered are:

Direct written premiums (Z1): premiums received from insured clients.

Reinsurance premiums (Z2): premiums received from ceding companies.

The outputs include two types of profit:

Underwriting profit (Y1): profit earned from the insurance business.

Investment profit (Y2): profit earned from the investment portfolio.

Table 6.3 shows the original data.

By applying Model (6.3), the system efficiency, ES
k , is calculated for each

company, as shown in the second column of Table 6.4. Model (6.6) is then applied

to calculate the overall and (input) technical efficiencies, E
ð1Þ
k and T

ð1Þ
k , for the first

process. The ratio of E
ð1Þ
k to T

ð1Þ
k is the (input) scale efficiency, S

ð1Þ
k , and that of ES

k to

E
ð1Þ
k is the overall efficiency of the second process, E

ð2Þ
k . The results are shown in the

central part of Table 6.4 under the heading “Process 1”. Finally, Model (6.7) is used

to calculate the (output) technical efficiencies, T
ð2Þ
k , for the second process. Similar

to Process 1, the ratio of E
ð2Þ
k to T

ð2Þ
k is the (output) scale efficiency, S

ð2Þ
k , of Process

2. The results are shown on the right side of Table 6.4 under the heading “Process

2”. The products of the two process technical efficiencies and two process scale

efficiencies are the system technical and system scale efficiencies, respectively, as

shown on the left side of Table 6.4 under the heading “System”.

As indicated by the scores shown in the second column of Table 6.4, none of the

24 companies is efficient for the whole system. This is simply because none of

the companies is efficient for both Processes 1 and 2, although four companies have

an efficient Process 1 and two have an efficient Process 2. In order to get a general

idea of the performance of both processes, and to preserve the relationship of
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multiplicity, geometric means for the system efficiency, ES
k , Process 1 efficiency,

E
ð1Þ
k , and Process 2 efficiency, E

ð2Þ
k , are calculated, as shown in the last row of

Table 6.4. As expected, the system mean, 0.3705, is the product of the two process

means, 0.7831 and 0.4731. The values also indicate that Process 1 is more efficient

than Process 2. This is reasonable, because the task of premium acquisition is

relatively straightforward, and neither significant mistakes nor breakthroughs can

be made. Profit generation, in contrast, involves high risk, which may produce large

differences among companies. Therefore, the efficiencies are high for the former

Table 6.3 Data of 24 non-life insurance companies in Taiwan

Company

Operating

expenses

(X1)

Insurance

expenses

(X2)

Direct

written

premiums

(Z1)

Reinsurance

premiums

(Z2)
Underwriting

profit (Y1)
Investment

profit (Y2)

1. Taiwan Fire 1,178,744 673,512 7,451,757 856,735 984,143 681,687

2. Chung Kuo 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754

3. Tai Ping 1,177,494 592,790 4,776,548 560,244 293,613 658,428

4. China

Mariners

601,320 594,259 3,174,851 371,863 248,709 177,331

5. Fubon 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,925,272

6. Zurich 2,627,707 668,363 9,747,908 952,326 1,713,598 415,058

7. Taian 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039

8. Ming Tai 3,789,001 1,873,530 17,267,266 1,134,600 3,899,530 622,868

9. Central 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098

10. The First 1,303,249 1,298,470 8,210,389 504,528 1,697,941 554,806

11. Kuo Hua 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259

12. Union 2,592,790 650,952 9,434,406 1,118,489 1,574,191 909,295

13. Shingkong 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047

14. South

China

1,396,002 988,888 7,396,396 465,509 1,401,200 332,283

15. Cathay

Century

2,184,944 651,063 10,422,297 749,893 3,355,197 555,482

16. Allianz

President

1,211,716 415,071 5,606,013 402,881 854,054 197,947

17. Newa 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984

18. AIU 757,515 547,997 3,631,484 995,620 692,731 163,927

19. North

America

159,422 182,338 1,141,950 483,291 519,121 46,857

20. Federal 145,442 53,518 316,829 131,920 355,624 26,537

21. Royal &

Sunalliance

84,171 26,224 225,888 40,542 51,950 6,491

22. Asia 15,993 10,502 52,063 14,574 82,141 4,181

23. AXA 54,693 28,408 245,910 49,864 0.1 18,980

24. Mitsui

Sumitomo

163,297 235,094 476,419 644,816 142,370 16,976

Mean 1,544,215 828,963 7,832,893 667,964 1,602,873 477,733
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and low for the latter. An effective way to increase the efficiency of a company is

thus to improve the performance of Process 2.

The overall efficiency of both processes can be decomposed into the product of

technical and scale efficiencies. For Process 1, ten companies are technically

efficient and four have perfect scale efficiency. Their averages, as shown in the

last row of Table 6.4, are 0.8953 and 0.8747. The product of the technical and scale

efficiencies is equal to the overall efficiency of the process (0.7831). For Process

2, five companies have perfect technical efficiency and two have perfect scale

efficiency. The geometric means are 0.6614 and 0.7153, respectively, whose

product is exactly the overall efficiency, 0.4731.

The products of the technical efficiencies and scale efficiencies of the processes

are the technical efficiency and scale efficiency of the system, respectively. The last

row of Table 6.4, under the heading “System”, shows that the average technical

and scale efficiencies of the system are 0.5921 and 0.6257, respectively, which

are exactly the products of those of the two processes, 0.8953 � 0.6614 and

Table 6.4 Various efficiencies measured from the two-stage model for 24 non-life insurance

companies in Taiwan

Co.

System Process 1 Process 2

Overall (Tech. Scale) Overall (Tech. Scale) Overall (Tech. Scale)

1 0.6992 (0.7845 0.8914) 0.9926 (1.0000 0.9926) 0.7045 (0.7845 0.8980)

2 0.6246 (0.7240 0.8626) 0.9982 (1.0000 0.9982) 0.6256 (0.7240 0.8642)

3 0.6900 (0.6903 0.9996) 0.6900 (0.6903 0.9996) 1.0000 (1.0000 1.0000)

4 0.3042 (0.3284 0.9264) 0.7242 (0.7258 0.9979) 0.4200 (0.4524 0.9283)

5 0.7670 (1.0000 0.7670) 0.8307 (1.0000 0.8307) 0.9233 (1.0000 0.9233)

6 0.3897 (0.5357 0.7273) 0.9606 (0.9636 0.9969) 0.4057 (0.5559 0.7297)

7 0.2766 (0.4654 0.5943) 0.6706 (0.7520 0.8918) 0.4124 (0.6189 0.6664)

8 0.2752 (0.6816 0.4037) 0.6630 (0.8156 0.8130) 0.4150 (0.8358 0.4966)

9 0.2233 (0.2955 0.7557) 1.0000 (1.0000 1.0000) 0.2233 (0.2955 0.7557)

10 0.4658 (0.6403 0.7275) 0.8611 (0.8612 0.9999) 0.5409 (0.7434 0.7276)

11 0.1637 (0.3710 0.4414) 0.6476 (0.7406 0.8744) 0.2528 (0.5009 0.5047)

12 0.7596 (0.8658 0.8773) 1.0000 (1.0000 1.0000) 0.7596 (0.8658 0.8773)

13 0.2078 (0.7552 0.2752) 0.6720 (0.8652 0.7767) 0.3093 (0.8729 0.3543)

14 0.2886 (0.4236 0.6813) 0.6699 (0.7248 0.9243) 0.4309 (0.5845 0.7371)

15 0.6138 (0.9377 0.6546) 1.0000 (1.0000 1.0000) 0.6138 (0.9377 0.6546)

16 0.3202 (0.4153 0.7709) 0.8856 (0.9107 0.9724) 0.3615 (0.4560 0.7928)

17 0.3600 (0.7239 0.4974) 0.6276 (0.7239 0.8670) 0.5736 (1.0000 0.5736)

18 0.2588 (0.5502 0.4705) 0.7935 (1.0000 0.7935) 0.3262 (0.5502 0.5929)

19 0.4112 (0.7775 0.5288) 1.0000 (1.0000 1.0000) 0.4112 (0.7775 0.5288)

20 0.5465 (0.9990 0.5471) 0.9331 (0.9990 0.9340) 0.5857 (1.0000 0.5857)

21 0.2008 (0.2955 0.6795) 0.7321 (0.9131 0.8018) 0.2743 (0.3236 0.8476)

22 0.5895 (1.0000 0.5895) 0.5895 (1.0000 0.5895) 1.0000 (1.0000 1.0000)

23 0.4203 (0.6042 0.6957) 0.8426 (0.9877 0.8530) 0.4989 (0.6117 0.8155)

24 0.1348 (0.3769 0.3577) 0.4288 (1.0000 0.4288) 0.3144 (0.3769 0.8343)

Mean 0.3705 (0.5921 0.6257) 0.7831 (0.8953 0.8747) 0.4731 (0.6614 0.7153)
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0.8747 � 0.7153. If every company is operating efficiently from the technical point

of view, then the system efficiency can be improved from 0.3705 to 0.6257. This

improvement is accomplished by reducing the amount of input of Process 1 by

10.47 % (¼1�0.8953), and increasing the output of Process 2 by 33.86 %

(¼1 � 0.6614). Each company can thus identify sources of inefficiency and

make appropriate amendments to improve its overall efficiency.

6.6 Conclusion

The measurement of scale efficiency is quite straightforward in conventional DEA

when only the aggregate operation of the system is considered. However, when the

operations of the individual processes of the system are also considered, the

measurement becomes a little complicated. This is primarily because the relation-

ship between the efficiencies calculated under CRS and VRS are not known. In this

paper we investigate the simplest case, the two-stage system.

The problem in decomposing the technical efficiency of the system into those of

the two processes is that the outputs of the first process are the inputs of the second,

such that to improve the efficiency of the first by increasing its outputs will affect

that of the second, and to improve the efficiency of the second by reducing its

inputs will affect that of the first. To resolve this conflict, this paper fixes the

amounts of the intermediate products, which are the outputs of the first process and

the inputs of the second, and uses an input-oriented model to measure the technical

efficiency of the first process and an output-oriented one to measure that of the

second. Based on the relational model of Kao and Hwang (2008), where the overall

system and process efficiencies are calculated first and the technical efficiencies of

the processes are calculated second, the scale efficiency of each process is calcu-

lated as the ratio of their respective overall efficiency to technical efficiency. The

product of the technical efficiency of the two processes is that of the system.

Similarly, the product of the scale efficiency of the two processes is that of the

system. Moreover, the overall efficiency of the system is the product of its

technical and scale efficiencies.

Decomposing the system efficiency into the product of the two process efficien-

cies, and each process efficiency into the product of their respective technical and

scale efficiencies, enables decision makers to identify the sources of inefficiency

and to find effective alternatives for making improvements to the system.

The efficiency measures used in this paper are radial, but other measures are also

discussed in the literature. How to calculate scale efficiency based on these other

measures, so that the performance of the system can be improved more effectively,

is one direction for future research. Finally, the network system discussed in this

paper is the simplest one; and calculating the scale efficiency for more complicated

systems will be a more challenging task.
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Chapter 7

Decomposing Efficiency and Returns to Scale

in Two-Stage Network Systems

Biresh K. Sahoo, Joe Zhu, and Kaoru Tone

Abstract Most of real-life production technologies are multi-stage in nature.

Characterization of such technologies via concept like network returns to scale is

considered important to firmmanagers for the stage-specific analysis of their business

decisions concerning expansion or contraction so as to improve their firms’ overall

performance. Similarly, depicting such multi-stage technologies via network effi-
ciency is important in identifying the sources of network inefficiency. It is, therefore,

imperative to estimate both efficiency and returns to scale of a firm not only for the

network technology but also for the sub-technologies so as to locate the sources of

efficiency and scale economies. The primary purpose of constructing a network

technology is to address allocative efficiency that is associated with the choice of

how much of intermediate products to produce and consume, in addition to the

economic use of primary inputs and the maximal production of final outputs. There-

fore, it is necessary that not only the intermediate products are explicitly modeled,

but also their optimal values are considered in the construction of sub-technologies’

frontiers so that the issue of allocative efficiency, if exists, can be addressed. Based

on the premise concerning whether a network technology considers allocative ineffi-

ciency, two approaches are suggested for the estimation of network technology.

Part of this chapter is based upon Sahoo, B.K., Zhu, J., Tone, K. & Klemen. B.M. (2014),

“Decomposing scale elasticity in two-stage network DEA”, European Journal of Operational
Research, 233(3), 584–594, with permission from Elsevier.
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The first approach makes use of a single network technology for two

interdependent sub-technologies. The second approach, however, assumes com-

plete allocative efficiency by considering two independent sub-technology fron-

tiers, one for each sub-technology. These two approaches are, however, necessary,

in modeling the output loss of a network firm suffering from allocative ineffi-

ciency, which arises due to any possible sub-optimal decision as to how much of

intermediate products to produce and consume in the world of changing prices.

Keywords Data envelopment analysis • Network DEA • Returns to scale

decomposition • Efficiency decomposition • Modeling output loss due to allocative

inefficiency

7.1 Introduction

Most of real-life production technologies are multi-stage in nature. Characterization

of such technologies via concept like returns to scale (RTS) or scale elasticity
(SE) is considered important to firm managers for the stage-specific analysis of

their business decisions concerning expansion or contraction. Therefore, it is imper-

ative to estimate the SE of a firm not only for the network technology but also for its

sub-technologies so as to locate the sources of scale economies. This chapter presents

the idea of Sahoo et al. (2014), and develop new approaches in non-parametric data

envelopment analysis (DEA) for the decomposition of efficiency and RTS of a

network firm into its stage-specific efficiencies and RTS, which are of practical use

to firm managers in improving the overall performance of their firms.

Data envelopment analysis (DEA), a linear programming (LP) based technique,

has been widely accepted as a competent methodology to estimate the structure of

production technology in both primal (production) and dual (cost) environments.

See Scarf (1990) for a discussion on the analogy between economic institutions and

algorithms for solving the LP problems where the simplex method is interpreted as a
search for market prices that equilibrate demand for factors of production with their

supply. Much of DEA literature that considers the evaluation of SE treats produc-

tion technology as a black-box (see, e.g., Sahoo et al. 1999; Fukuyama 2003; Tone

and Sahoo 2003; Banker et al. 2004; Sahoo and Tone 2013; Zelenyuk 2013; among

others), thus completely ignoring the literature on production control problems

dealing with multi-stage production technologies (see, e.g., Aburzzi 1965; Bakshi

and Arora 1969; among others).

The DEA literature that considers modeling of multi-stage technology by linking

its sub-technologies is fairly recent. To the best of our knowledge, the network

structure that links sub-technologies with intermediate products in the DEA frame-

work was first introduced by Färe (1991); was, subsequently, extended in Färe and

Grosskopf (2000), and Tone and Tsutsui (2009, 2010); and was, finally, applied in

Tone and Sahoo (2003), Prieto and Zofio (2007), Yu and Lin (2008), and Lewis

et al. (2013), among others.

A special variant of Färe and Grosskopf’s multi-stage technology, i.e., a

two-stage technology was developed in a different way by several scholars under
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multiplier DEA models (see, e.g., Chen and Zhu 2004; Chen et al. 2006, 2009a, b,

2010, 2013; Liang et al. 2006, 2008; Kao and Hwang 2008, 2011; Kao 2009, 2013;

Cook et al. 2010; among others). In this set up, sub-technology I consumes input
resources to produce intermediate products, which are all, in turn, used as inputs to
sub-technology II to produce final outputs. A further restricted variant of this

two-stage structure is developed by Seiford and Zhu (1999) and Zhu (2000)

where sub-technologies are treated independent, and network as well as its

sub-technologies’ efficiencies are estimated independently.

The two-stage DEA literature (Kao and Hwang 2008, 2011, 2014; Liang

et al. 2008; Kao 2009, 2013; Chen et al. 2009a, b, 2010, 2013) that addresses the

evaluation of the decomposition of network efficiency into the sub-technology

specific efficiencies is fairly recent. This decomposition is done under the assumption

of constant returns to scale (CRS). What seems to be more intriguing but has

completely been overlooked is whether this decomposition can be made under the

assumption of variable returns to scale (VRS). And, if the answer to this question is
yes, but at a cost, then it is worth investigating what this cost amounts to, i.e.,

allocative inefficiency due to any sub-optimal decision by the sub-technology man-

agers as to how much of intermediate products to produce in the world of changing

prices. The first objective of this chapter is to address the aforementioned issue.

Another important issue related to the first one, which has also not been

addressed in the two-stage DEA literature, is the decomposition of network SE

into the sub-technology specific SEs. This issue is related because the SE estimation

can be done only under VRS. This decomposition will help a firm manager to not

only determine the scale economies of network technology but also locate their

sources, which lie in the sub-technologies. To our best knowledge, Kao and Hwang

(2011) are the first to propose a scheme to determine only the scale efficiency of

independent sub-technologies under the two-stage setting. Therefore, the second

objective of this chapter is to propose a scheme to analytically show the SE of

network technology as the product of those of its two sub-technologies.

For network SE estimation, two approaches may be considered based on the

premise concerning whether the VRS-based network technology construct considers

allocative inefficiency. In economics, the primary purpose of constructing a technol-

ogy is to address allocative efficiency associated with the economic choice of how

much of intermediate products to produce and consume, in addition to the economic

use of primary inputs and the maximal production of final outputs. Therefore, it is

necessary that not only the intermediate products are explicitly modeled, but also

their optimal values are considered in the construction of sub-technologies’ frontiers

so that the issue of allocative efficiency, if exists, can be addressed.

Under the first approach (Approach I), which is ours, one network frontier is

constructed for the two interdependent sub-technology frontiers, which are linked

through optimal values of intermediate products. The dual pricing interpretation of

the constraint that the intermediate products are freely determined in our

envelopment-based network technology is that the weights for intermediate prod-

ucts as inputs and outputs in our multiplier-based network technology are the same.

We maintain that our multiplier-based network technology is additive.
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The construct of our proposed additive network technology holds under two

conditions: (1) weights for intermediate products as inputs and outputs are the same,

and (2) intercept multiplier of network technology is the sum of those of the two

sub-technologies. The first condition holds due to our constraint that the intermediate

products are freely determined in our envelopment-based network technology. The

second condition holds under the assumption that the additive network technology can

inherit the properties of its sub-technologies, i.e., if the sub-technologies satisfy the

properties such as no free lunch, free disposability in inputs and outputs, compactness,

convexity, and returns to scale, then so does the additive network technology.

The proof of this is made in the spirit of the proof of Proposition 2.3.2 in Färe

and Grosskopf (1996, p. 23, pp. 44–45).

The network technical efficiency (TE) decomposition based on Approach I

reveals that allocative inefficiency arises only under the VRS specification, but

disappears under the CRS specification. It can, therefore, be argued that interpreting

the ‘same weights’ assumption for the intermediate products as outputs and

inputs as a perfect coordination between the two sub-technologies, as in Liang

et al. (2008), is not sufficient to rule out allocative inefficiency in the VRS

environment. Allocative inefficiency is a broader concept that includes inefficien-

cies arising from possible sub-optimal decisions as to how much of intermediate

products to produce and consume in the world of changing prices. Our additive

network technology can be used in identifying such inefficiency when optimal

values of intermediate products are less than their observed values. Our network

TE decomposition reveals that a network firm is fully efficient only when it is

efficient in both of its sub-technologies.

The second approach (Approach II), which is due to Kao and Hwang (2011),

requires the two sub-technologies to be independent for the construction of network
frontier. To keep the sub-technologies independent, the input-orientation in the

sub-technology I and the output-orientation in the sub-technology II are maintained

to keep the level of intermediate products unaltered. This way of modeling network

technology assumes the current uses of intermediate products as optimal, thereby

effectively rules out allocative inefficiency arising from their possible sub-optimal

uses. However, allocative inefficiency of this kind, if exists, may question the very

TE estimates estimated against the two assumed independent sub-technology

frontiers.

Note that the choice of a particular approach adopted implies whether assuming

allocative inefficiency in the underlying technology construct, and hence, yields a

distinct set of TE estimates. The distinction between the two approaches is impor-

tant from a policy point of view as the factors attributing to the network’s ineffi-

ciency in each approach are distinct. For example, a lower network TE may be due

to allocative inefficiency in Approach I as against the same due to lower

sub-technologies’ efficiencies in Approach II. In this case, policies to remove

allocative inefficiency may be more effective in improving the network efficiency

in Approach I than the policies directed at improving the sub-technology specific

TEs. However, a comparison between the two approaches can be worth revealing in

modeling the output loss of a network firm suffering from allocative inefficiency
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that may arise due to sub-optimal decision as to how much of intermediate products

to produce and consume by the sub-technology managers in the world of changing

prices. This is the third objective of this chapter.

The remainder of the chapter proceeds as follows. Section 7.2 deals with a

discussion on the development of variants of two-stage network DEA models to

estimate the TE and SE of firms in the network technology as well as

sub-technologies. Section 7.3 provides an illustrative empirical application, showing

how the TE and SE estimates of a firm yielded from the two approaches are different

due to allocative inefficiency. Section 7.4 provides some concluding remarks.

7.2 Model Development

7.2.1 Two-Stage Network Technology

Consider a two-stage technology in which sub-technologies are connected in a

network to form a network technology (TN) (see Fig. 7.1). Further, assume that there

are n firms, and each firm (h ¼ 1, 2, . . ., n) in the first sub-technology (TI) uses
inputs xi (i ¼ 1, 2, . . ., m) to produce intermediate outputs zd (d ¼ 1, 2, . . ., p) and
the same firm in the second sub-technology (TII) uses these intermediate outputs as
inputs to produce final outputs yr (r ¼ 1, 2, . . ., s). These zd are called intermediate

measures by Chen and Zhu (2004) and Liang et al. (2008).

7.2.2 TE Estimation

We now discuss the TE evaluation using Approach I.

7.2.2.1 TE Estimation Using Approach I

One can evaluate the TE of a network firm either in input-oriented manner or in

output-oriented manner or in non-oriented manner. In this study we, however,

concentrate on TE evaluation in input-oriented manner. We set up the following

Fig. 7.1 Two-stage network technology
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input-oriented VRS-based network DEA model for estimating the input TE of firm

h (TE
NðIÞ
ih ) in envelopment form as

TE
N Ið Þ
ih ¼ min

β, λ,ez βh
s:t:

Xn
j¼1

xijλj � βhxih 8ið Þ,
Xn
j¼1

zdjλj � ezdh � 0 8dð Þ,
Xn
j¼1

λj ¼ 1, sub-technology Ið Þ

Xn
j¼1

zdjμj �ezdh � 0 8dð Þ,
Xn
j¼1

yrjμj � yrh 8rð Þ,
Xn
j¼1

μj ¼ 1, sub-technology IIð Þ

βh � 1, λj, μj � 0 8jð Þ,ezdh : free �8d�
ð7:1Þ

Let β�; λ�;ez�ð Þ be optimal solution vector of model (7.1), which is based on the

following VRS-based network technology set (T
NðIÞ
VRS ) defined as

T
N Ið Þ
VRS ¼ x; y; zð Þ

Xn
j¼1

xijλj � xi 8ið Þ,
Xn
j¼1

zdjλj � zd � 0 8dð Þ,
Xn
j¼1

λj ¼ 1, λj � 0 8jð Þ
Xn
j¼1

zdjμj � zd � 0 8dð Þ,
Xn
j¼1

yrjμj � yr 8rð Þ,
Xn
j¼1

μj ¼ 1, μj � 0 8jð Þ

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ð7:2Þ

T
NðIÞ
VRS uses λ and μ as intensity weights to form a linear combinations of

n observed firms. Since both T
IðIÞ
VRS and T

IIðIÞ
VRS satisfy VRS (i.e., ∑ n

j¼1λj ¼ 1 and

∑ n
j¼1μj ¼ 1), T

NðIÞ
VRS satisfies VRS. Similarly, T

IðIÞ
VRS and T

IIðIÞ
VRS satisfy the assumption

of strong ( free) disposability of inputs and outputs by the use of inequality

constraints, and so is the case with T
NðIÞ
VRS . The most distinguishing feature of T

NðIÞ
VRS

is that the intermediate products are explicitly modeled to be freely determined so

as to make the sub-technologies interdependent. Chen and Zhu (2004), Liang

et al. (2008), and Chen et al. (2010) also used this feature to reveal the frontier

points of the two-stage technology.

β�h can be regarded as representing the minimum input proportion possible in

T
NðIÞ
VRS to produce yh. Firm h is technically efficient, i.e., TE

NðIÞ
ih ¼ 1 if and only if

β�hxh,ez�h, yh� �
∈∂TN Ið Þ

VRS �ð Þ where ∂TNðIÞVRS (�) represents the boundary of T
NðIÞ
VRS (�), and

(β�hxh, zh, yh) =2 ∂TNðIÞVRS (�) when zh 6¼ ez�h.
One can also set up the input-oriented VRS-based network DEA model for

estimating the input TE of firm h (TE
NðIÞ
ih ) in multiplier form as

TE
N Ið Þ
ih ¼ max

Xs
r¼1

uryrh � ωI � ωII ð7:3Þ
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s:t:
Xm
i¼1

vixih ¼ 1, ð7:3:1Þ

Xp
d¼1

wdzdj �
Xm
i¼1

vixij � ωI � 0 8jð Þ, ð7:3:2Þ

Xs
r¼1

uryrj �
Xp
d¼1

wdzdj � ωII � 0 8jð Þ, ð7:3:3Þ

vi, ur,wd � 0 8i, r, dð Þ;ωI,ωII : free ð7:3:4Þ

where vi, wdI and ωI are the dual decision variables to the respective constraints of

sub-technology I, and wdII, ur and ωII are the dual decision variables to the

respective constraints of sub-technology II, in (7.1). Here wdI ¼ wdII(¼wd), which

is due to the constraint that ez�d are free in (7.1). Otherwise, wdI would have been no

less than wdII(wdI � wdII), had ez�d been non-negative. Note that Liang et al. (2008)

model the ‘same weights’ assumption on zd as a perfect coordination between the

two sub-technologies under the CRS specification.

Constraints (7.3.2) and (7.3.3) correspond to the sub-technologies T
IðIÞ
VRS and T

IIðIÞ
VRS ,

respectively whose respective intercept multipliers are ωI and ωII. The construct of

our network technology is such that the network technology constraint is the sum of

the two sub-technology constraints, i.e., T
NðIÞ
VRS is additive. This proposed additive

structure holds under two conditions: (1) weights for the intermediate measures

(products as inputs and outputs) are the same, and (2) intercept multiplier of T
NðIÞ
VRS is

the sum of those of its two sub-technologies. The first condition is satisfied due to

the fact that ez�d are free in (7.1). The second condition holds under the assumption

that the additive T
NðIÞ
VRS can inherit the properties of its sub-technologies, i.e., if the

sub-technologies satisfy the properties such as no free lunch, free disposability in

inputs and outputs, compactness, convexity, and returns to scale, then so does the

additive network technology. The proof of this is made in the spirit of the proof of

Proposition 2.3.2 in Färe and Grosskopf (1996, p. 23, pp. 44–45).

Using optimal multipliers from (7.3), one can obtain the input-oriented TE of

firm h in T
NðIÞ
VRS (TE

NðIÞ
ih ) and the sub-technologies ((TE

IðIÞ
ih ) and TE

IIðIÞ
ih ) as:

TE
N Ið Þ
ih ¼

Xs
r¼1

u�r yrh � ω�I � ω�II

Xm
i¼1

v�i xih

,TE
I Ið Þ
ih ¼

Xp
d¼1

w�dzdh � ω�I

Xm
i¼1

v�i xih

and TE
II Ið Þ
ih ¼

Xs
r¼1

u�r yrh � ω�II

Xp
d¼1

w�dzdh

ð7:4Þ

One can express TE
NðIÞ
ih as the product of three terms: the first two terms

representing the TEs in the sub-technologies – TE
IðIÞ
ih and TE

IIðIÞ
ih , respectively, and
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the third term representing an index (IVRSh ) indicating whether the decision

concerning the use of observed intermediate products (z) as intermediate measures

(outputs and inputs) is optimal, i.e., whether zh equals ezh. The proposed TE

decomposition is given below.

TE
N Ið Þ
ih ¼

Xs
r¼1

u�r yrh � ω�I � ω�II

 !.Xm
i¼1

v�i xih

¼

Xp
d¼1

w�dzdh � ω�I

Xm
i¼1

v�i xih

�

Xs
r¼1

u�r yrh � ω�II

Xp
d¼1

w�dzih

�

Xs
r¼1

u�r yrh � ω�I � ω�II
.Xs

r¼1
u�r yrh � ω�II

 !

Xs
r¼1

w�dzdh � ω�I
.Xs

r¼1
w�dzdh

 !

¼ TE
I Ið Þ
ih � TEII Ið Þ

ih �
1� 1

TEII
ih

ω�I
.Xs

r¼1
w�dzdh

 !

1� ω�I
.Xs

r¼1
w�dzdh

 ! ¼ TE
I Ið Þ
ih � TEII Ið Þ

ih � I VRSh

ð7:5Þ

Assuming unique optimal solutions in (7.3), we have three remarks based on the

TE decomposition in (7.5).

Remark 1 IVRSh represents a proxy for the indication of allocative inefficiency, in

which case IVRSh > (<) 1. Allocative inefficiency arises under the VRS specification

but disappears under the CRS specification. One can therefore infer that

maintaining the ‘same weight’ assumption on z as outputs and inputs under the

VRS specification is not sufficient to rule out allocative inefficiency. Allocative

inefficiency is a broader concept that includes inefficiencies arising from any

possible sub-optimal decision as to how much z to produce and consume in the

light of changing prices, i.e.,ezh < zh, in which case I
VRS
h 6¼ 1. Our proposed additive

T
NðIÞ
VRS is helpful in identifying such inefficiency when the optimal intermediate

products (ez� ) is less than its observed counterparts (z), i.e., ezh < zh when T
IIðIÞ
VRS

turns inefficient.

Remark 2 IVRSh ¼ 1 when TE
IIðIÞ
ih ¼ 1, implying the decision concerning the use of

observed intermediate products (zh) as outputs and inputs as optimal, i.e., zh ¼ ezh.
This means that there is no allocative inefficiency in the use of observed zh. In this

case, TE
NðIÞ
ih ¼ TE

IðIÞ
ih . Therefore, the TE decomposition under the additive network

structure reveals that a network firm is fully efficient only when it is efficient in both

of its sub-technologies.
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Remark 3 When TE
IIðIÞ
ih < 1, IVRSh > (<) 1. (A) IVRSh > 1 when (1) ω�I < 0 and

(2) TE
IðIÞ
ih > |ω�I | in which case firm h exhibits increasing returns to scale (IRS) in

T
IðIÞ
VRS. (B) I

VRS
h < 1 when ω�I > 0 in which case firm h exhibits decreasing returns to

scale (DRS) in T
IðIÞ
VRS.

To prove the statement (A) in Remark 3, let us redefine

I VRSh ¼ 1� 1

TEII
ih

ω�I
.Xs

r¼1
w�dzdh

 !.
1� ω�I

.Xs
r¼1

w�dzdh

 !
as 1� 1

TE II
ih

� ω�I
ω�
I
þTEI Ið Þ

ih

� �.

1� ω�I
ω�IþTE

I Ið Þ
ih

� �
¼ I1=I2, say
� �

. IVRSh > 1 implies that I1 � I2 > 0. This means

that
ω�I

ω�
I
þTEI Ið Þ

ih

� TE
II Ið Þ
ih
�1

TE
II Ið Þ
ih

> 0. One can see that for this strict inequality to hold, two

conditions need to hold: (1) ω�I < 0 and (2) TE
IðIÞ
ih > |ω�I | since TE

IIðIÞ
ih < 1; and firm

h exhibits IRS since ω�I < 0. Similarly, one can prove the statement (B) by exam-

ining the value of IVRSh when it is less than 1. IVRSh < 1 when I1 � I2 < 0, i.e.,

ω�I
ω�
I
þTEI Ið Þ

ih

� TE
II Ið Þ
ih
�1

TE
II Ið Þ
ih

< 0. This inequality holds only when ω�I > 0 irrespective of the

values of TE
IðIÞ
ih since TE

IIðIÞ
ih < 1; and firm h exhibits DRS since ω�I > 0. Note that

the issue of determination of returns to scale will be dealt with in Sect. 7.2.3.

Note that optimal multipliers obtained from (7.3) may not be unique, implying

that TE
IðIÞ
ih and TE

IIðIÞ
ih are not unique. Therefore, in the spirit of Kao and Hwang

(2008), assuming T
IðIÞ
VRS to be more important, we first determine the maximum value

of TE
IðIÞ
ih via

TEI
ih ¼ max

Xp
d¼1

wdzdh � ωI ð7:6Þ

s:t:
Xs
r¼1

uryrh � ωI � ωII ¼ TE
N Ið Þ
ih ,

Xm
i¼1

vixih ¼ 1,
Xp
d¼1

wdzdj �
Xm
i¼1

vixij � ωI � 0 8jð Þ,

Xs
r¼1

uryrj �
Xp
d¼1

wdzdj � ωII � 0 8jð Þ, vi, ur,wd � 0 8i, r, dð Þ;ωI,ωII : free

One can then compute the minimum of TE
IIðIÞ
ih by using optimal multipliers

obtained from model (7.6). However, if T
IIðIÞ
VRS is considered more important, we first

determine the maximum value of TE
IIðIÞ
ih , and then the minimum value of TE

IðIÞ
ih in an

analogous manner.

We now illustrate how to measure TE using Approach II.
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7.2.2.2 TE Estimation Using Approach II

As shown in Chen et al. (2013), since the sub-technology specific TEs can be

computed independently of the overall efficiencies, we set up the network technol-

ogy set (T
NðIIÞ
VRS ):

T
N IIð Þ
VRS ¼ x; z; yð ÞjTI IIð Þ

VRS [ T
II IIð Þ
VRS

n o
ð7:7Þ

where

T
I IIð Þ
VRS ¼ x; zð Þ

���Xn
j¼1

xijαj � xi 8ið Þ,
Xn
j¼1

zdjαj � zd 8dð Þ,
Xn
j¼1

αj ¼ 1, αj � 0 8jð Þ
( )

ð7:7:1Þ

T
II IIð Þ
VRS ¼ z; yð Þ

���Xn
j¼1

zdjβj � zd 8dð Þ,
Xn
j¼1

yrjβj � yr 8rð Þ,
Xn
j¼1

βj ¼ 1, βj � 0 8jð Þ
( )

ð7:7:2Þ

For the construction of T
NðIIÞ
VRS , Kao and Hwang (2011) maintains input-

orientation in T
IðIIÞ
VRS and output-orientation in T

IIðIIÞ
VRS . The input-oriented TE of firm

h in T
IðIIÞ
VRS (TE

IðIIÞ
ih ) can be computed by setting up the following linear problem:

TE
I IIð Þ
ih ¼ min

δ, α
δh : δhxh, zhð Þ∈T

I IIð Þ
VRS

n o
ð7:8Þ

Similarly, the output-oriented TE of firm h in T
IIðIIÞ
VRS (TE

IIðIIÞ
oh ) can be obtained from

the following linear problem:

TE
II IIð Þ
oh

� ��1
¼ max

μ, β
μh : zh, μhyhð Þ∈T

II IIð Þ
VRS

n o
ð7:9Þ

Kao and Hwang (2011) have shown that the network TE of firm h (TE
NðIIÞ
h ) is the

product of TE
IðIIÞ
ih and TE

IIðIIÞ
oh , i.e.,

TE
N IIð Þ
h ¼ TE

I IIð Þ
ih � TE

II IIð Þ
oh ð7:10Þ

We now discuss the evaluation of SE.
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7.2.3 SE Evaluation

7.2.3.1 Estimating SE Using Approach I

To compute the input-oriented SE of network firm h, we first need to compute its TE

using the model (7.1). Let its optimal solution vector be β�h, λ
�, μ�, ez�� �

. Firm h is

(input-oriented) technically efficient if β�h ¼ 1, zh ¼ ez�h and input and output slacks

are all zero. If it is not, then it needs to be projected onto the network frontier by

applying the following formulae:

x�h  β�hxh � s�, ez�h  ez�h and y�h  yh þ sþ ð7:11Þ

where s� and sþ are respectively vectors of input and output slacks under (7.1).

Due to duality theory, the following transformation function

FN Ið Þ x�h; y
�
h;ez�h� � ¼ 0 holds:

FN Ið Þ x�h; y
�
h;ez�h� � �Xs

r¼1
u�r yrh þ sþr
� ��Xm

i¼1
v�i β�hxih � s�i
� �� ω�I � ω�II ¼ 0 ð7:12Þ

where u�r , v
�
i , w

�
d, ω

�
I and ω�II are assumed to be the unique optimal multipliers

obtained from (7.3); otherwise FN(I )(�) is not differentiable at extreme points.

To define the SE in T
NðIÞ
VRS , T

IðIÞ
VRS and T

IIðIÞ
VRS , we consider, respectively, the following

input–output vectors from (7.11): (x�h,y
�
h), x�h;ez�h� �

and ez�h; y�h� �
. Following Baumol

et al. (1982), we define the input-oriented (local) SE of firm h in T
NðIÞ
VRS ,

εN Ið Þ
ih x�h; y

�
h;ez�h� �

as:

εN Ið Þ
ih x�h; y

�
h;ez�h� � � �Xm

i¼1
xih

∂FN Ið Þ �ð Þ
∂xih

.Xs
r¼1

yrh
∂FN Ið Þ �ð Þ
∂yrh

¼
β�h
Xm
i¼1

v�i xih

Xs
r¼1

u�r yrh

¼ β�h
β�h þ ω�I þ ω�II

¼ β�h
β�h þ ω�I þ ω�II

ð7:13Þ

Note that in (7.13), ∑ m
i¼1v

�
i xih ¼ 1 due to (7.3.1); and ∑ s

r¼1uryrh ¼ β�h + ω�I +

ω�II, due to duality, the objective function values of (7.1) and (7.3) are the same, i.e.,

β�h ¼ ∑ s
r¼1uryrh � ω�I � ω�II.

Based on (7.13), we have now the following proposition.
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Proposition 1 The input-oriented returns to scale are increasing (IRS) (i.e., εNðIÞih (�)
> 1) if ω�I + ω�II < 0 in all optimal solutions, constant (CRS) (i.e., εNðIÞih (�) ¼ 1) if

ω�I + ω�II ¼ 0 in an optimal solution, and decreasing (DRS) (i.e., εNðIÞih (�) < 1) if
ω�I + ω�II > 0 in all optimal solutions.

Proof The proof is similar to that of determining the RTS underlying black-box

DEA model. See Banker and Thrall (1992) and Banker et al. (2004). ⎕

We now discuss the analytical SE evaluation of a fully network efficient firm h in
its sub-technologies for which the constraints (7.3.2) and (7.3.3) are of special

interest. Note that the network technology constraint is the sum of its two

sub-technology constraints – (7.3.2) and (7.3.3), i.e.,

Xs
r¼1

u�r yrh þ sþr
� ��Xm

i¼1
v�i β�hxih � s�i
� �� ω�I � ω�II ¼

Xp
d¼1

w�dez�dh �Xm
i¼1

v�i β�hxih � s�i
� �� ω�I

 !
þ

Xs
r¼1

u�r yrh þ sþr
� ��Xp

d¼1
w�dez�dh � ω�II

 !

ð7:14Þ

Since
Xs
r¼1

u�r yrh �
Xm
i¼1

v�i β�oxih � s�i
� �� ω�I � ω�II ¼ 0 for the technically effi-

cient firm h in T
NðIÞ
VRS , h will also be efficient in T

IðIÞ
VRS and T

IIðIÞ
VRS , in which case the

respective transformation functions are:

FI Ið Þ x�h;ez�h� � �Xp
d¼1

w�dezdh �Xm
i¼1

v�i β�hxih � s�i
� �� ω�I ¼ 0 ð7:15Þ

FII Ið Þ ez�h; y�h� � �Xs
r¼1

u�r yrh þ sþr
� ��Xp

d¼1
w�dezdh � ω�II ¼ 0 ð7:16Þ

Using (7.13), one can obtain the respective sub-technology specific input-

oriented SEs as:

εI Ið Þ
ih x�h;ez�h� � � �Xm

i¼1
xih

∂FI Ið Þ �ð Þ
∂xih

.Xp
d¼1
ezdh ∂FI Ið Þ �ð Þ

∂ezdh ¼
β�h
Xm
i¼1

v�i xih

Xp
d¼1

w�dezdh
¼ β�h

β�h þ ω�I

ð7:17Þ

εII Ið Þih ez�h; y�h� � � �Xp
d¼1
ezih ∂FII Ið Þ �ð Þ

∂ezdh
.Xs

r¼1
yrh

∂FII Ið Þ �ð Þ
∂yro

¼

Xp
d¼1

w�dezdh
Xs
r¼1

u�r yrh

¼ β�h þ ω�I
β�h þ ω�I þ ω�II

ð7:18Þ
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Note that in (7.17),
Xp

d¼1 w
�
dezdh ¼ β�h þ ω�I . This is because ∑ m

i¼1v
�
i s
�
i ¼ 0 in

(7.15) due to complementary slackness condition. In (7.18), ∑ s
r¼1u

�
r yrh ¼ β�h +

ω�I + ω�II. This is due to ∑ s
r¼1u

�
r s
þ
r ¼ 0 in (7.16) due to complementary slackness

condition, and
Xp

d¼1 w
�
dezdh ¼ β�h þ ω�I in (7.15).

One can now show that the SE of network firm h in T
NðIÞ
VRS is the product of those

of the two sub-technologies – T
IðIÞ
VRS and T

IIðIÞ
VRS , i.e.,

εI Ið Þih x�o;ez�h� �
∗εII Ið Þih

�ez�h, y�h� ¼ β�h
β�h þ ω�I

� β�h þ ω�I
β�h þ ω�I þ ω�II

¼ β�h
β�h þ ω�I þ ω�II

¼ εN Ið Þ
ih x�h; y

�
h;ez�h� � ð7:19Þ

Note that DEA technologies are not differentiable at extreme efficient points due to

multiple optimal solutions for (ωI + ωII). We, therefore, set up the following linear

problem to find out the input-oriented right-hand SE (εNðIÞih� (�)) for firm h in T
NðIÞ
VRS as:

β�h
εN Ið Þ
ih� �ð Þ

� β�h

" #
¼ maxωI þ ωII ð7:20Þ

s:t:
Xm
i¼1

vi β
�
hxih � s�i

� � ¼ 1,
Xp
d¼1

wdez�dh �Xm
i¼1

vi β
�
hxih � s�i

� �� ωI ¼ 0,

Xs
r¼1

ur yrh þ sþr
� ��Xp

d¼1
wdez�dh � ωII ¼ 0,

Xp
d¼1

wdzdj �
Xm
i¼1

vixij � ωI � 0 8j 6¼ hð Þ,
Xs
r¼1

uryrj �
Xp
d¼1

wdzdj � ωII � 0
�8j 6¼ h

�
,

vi, ur,wd � ε 8i, r, dð Þ,ωI,ωII : free

Similarly, the input-oriented left-hand SE (εNðIÞihþ (�)) can be obtained by replacing

the “max” with “min” in objective of model (7.20).

Let the max of (ωI + ωII) in (7.20) be (ωI + ωII)
+ in which the values of ωI and

ωII areωI andωII; and let the min of (ωI + ωII) in (7.20) be (ωI + ωII)
� in which the

values of ωI and ωII are ωI and ωII. Banker and Thrall (1992) used the upper and

lower bounds of the intercept multiplier of the (black-box) BCC DEA model to

define the left-hand (lower bound) and right-hand (upper-bound) SEs. Following

Banker and Thrall (1992), we now use the SE expression (7.17) to determine the

left-and right-hand SEs of firm h in T
IðIÞ
VRS as

εI Ið Þihþ �ð Þ ¼
β�h

β�h þ ωI
and εI Ið Þih� �ð Þ ¼

β�h
β�h þ ωI

ð7:21Þ
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Similarly, one can use the SE expression (7.18) to determine the left- and right-hand

SEs of firm h in T
IIðIÞ
VRS as

εII Ið Þ
ihþ �ð Þ ¼

β�h þ ωI

β�h þ ωI þ ωIIð Þþ and εII Ið Þ
ih� �ð Þ ¼

β�h þ ωI

β�h þ ωI þ ωIIð Þ� ð7:22Þ

While defining these sub-technology specific SEs, we have followed Banker and

Thrall (1992) to consider the upper and lower bounds of (ωI + ωII) in the program

(7.20), i.e., ωI;ωIIð Þ and ωI;ωII

� �
to determine the left- and right-hand SEs.

However, if one considers the individual max (min) values of ωI and ωII (i.e.,

ωþI (ω
�
I ) and ωþII (ω

�
II )), which can be obtained by replacing max (min) (ωI + ωII) in

the objective of (7.20) with max (min)ωI and max (min)ωII respectively, then

our SE expressions in (7.21) and (7.22) may produce the incorrect values of

left- and right-hand SEs. This is possible only when ωI ωI

� � 6¼ ωþI ω�I
� �

and

ωII ωII

� � 6¼ ωþII ω�II
� �

.

We have now our proposition 2.

Proposition 2

(2.1) Assuming alternate optima in (ωI + ωII), T
NðIÞ
VRS exhibits IRS (εNðIÞih� (�) > 1) if

(ωI + ωII)
� < 0, CRS (εNðIÞih� (�) � 1 � εNðIÞihþ (�)) if (ωI + ωII)

� � 0 � (ωI +

ωII)
+ and DRS (εNðIÞihþ (�) < 1) if (ωI + ωII)

+ > 0.

(2.2) Assuming alternate optima in ωI, T
IðIÞ
VRS exhibits IRS (εIðIÞih�(�) > 1) if ωI < 0,

CRS (εIðIÞih�(�) � 1 � εIðIÞihþ(�)) if ωI � 0 � ωI, and DRS (εIihþ(�) < 1) if ωI > 0.

(2.3) Assuming alternate optima in (ωI + ωII), T
IIðIÞ
VRS exhibits IRS (ε

IIðIÞ
ih� (�) > 1) ifωII

< 0, CRS (εIIðIÞih� (�) � 1 � εIIðIÞihþ (�)) if ωII � 0 � ωII , and DRS (εIIðIÞihþ (�) < 1) if

ωII > 0.

Proof The proof is similar to that of determining the RTS underlying black-box

DEA model. See Banker and Thrall (1992) and Banker et al. (2004).

Banker et al. (1984) are the first to show that the intercept ω in the multiplier

form of the (black-box) BCC DEA model can be used to estimate RTS. Several

contributions exist, at the extreme points, on the evaluation of right-hand (upper

bound) and left-hand SE (lower bound) measures in the black-box models. See, e.g.,

among others, Banker and Thrall (1992), Førsund (1996), Tone and Sahoo (2004),

Tone and Sahoo (2005), Tone and Sahoo (2006), Hadjicostas and Soteriou (2006),

Podinovski et al. (2009), and Sahoo et al. (2012).
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7.2.3.2 Estimating SE Using Approach II

To compute the input-oriented SE of firm h in T
IðIIÞ
VRS , we first set up the dual of

model (7.8) as

TE
I IIð Þ
ih ¼ max

Xp
d¼1

w
0
dzdh � ω

0
I ð7:23Þ

s:t:
Xm
i¼1

vixih ¼ 1, ð7:23:1Þ

Xp
d¼1

w
0
dzdj �

Xm
i¼1

vixij � ω
0
I � 0 8jð Þ, ð7:23:2Þ

vi,w
0
d � 0 8i, dð Þ;ω0I : free ð7:23:3Þ

Assume that unique optimal solutions in (7.23) exist. The duality theory suggests

that the following transformation function for firm h, FI(II)(zh,xh) ¼ 0 holds, i.e.,

FI IIð Þ zh; xhð Þ �
Xp
d¼1

w
0 �
d zdh þ sþd
� ��Xm

i¼1
v�i δ�hxih � s�i
� �� ω

0 �
I ¼ 0 ð7:24Þ

where s�i and sþd are respectively the ith input and dth output slacks in model (7.8).

Using the SE formula (7.13), one can obtain the input-oriented SE of firm h in T
IðIIÞ
VRS as

εI IIð Þ
ih zh; xhð Þ � �

Xm
i¼1

xih
∂FI IIð Þ �ð Þ
∂xih

.Xp
d¼1

zdh
∂FI IIð Þ �ð Þ
∂zdh

¼
δ�h
Xm
i¼1

v�i xih

Xp
d¼1

w
0 �
dzdh

¼ δ�h
δ�h þ ω0 �I

ð7:25Þ

Notice that in (7.25), ∑ m
i¼1v

�
i xih ¼ 1 due to (7.23.1); and ∑ p

d¼1w
0�
dzdh ¼ δ�h +

ω0�I , which is because, by duality, the objective function values of (7.8) and (7.23)

are the same, i.e., δ�h ¼
Xp
d¼1

w
0 �
dzdh � ω

0 �
I .

One can compute the output-oriented SE of firm h in T
IIðIIÞ
VRS by setting up the

dual of (7.9) as

TE
II IIð Þ
oh

� ��1
¼ min

Xp
d¼1

w
0
dzdh þ ω

0
II ð7:26Þ
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s:t:
Xs
r¼1

uryrh ¼ 1, ð7:26:1Þ

Xp
d¼1

w
0
dzdj �

Xs
r¼1

uryrj þ ω
0
II � 0 8jð Þ, ð7:26:2Þ

ur,w
0
d � 0 8r, dð Þ;ω0II : free ð7:26:3Þ

Assume that unique optimal solutions in the model (7.26) exist. Due to duality

theory, the following transformation function for firm h, FII(II)(zh,yh) ¼ 0 holds, i.e.,

FII IIð Þ zh; yhð Þ �
Xm
i¼1

u�r μ�hyrh þ sþr
� ��Xp

d¼1
w
0 �
d zdh � s�d
� �� ω

0 �
II ¼ 0 ð7:27Þ

where s�d and sþr are respectively the dth input slack and rth output slacks of the

model (7.9). Using the SE formula (7.13), one can obtain the output-oriented SE of

firm h in T
IIðIIÞ
VRS as

εII IIð Þ
oh zh; yhð Þ � �

Xp
d¼1

zdh
∂FII IIð Þ �ð Þ

∂zdh

.Xs
r¼1

yrh
∂FII IIð Þ �ð Þ

∂yrh

¼

Xp
d¼1

w
0 �
dzdh

μ�h
Xs
r¼1

u�r yrh

¼ μ�h � ω
0 �
II

μ�h
¼ 1� ω

0 �
II

μ�h

ð7:28Þ

Notice that in (7.28), ∑ s
r¼1u

�
r yrh ¼ 1 due to (7.26.1); and ∑ p

d¼1w
0�
dzdh ¼ μ�h �

ω0�II, which is because, by duality, the objective function values of (7.9) and (7.26)

are the same, i.e., μ�h ¼
Xp
d¼1

w
0 �
dzdh þ ω

0 �
II.

Since in many cases ω0�I and ω
0�
II are not uniquely determined in (7.23) and (7.26)

respectively, the SE estimates are not unique. There is thus a need to find out both

right- and left-hand SEs.

We set up the following model to compute the input-oriented right-hand SE of

firm h, εIðIIÞih� (�) in T
IðIIÞ
VRS as

δ�h
εI IIð Þih� �ð Þ

� δ�h ¼ max ω
0
I ð7:29Þ
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s:t:
Xm
i¼1

vi δ
�
hxih � s�i

� � ¼ 1,
Xp
d¼1

w
0
d zdh þ sþd
� ��Xm

i¼1
vi δ

�
hxih � s�i

� �� ω
0
I ¼ 0,

Xp
d¼1

w
0
dzdj �

Xm
i¼1

vixij � ω
0
I � 0 8j 6¼ hð Þ,

vi,w
0
d � 0 8i, d; and ω

0
I : free:

Denote optimal solution of ω
0
I be ω

0�
I . ε

IðIIÞ
ih� (�) can be computed as:

εI IIð Þ
ih� �ð Þ ¼

δ�h
δ�h þ ω0�I

ð7:30Þ

Similarly, the input-oriented left-hand SE of firm h, εIðIIÞihþ (�) in T
IðIIÞ
VRS can be

computed by running the model (7.29) with ‘min’ instead of ‘max’.

The output-oriented right-hand SE of firm h in T
IIðIIÞ
VRS can be computed by setting

up the following linear problem:

μ�h 1� εII IIð Þoh� �ð Þ
� �

¼ maxω
0
II ð7:31Þ

s:t:
Xs
r¼1

ur μ�hyrh þ sþr
� � ¼ 1,

Xp
d¼1

w
0
d zdh � s�d
� ��Xs

r¼1
ur μ�hyrh þ sþr
� �þ ω

0
II ¼ 0,

Xp
d¼1

w
0
dzdj �

Xs
r¼1

uryrj þ ω
0
II � 0 8j 6¼ hð Þ, ur,w

0
d � 0 8r, d; and ω

0
II : free:

Denote optimal solution of ω
0
I in (7.31) as ω0�II . The output-oriented right-hand

SE of firm h in T
IIðIIÞ
VRS can be computed as

εII IIð Þ
oh� �ð Þ ¼ 1� ω

0�
II

μ�h
ð7:32Þ

Similarly, the output-oriented left-hand SE of firm hεIIðIIÞohþ (�) in T
IIðIIÞ
VRS can be

computed by running (7.31) with ‘min’ instead of ‘max’.

Note that unlike in Approach I, it is not possible in Approach II to decompose the

network technology SE into its sub-technology specific SEs. We, however, note

that Kao and Hwang (2011) develop an ad hoc approach to obtain network scale

efficiency as the product of the sub-technology specific scale efficiencies.

7.2.4 Modeling Efficiency Against Different
Efficiency Frontiers

Real-world firms suffer from profit loss due to allocative inefficiency arising from

sub-optimal decision concerning the production and consumption of intermediate

products connecting the sub-technologies. This profit loss has implications for
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revenue growth and cost control exercises. Production managers have every

incentive to choose right input- and output-mix; otherwise, the opportunity cost

of doing so is surprisingly high. Therefore, it is imperative to know the extent of

output loss of firms suffering from such allocative inefficiencies.

In order to compute the loss in final output, one needs to model the TE of a firm

against the three frontiers: the two network frontiers revealed from Approach I and

Approach II, and the black-box (BB) frontier that ignore intermediate products

connecting the sub-technologies. For this purpose, we specifically consider describ-

ing the network frontier under both approaches comprising of only inputs (x) and
final outputs (y).

Using the model (7.1) under Approach I, we first project all the firms onto the

network efficiency frontier. Let their projected input and final output vectors be

xj; yj

� �
where xj ¼ β�hxj � s� and yj ¼ yj þ sþ for all j ¼ 1, 2, . . ., n. We define

the frontier of network technology set (T
NðIÞ
VRS ), ∂T

NðIÞ
VRS , comprising of all of these

projected input and final output vector as

∂TN Ið Þ
VRS ¼ x

_
; y
_

� � Xn
j¼1

xjλj � x
_
,
Xn
j¼1

yjλj � y
_
,
Xn
j¼1

λj ¼ 1, λj � 0

�����
( )

ð7:33Þ

Similarly, the frontier of network technology set under the Approach II (T
NðIIÞ
VRS ),

∂TNðIIÞVRS , comprising of all the projected input and final output vectors exj;eyj� �
can be

set up as

∂TN IIð Þ
VRS ¼ x

^
; y
^

� � Xn
j¼1
exjλj � x

^
,
Xn
j¼1
eyjλj � y

^
,
Xn
j¼1

λj ¼ 1, λj � 0

�����
( )

ð7:34Þ

Here exj;eyj� �
¼ δ�j xj � s�, μ�j yj þ sþ
� �

for j ¼ 1, 2, . . ., n and δ�j and μ�j are

obtained from the model (7.8) and model (7.9) respectively.

We then define the BB-based technology set (T
BBÞ
VRS) comprising of all the

observed input and final output vectors as

T BB
VRS x; yð Þ ¼ x; yð Þ

Xn
j¼1

xjλj � x,
Xn
j¼1

yjλj � y,
Xn
j¼1

λj ¼ 1, λj � 0

�����
( )

ð7:35Þ

Now consider evaluating the output TE of firm h (TEoh) against ∂T
NðIÞ
VRS , ∂T

NðIIÞ
VRS

and TBBVRS whose actual input and final output vector is (xh,yh). The respective output-
oriented TEs can be obtained by setting up the following LP programs:

TE
N Ið Þ
oh

� ��1
¼ max θI : xh, θIyhð Þ∈∂TN Ið Þ

VRS

n o
ð7:36Þ
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TE
N IIð Þ
oh

� ��1
¼ max θII : xh, θIIyhð Þ∈∂TN IIð Þ

VRS

n o
ð7:37Þ

TE
BB
�

oh

� ��1
¼ max θBB : xh, θBByhð Þ∈T BB

VRS

	 
 ð7:38Þ

Since no allocative inefficiency is assumed in the construction of network

technology under Approach II, one could a priori expect, for any given level of

input, an output level in ∂TNðIIÞVRS that is no less than that in ∂TNðIÞVRS , which allows for

inefficiencies. One could, therefore, interpret (θ�II � θ�I )yh as the output loss due to
allocative inefficiency. Since the BB technology does not regard efficiencies

concerning the internal operations of firm, one could expect, with any given level

of input, the least output in this technology, i.e., θ�BByh � θ�I yh � θ�IIyh.

7.3 An Illustrative Example

Consider a simple hypothetical data set exhibited in Table 7.1. There are nine firms

labeled as A, B, C, D, E, F, G, H and I. Each firm in TI uses one input (x) to produce
an intermediate product (measure) (z), which is then taken as input to TII by the

same firm to produce one final output (y).

7.3.1 On TE Estimates

Based on Table 7.1, Fig. 7.2 exhibits the two independent sub-technology frontiers

in a counterclockwise orientation under the VRS specification. These frontiers are

drawn by keeping z unaltered. Figure 7.3 exhibits the BB frontier involving

observed x and y under an appropriate RTS specification (identified with lines:

A-D-H-C), and the network production frontiers revealed from both approaches

(model (7.1) under Approach I and models (7.8) and (7.9) under Approach II).

Table 7.1 Example data set Firms x z y

A 1.5 1 1

B 4 6 4

C 6 7 7

D 2 2.5 3

E 5 4 6

F 4 3.5 2

G 5.5 5 5

H 4.5 6 6

I 7 6.5 6.5

7 Decomposing Efficiency and Returns to Scale in Two-Stage Network Systems 155



Since the BB technology considers only the relation between inputs and final
outputs, and makes no assumptions regarding the internal operations of firm, it pro-

vides no insights regarding the locations of inefficiency and scale economies. For

example, firms – D and H that appear efficient in the BB technology turn out to be

Fig. 7.2 Independent sub-technologies (Approach II)

Fig. 7.3 Black-box technology vs. network technologies
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inefficient in the network technologies (identified with broken lines: A-F1-D1-B1-G1-

E1(H1)-I1-C under Approach I and A-D2-F2-E2-G2-B2(H2)-I2-C under Approach II).

Note that superscripts – 1 and 2 indicate, respectively, the projected points of the

corresponding inefficient firms in both approaches. Points such as E1, E2 and H1 are

the same projected point for firm E (under both approaches) and for H (under

Approach I). Similarly, points – B2 and H2 – are the same projected point for firms

– B and H under Approach II. As regards the RTS, D that appears exhibiting CRS in

the BB technology exhibits IRS (if projected in an input-oriented manner) in the

network technologies.

We report in Table 7.2 the TE decomposition results obtained from Approach I

(top part) and Approach II (bottom part), which will facilitate managerial insights

regarding specific area of improvement for the network inefficient firms. The

upshot of these results is summarized below.

1. Both approaches are in complete agreement in identifying the network efficient

firms. The examples of such firms are A, C and E.

2. As expected, IVRSh is greater than 1 for those firms (B, D, F, G, H and I) that are

technically inefficient in T
IIðIÞ
VRS . Technical inefficiency arises only when the

intermediate products consumed by these firms are not minimal implying that

there is an overproduction of these outputs in T
IðIÞ
VRS. The results of our model (7.1)

reveal that the optimal quantities of these products (ez�) are 2.8 (6), 2.2 (2.5), 1.6

(3.5), 3.4 (5), 4 (6) and 5.5 (6.5) for B, D, F, G, H and I respectively (the terms in

brackets are their respective actual quantities). This is why the estimated

sub-technology frontiers in Figs. 7.4 and 7.5 are different from those in Fig. 7.2.

Table 7.2 TE decomposition results

Firms TEh
N TEh

I TEh
II Ih

VRS

Approach I A 1 1 1 1

B 0.543 1 0.467 1.163

C 1 1 1 1

D 0.95 1 0.880 1.080

E 0.571 0.571 1 1

F 0.425 0.583 0.457 1.594

G 0.457 0.623 0.680 1.078

H 0.635 0.889 0.667 1.071

I 0.531 0.612 0.846 1.024

Approach II A 1 1 1 Not applicable

B 0.6 1 0.6

C 1 1 1

D 0.857 1 0.857

E 0.571 0.571 1

F 0.249 0.643 0.387

G 0.492 0.623 0.789

H 0.800 0.889 0.900

I 0.679 0.714 0.951
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3. The finding that the two approaches yield differential TE decomposition results

for network inefficient firms is not at all strange. As expected, the decision to

allow allocative inefficiency into the system in Approach I yields a frontier

different from the one yielded from Approach II with no allocative inefficiency.

Fig. 7.4 Estimated sub-technology frontier I (Approach I)

Fig. 7.5 Estimated sub-technology frontier II (Approach I)

158 B.K. Sahoo et al.



7.3.2 On Modeling the Output Losses

From our empirical application, one can observe that T
NðIIÞ
VRS 	 T

NðIÞ
VRS 	 TBBVRS. As a

result, one expect the following relationship: TE
NðIIÞ
oh � TE

NðIÞ
oh � TEBB

oh . Therefore,

modeling of the TE of a firm against three different frontiers yields valuable

information concerning whether the output loss is due to either missing of inter-

mediate products connecting the sub-technologies, or the allocative inefficiency

arising from any sub-optimal decision as to how much of intermediate products to

produce and consume in the world of changing prices.

Let us consider, e.g., the TE evaluation of firm B. If B’s output TE is evaluated

against ∂TBBVRS, the projection is made on the point B0 (4, 5.4) where TEBB
oB ¼ 0.741

(¼4/5.4). If it is evaluated against ∂TNðIÞVRS , the projection is made on the point

B00 (4, 6.563) where TENðIÞ
oB ¼ 0.610(¼4/6.563); and if it is against the ∂TNðIIÞVRS , then

the projection is made onto the point B2 (4, 6.667) where TE
NðIIÞ
B ¼ 0.600(¼4/6.667).

Since the potential output of 5.4 identified against ∂TBBVRS is the least as compared

to 6.563 and 6.667 against ∂TNðIÞVRS and ∂TNðIIÞVRS , respectively, TEBB
oB is highest. The

output loss of 1.163 (¼ 6.563 � 5.4) against ∂TNðIÞVRS (with allocative inefficiency) is

due to not accounting for the intermediate products connecting the sub-technologies

in TBBVRS. This loss is lower as compared to the output loss of 1.267 (¼ 6.667 � 5.4)

against ∂TNðIIÞVRS with no allocative inefficiency. Therefore, the output loss of 0.104

(¼ 6.667 � 6.563) can be purely attributed to the allocative inefficiency associated

with the possible sub-optimal decisions con-cerning the production and consumption

of intermediate products connecting the sub-technologies.

We now discuss in the immediately following section the sources of input-

oriented scale effects.

7.3.3 On SE Estimates

7.3.3.1 SE Estimates Using Approach I

Using Approach I we run both max and min forms of model (7.20) to compute the

input-oriented left- and right-hand SEs of firms not only for the network technology

but also for the sub-technologies (using formulas (7.21) and (7.22)). The SE results

are reported in Table 7.3 (top part). The results reveal that T
NðIÞ
VRS finds five firms – A,

B, D, F and G operating under IRS, two firms – E and H under CRS and two firms –

C and I under DRS. While the sources of increasing returns of firms in T
NðIÞ
VRS are all

located in both of the sub-technologies, the same is not the case for firms exhibiting

decreasing and/or constant returns. For example, T
NðIÞ
VRS exhibiting DRS for firm I is
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due to DRS in T
IIðIÞ
VRS even though CRS prevails in T

IðIÞ
VRS. Similarly, T

NðIÞ
VRS exhibiting

CRS for firms – E and H is precisely due to CRS in T
IIðIÞ
VRS even though IRS prevails

in T
IðIÞ
VRS.

7.3.3.2 SE Estimates Using Approach II

Using Approach II we run both max and min forms of the model (7.29), which is

based on the optimal input TE values of the model (7.8), to compute the input-

oriented left- and right-hand SEs of the firms in T
IðIIÞ
VRS . Similarly, we run both max

and min forms of the model (7.31), which is based on the optimal output TE values

of the model (7.9), to compute the output-oriented left- and right-hand SEs of the

firms in T
IIðIIÞ
VRS . However, under this approach, it is not possible to compute the input-

oriented network SEs of firms using (7.29) and (7.31). Therefore, in order to

compute the input-oriented left- and right-hand network SEs, we use firms’

projected input–output vectors, ex;eyð Þ ¼ δ�x� s�, μ�yþ sþð Þ obtained from (7.8)

and (7.9), in model (7.29). The input-oriented network SE estimates are reported in

Table 7.3 (bottom part). We find five firms – A, B, D, F and G operating under IRS,

two firms – E and H under CRS and the remaining two firms – C and I under DRS

(which call can be visualized in Fig. 7.3).

Table 7.3 Upper and lower bounds of SE estimates

Firms

Network Sub-technology I Sub-technology II

εN�(�) εNþ(�) RTS εI�(�) εIþ(�) RTS εII�(�) εIIþ(�) RTS

Approach I A 7.500 1 IRS 4.500 1 IRS 1.667 1 IRS

B 1.583 2.000 IRS 1.357 1.714 IRS 1.167 1.167 IRS

C 0 0.187 DRS 0 0.562 DRS 0 0.333 DRS

D 2.333 3.167 IRS 1.909 2.591 IRS 1.222 1.222 IRS

E 0.278 1.389 CRS 1.250 1.250 IRS 0.222 1.111 CRS

F 4.250 4.250 IRS 3.188 3.188 IRS 1.333 1.333 IRS

G 1.467 1.467 IRS 1.294 1.294 IRS 1.133 1.133 IRS

H 0.278 1.389 CRS 1.250 1.250 IRS 0.222 1.111 CRS

I 0.125 0.333 DRS 0.443 1.182 CRS 0.282 0.282 DRS

Approach II A 7.500 1 IRS 4.500 1 IRS 1.667 1 IRS

B 1.583 1.583 IRS 0.333 1.167 CRS 0.300 0.300 DRS

C 0 0.143 DRS 0 0.429 DRS 0 0.333 DRS

D 3.167 3.167 IRS 1.400 2.400 IRS 1.191 1.191 IRS

E 0.278 1.389 CRS 1.250 1.250 IRS 0.222 1.111 CRS

F 4.250 4.250 IRS 1.286 1.286 IRS 1.129 1.129 IRS

G 1.467 1.467 IRS 1.200 1.200 IRS 0.263 0.263 DRS

H 0.278 1.389 CRS 0.333 1.167 CRS 0.300 0.300 DRS

I 0.333 0.333 DRS 0.385 0.385 DRS 0.317 0.317 DRS
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Note that since it is not possible in this approach to decompose network SE into

its sub-technology specific SEs, the scale economies/diseconomies revealed from

sub-technologies [(7.29) and (7.31)] may not attribute to the network scale econ-

omy/diseconomy obtained from the use of projected data of network firms ex;eyð Þ in
(7.29). For example, consider firm B whose sub-technologies exhibit CRS and DRS

(CRS in T
IðIIÞ
VRS and DRS in T

IIðIIÞ
VRS ), but its network technology, T

NðIIÞ
VRS exhibits IRS.

It is therefore quite improbable to argue that the sources of increasing returns in

the network technology are due to CRS and DRS in the sub-technologies. Note that

the very purpose of computing the input-oriented network SE of firms under

Approach II is just to compare these SE estimates with those obtained under

Approach I.

Notice that though the network technologies revealed from both approaches look

similar (Fig. 7.3), and the (input-oriented) RTS possibilities of network firms are the

same; the degrees of underlying SE estimates of some network firms are different

due to differential nature (flatness/steepness) of some production facets. For

example, T
NðIÞ
VRS finds B exhibiting IRS whose value ranges from 1.583 to 2 since

its SE is estimated against the vertex point B1 connecting two facets – D1B1 and

B1G1. T
IðIIÞ
VRS also finds this firm operating under the same IRS but its SE value is

exact at 1.583 since it is estimated against a point on the facet D2F2. So are the cases

with firms – D and I.

On comparison between the two approaches with regard to the sources of scale

economies of firms, we find some divergent information on their RTS possibilities.

Though both approaches maintain input-orientation in TIVRS, they yield contrasting

RTS possibilities for some firms. For example, while T
IðIÞ
VRS finds both B and H

operating under IRS, and I under CRS, T
IðIIÞ
VRS finds B and H under CRS, and I under

DRS. These contrasting RTS information are because the estimated TIVRS revealed
from both approaches are different (see Figs. 7.2 (right) and 7.4). However, there

are contrasting information on the RTS possibilities in TIIVRS even though the

estimated sub-technology II frontiers are exactly the same in both approaches

(see Figs. 7.2 (left) and 7.5). This is simply due to the different orientations

maintained in TIIVRS for the measurement of efficiency and scale elasticity (i.e., the

input orientation in T
IIðIÞ
VRS and the output orientation in T

IIðIIÞ
VRS ). Note that the finding

that the estimated sub-technology frontiers in TIIVRS are the same in both approaches

is just a coincidence.

Finally, the finding that firms – E and H exhibit CRS in the network technology

and IRS and CRS in the sub-technology I and sub-technology II respectively

reminds one that the CRS assumption maintained in the neoclassical theory for

justifying the black-box structure of production technology does not necessarily

allow one to infer that there are no scale benefits available in the sub-technologies.

One can, therefore, argue that it is crucial for the firm’s ownership to locate the

sources of scale effects in their sub-technologies, which will enable the firm

management to improve productivity.
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However, the modeling of a firm technology by considering only the inputs

consumed and the final outputs produced often yields the imprecise estimates of

production function; and as a result, yields erroneous inferences concerning the

RTS behavior of firms (see, e.g., D and H in Fig. 7.3). This is because the black-box

characterization obscures important relations by ignoring the interdependencies

that exist between the sub-technologies.

7.4 Concluding Remarks

To reveal the sources of efficiency and scale economies, two approaches are

suggested, based on the premise as to whether the two-stage network technology

considered in each approach allows allocative inefficiency. The first approach is

developed by making use of a single network technology for the two interdependent

sub-technologies. This approach allows for allocative inefficiency that may arise

due to any sub-optimal decision as to how much of intermediate products to

produce and consume by the sub-technology managers in the world of changing

prices. In the second approach, however, the technology structure is determined by

assuming its sub-technologies to be independent, implying that there is no

allocative inefficiency.

Instances of real-life firms suffering from profit loss due to allocative ineffi-

ciency are not usually uncommon as they most often face uncertainty in forecasting

prices in their production decisions. Therefore, production managers are given

incentives to choose right output-mix and right input-mix in the world of changing

market prices in order to improve upon profit. And, even if managers are not held

responsible for the changing prices, management would still like to know the

opportunity cost of using the sub-optimal input and output mixes. Therefore, the

network production system is modeled by our two approaches to know the extent of

output loss of a firm suffering from allocative inefficiencies.

The current study is limited to the estimation of TE and SE only. The potential

future research subject could be the one where one could interpret a two-stage

network firm as a multi-product firm producing both intermediate products and final

outputs, and then, measure economies of scope by linking it with IVRSh , a proxy for

the indication of allocative inefficiency.
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Chapter 8

Evaluating Two-Stage Network Structures:

Bargaining Game Approach

Juan Du, Yao Chen, Wade D. Cook, Liang Liang, and Joe Zhu

Abstract This chapter presents a Nash bargaining game model to measure the

performance of two-stage decision making units (DMUs) in data envelopment

analysis (DEA). The two stages are viewed as players to bargain for a better payoff,

which is represented by DEA ratio efficiency score. The efficiency model is

developed as a cooperative game model. It is shown that when only one interme-

diate measure exists between the two stages, the newly-developed bargaining

approach yields the same results as applying the standard DEA approach to each

stage separately.

J. Du

School of Economics and Management, Tongji University, 1239 Siping Road,

Shanghai 200092, P.R. China

e-mail: dujuan@tongji.edu.cn

Y. Chen (*)

Manning School of Business, University of Massachusetts at Lowell, Lowell,

MA 01845, USA

e-mail: Yao_Chen@uml.edu

W.D. Cook

Schulich School of Business, York University, Toronto, ON M3J 1P3, Canada

e-mail: wcook@schulich.yorku.ca

L. Liang

School of Management, University of Science and Technology of China,

96 Jinzhai Road, Hefei, Anhui 230026, P.R. China

e-mail: lliang@ustc.edu.cn

J. Zhu

School of Business, Worcester Polytechnic Institute, Worcester, MA 01609, USA

e-mail: jzhu@wpi.edu

Part of this chapter is based upon J. Du, L. Liang, Y. Chen, W.D. Cook, and J. Zhu (2011),

“A bargaining game model for measuring performance of two-stage network structures”,

European Journal of Operational Research 210, 390–397, with permissions from Elsevier

Science.

W.D. Cook and J. Zhu (eds.), Data Envelopment Analysis,
International Series in Operations Research & Management Science 208,

DOI 10.1007/978-1-4899-8068-7_8, © Springer Science+Business Media New York 2014

165

mailto:dujuan@tongji.edu.cn
mailto:Yao_Chen@uml.edu
mailto:wcook@schulich.yorku.ca
mailto:lliang@ustc.edu.cn
mailto:jzhu@wpi.edu


Keywords Data envelopment analysis • Efficiency • Nash bargaining game

• Two-stage structure

8.1 Introduction

In order to address the potential conflict caused by the dual role of intermediate

measures, quite a number of scholars propose their own versions of solutions. For

example, Kao and Hwang (2008) combine the efficiency scores of the two stages in

a multiplicative (geometric) manner, while Chen et al. (2009) use a weighted

additive model. Liang et al. (2008) develop a number of DEA models using game

theory concept. Specifically, they develop a leader-follower model borrowed from

the notion of Stackelberg games, and a centralized or cooperative game model

where the combined stage is of interest.

This chapter presents the study of Du et al. (2011) which applies directly the

Nash bargaining game theory to the efficiency of DMUs that have the afore-

mentioned two-stage processes. The two stages are regarded as two individuals

bargaining with each other for a better payoff, which is characterized by the DEA

ratio efficiency of each individual stage. In general, the resulting bargaining game

model is highly non-linear, given the nature of ratio forms of DEA efficiency. This

chapter shows that this non-linear bargaining model can be converted equivalently

into a parametric linear programming problem with one parameter, whose lower

and upper bounds can be determined. As a result, a global optimal solution can be

found using a heuristic search on the single parameter.

In the bargaining model, the breakdown or status quo point is determined via the

standard DEA model. The bargaining efficiency scores of the two stages may depend

on the selection of the breakdown point. Thus in applications, a sensitivity analysis is

carried out to study the stability of the bargaining DEA efficiency scores with respect

to different status quo points. Also, it is shown that when only one intermediate

measure exists between the two stages, the Nash bargaining game model in this study

yields the same results as applying the standard DEA model to each stage separately.

8.2 Background

Consider a two-stage process shown in Fig. 8.1. Suppose there are n DMUs

and each DMUj ( j ¼ 1, 2, . . ., n) has m inputs to the first stage, denoted by

xij (i¼ 1, 2, .... , m), andD outputs from this stage, denoted by zdj ( d ¼ 1, 2,...., D).
TheseD outputs then become the inputs to the second stage, which are referred to as

intermediate measures. The s outputs from the second stage are denoted by

yrj ( r ¼ 1, 2, ...., s).
Based upon the constant returns to scale (CRS) model (Charnes et al. 1978), the

(CRS) efficiency scores for each DMUj ( j ¼ 1, 2, . . ., n) in the first and second

stages can be defined by e1j and e2j , respectively,
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e1j ¼

XD
d¼1

w1
d zdj

Xm
i¼1

vi xij

� 1 and e2j ¼

Xs
r¼1

ur yrj

XD
d¼1

w2
d zdj

� 1 ð8:1Þ

where vi, w
1
d, w

2
d and ur are unknown non-negative weights. These ratios are then

optimized in a linear fractional programming problem which can be converted into

a linear CRS DEA model (Charnes et al. 1978).

As noted both in Kao andHwang (2008) and in Liang et al. (2008), it is reasonable

to set w1
d equal to w2

d, since the “worth” or value assigned to the intermediate

measures should be the same regardless of whether they are viewed as outputs

from the first stage or inputs to the second stage. Then in this case, given the

individual efficiency scores e1j and e
2
j , it is reasonable to define the overall efficiency

of the entire two-stage process for DMUj ( j ¼ 1, . . ., n) as ej ¼ e1j � e2j since

ej ¼

Xs
r¼1

ur yrj

Xm
i¼1

vi xij

¼

XD
d¼1

wd zdj

Xm
i¼1

vi xij

�

Xs
r¼1

ur yrj

XD
d¼1

wd zdj

¼ e1j � e2j ð8:2Þ

The above overall efficiency definition ensures that ej � 1 from e1j � 1 and

e2j � 1, and the overall process is efficient if and only if e1j ¼ e2j ¼ 1.

Clearly, separate DEA analysis can be applied to each individual stage as in

Seiford and Zhu (1999). However, as pointed out by Liang et al. (2008), such an

approach could cause inherent conflict between these two separate analyses.

The efficiency-evaluation problem can be approached from two game theory

perspectives. One is to view the two-stage process as a non-cooperative game

model, in which one stage is assumed to be a leader and solved for its CRS

efficiency first, and the other stage a follower, whose efficiency is computed

without changing the leader’s efficiency score. The other approach is to regard

the process as a centralized model, where the overall efficiency given in (8.2) is

maximized, and a decomposition of the overall efficiency is obtained by finding a

set of multipliers producing the largest first (or second) stage efficiency score while

maintaining the overall efficiency score.

xij,i = 1,...,m zdj,d = 1,...,D yrj r = 1,...,s

Stage1 Stage2

DMU j, j = 1,...,nFig. 8.1 A two-stage

process

8 Evaluating Two-Stage Network Structures: Bargaining Game Approach 167



Note that in fact, the two stages can be regarded as two players in Nash

bargaining game. Therefore, the efficiency evaluation of two-stage processes can

be approached by using Nash bargaining game theory directly. But before that, we

first briefly introduce the Nash bargaining game approach.

Denote the set of two individuals participating in the bargaining by N ¼ {1, 2}, and

a payoff vector is an element of the payoff space R2, which is the 2-dimensional

Euclidean space. A feasible set S is a subset of the payoff space, and a breakdown or

status quo point b
!

is an element of the payoff space. A bargaining problem can then be

specified as the triple N, S, b
!� �

consisting of participating individuals, feasible set,

andbreakdownpoint.Nash (1950) requires that the feasible set be compact, convex, and

contain some payoff vector such that each individual’s payoff is at least as large as the

individual’s breakdown payoff. The solution is a functionF that is associatedwith each

bargaining problem N, S, b
!� �

, expressed as F N, S, b
!� �

. Nash (1950, 1953)

argue that a reasonable solution should satisfy the four properties: (i) Pareto efficiency

(PE), (ii) invariance with respect to affine transformation (IAT), (iii) independence of
irrelevant alternatives (IIA), and (iv) symmetry (SYM). Due to extensive discussion

about these properties in the literature, no detailed explanation will be provided here.

For the traditional bargaining problem, Nash (1950, 1953) has shown that there exists a

unique solution, called the Nash solution, which satisfies the above-mentioned four

properties, and can be obtained by solving the following maximization problem

Max
u
!∈S, u!�b

!

Y2
i¼1

ui � bið Þ ð8:3Þ

where u
!

is the payment vector for the individuals, and ui, bi is the ith element of

vector u
!
, b
!
, respectively.

8.3 Nash Bargaining Game Model for Two-Stage

Structures

In the current case, we view the two individual stages as two players in the

bargaining procedure, the efficiency ratios as the payoffs, and weights chosen for

efficiency scores as strategies. To proceed, one needs to find a breakdown point for

stages 1 and 2 which is the starting point for bargaining. Note that the breakdown

point or status quo represents possible payoff pairs obtained if one decides not to

bargain with the other player. As mentioned in Binmore et al. (1986), the choice of

the breakdown point is a matter of modeling judgment. A number of elements in the

underlying situation can be natural candidates for this role. For example, Lundberg

and Pollak (1993) use a non-cooperative equilibrium as the breakdown point in

their bargaining model. In application section, we will use different breakdown
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points, including the ones based upon the leader-follower (non-cooperative) model

of Liang et al. (2008), to perform sensitivity analysis to study the stability of our

bargaining DEA efficiency scores with respect to different breakdown points.

We here first construct the least ideal DMUand use its DEA efficiency scores as the

breakdown point. By doing that, we assume that if the two stages do not negotiate,

their efficiency scores will be the worst. Note that such a DMU may not

exist, however, its inputs and outputs are observed. Let xmax
i ¼ maxj xij

� �
,

ymin
r ¼ minj yrj

n o
, zmin

d ¼ minj zdj
� �

and zmax
d ¼ maxj zdj

� �
. Then (xmax

i , zmin
d )

(i ¼ 1,. . ., m, d ¼ 1, . . ., D) represents the least ideal DMU in the first stage,

which consumes the maximum amount of input values, while producing the least

amount of intermediate measures. Similarly, we denote ( zmax
d , ymin

r ) ( d ¼ 1, . . ., D,
r ¼ 1,. . ., s) the least ideal DMU in the second stage, which consumes the maximum

amount of intermediate measures while producing the least amount of output values.

The CRS efficiency for the above two least ideal DMUs is the worst among the

existing DMUs. We denote the (CRS) efficiency scores of the two least ideal DMUs

in the first and second stage as θ1min and θ2min, respectively, and use θ1min and θ2min as

the breakdown point. The (input-oriented) DEA bargaining model for a specific

DMUo with respect to (8.3) can be expressed as

Max

XD
d¼1

wd zdo

Xm
i¼1

vi xio

� θ1min

0
BBBB@

1
CCCCA �

Xs
r¼1

ur yro

XD
d¼1

wd zdo

� θ2min

0
BBBB@

1
CCCCA

s:t:

XD
d¼1

wd zdo

Xm
i¼1

vi xio

� θ1min

Xs
r¼1

ur yro

XD
d¼1

wd zdo

� θ2min

XD
d¼1

wd zdj

Xm
i¼1

vi xij

� 1, j ¼ 1, . . . , n

Xs
r¼1

ur yrj

XD
d¼1

wd zdj

� 1, j ¼ 1, . . . , n

vi, ur, wd > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:4Þ
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Denote all the constraints in model (8.4) by S, which represents the feasible set

for this bargaining problem. Then the bargaining problem here can be specified as

the triple ({1, 2} , S, {θ1min, θ
2
min}). Next we will prove that the feasible set S is both

compact and convex.

Lemma 1 The feasible set S is compact and convex.

Proof Since the feasible set S is bounded and closed in Euclidean space, then S is

compact. Next we will prove that S is also convex.

Suppose (v01, . . ., v
0
m, u

0
1, . . ., u

0
s, w

0
1, . . ., w

0
D) ∈ S and ( v001, . . ., v

00
m, u

00
1, . . ., u

00
s ,

w00
1, . . ., w

00
D) ∈ S. For any λ ∈ [0, 1] we have λ v0i + (1 � λ) v00i > 0, i¼ 1,. . ., m,

λ u0r + (1 � λ) u00r > 0, r ¼ 1, . . ., s and λ w0
d + (1 � λ) w00

d > 0, d ¼ 1, . . ., D.

Since
Xm
i¼1

vi xij > 0 and
XD
d¼1

wd zdj > 0 for all j ¼ 1, . . ., n, the constraints in S,

XD
d¼1

wd zdj

Xm
i¼1

vi xij

� 1 and

Xs
r¼1

ur yrj

XD
d¼1

wd zdj

� 1 are equivalent to
XD
d¼1

wd zdj �
Xm
i¼1

vi xij and

Xs
r¼1

ur yrj �
XD
d¼1

wd zdj, respectively, for all j ¼ 1, . . ., n, and the constraints

XD
d¼1

wd zdo

Xm
i¼1

vi xio

� θ1min and

Xs
r¼1

ur yro

XD
d¼1

wd zdo

� θ2min are equivalent to

XD
d¼1

wd zdo � θ1min

Xm
i¼1

vi xij and
Xs
r¼1

ur yrj � θ2min

XD
d¼1

wd zdo, respectively. Then we

have

XD
d¼1

λw0
d þ 1� λð Þ w00

d

� �
zdj ¼ λ

XD
d¼1

w0
d zdj þ 1� λð Þ

XD
d¼1

w00
d zdj

� λ
Xm
i¼1

v0i xij þ 1� λð Þ
Xm
i¼1

v00i xij

¼
Xm
i¼1

λ v0i þ 1� λð Þ v00i
� �

xij

and
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Xs
r¼1

λ u0r þ 1� λð Þ u00r
� �

yrj ¼ λ
Xs
r¼1

u0r yrj þ 1� λð Þ
Xs
r¼1

u00r yrj

� λ
XD
d¼1

w0
d zdj þ 1� λð Þ

XD
d¼1

w00
d zdj

¼
XD
d¼1

λ w0
d þ 1� λð Þ w00

d

� �
zdj

Similarly, we have
XD
d¼1

λw0
d þ 1� λð Þ w00

d

� �
zdo � θ1min

Xm
i¼1

λ v0i þ 1� λð Þ v00i
� �

xij and
Xs
r¼1

λ u0r þ 1� λð Þ u00r
� �

yrj � θ2min

XD
d¼1

λ w0
d þ 1� λð Þ w00

d

� �
zdo.

Therefore (λ v0i + (1 � λ) v00i , λ u0r + (1 � λ) u00r , λw
0
d + (1 � λ)w00

d) ∈ S, where
i ¼ 1, . . ., m, r ¼ 1, . . ., s, d ¼ 1, . . ., D, or equivalently, λ (v01, . . ., v

0
m, u

0
1, . . .,

u0s, w
0
1, . . ., w

0
D) + (1 � λ)(v001, . . ., v

00
m, u

00
1, . . ., u

00
s , . . ., w

00
1, . . ., w

00
D) ∈ S. Conse-

quently S is a convex set.

Q.E.D.

Let t1 ¼
Xm
i¼1

vi xio

 !�1

, t2 ¼
XD
d¼1

wd zdo

 !�1

, γi ¼ t1 vi, ωd ¼ t1 wd, μr1 ¼

t1 ur, μr2 ¼ t2 ur. Note that μr1 ¼ t1 ur and μr2 ¼ t2 ur imply a linear relationship of

μ r1 ¼ t1
t2
μ r2 between μr1 and μr2. Therefore, we denote t1

t2
by α ( > 0) and have

μr1 ¼ αμr2 for all r ¼ 1, . . ., s. Then model (8.4) is converted into model (8.5).

Max
Xs
r¼1

μ r1 yro � θ1min

Xs
r¼1

μ r2 yro � θ2min

XD
d¼1

ωd zdo þ θ1min � θ2min

s:t:
XD
d¼1

ωd zdo � θ1min

Xs
r¼1

μ r2 yro � θ2min

Xm
i¼1

γi xio ¼ 1

XD
d¼1

ωd zdo ¼ α

XD
d¼1

ωd zdj �
Xm
i¼1

γi xij � 0, j ¼ 1, . . . , n

Xs
r¼1

μ r1 yrj �
XD
d¼1

ωd zdj � 0, j ¼ 1, . . . , n

μ r1 ¼ αμ r2, r ¼ 1, . . . s

α > 0, γi, ωd, μ r1, μ r2 > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:5Þ
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Model (8.5) is equivalent to the following nonlinear model (8.6).

Max α�
Xs
r¼1

μ r2 yro � θ1min

Xs
r¼1

μ r2 yro � θ2min

XD
d¼1

ωd zdo þ θ1min � θ2min

s:t:
XD
d¼1

ωd zdo � θ1min

Xs
r¼1

μ r2 yro � θ2min

Xm
i¼1

γi xio ¼ 1

XD
d¼1

ωd zdo ¼ α

XD
d¼1

ωd zdj �
Xm
i¼1

γi xij � 0, j ¼ 1, . . . , n

α�
Xs
r¼1

μ r2 yrj �
XD
d¼1

ωd zdj � 0, j ¼ 1, . . . , n

α > 0, γi, ωd, μ r2 > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:6Þ

Note the constraints in model (8.6) that
Xm
i¼1

γi xio ¼ 1,
XD
d¼1

ωd zdo � θ1min,

XD
d¼1

ωd zdo ¼ α, and for any j ¼ 1, . . ., n,
XD
d¼1

ωd zdj �
Xm
i¼1

γi xij � 0. Then we

have θ1min � α ¼
XD
d¼1

ωd zdo �
Xm
i¼1

γi xio ¼ 1, which provides both upper and

lower bounds on α, and indicates that the optimal value of α represents the first-

stage efficiency score for each DMU.

Thus α can be treated as a parameter within [θ1min, 1]. As a result, model (8.6) can

be solved as a parametric linear program via searching over the possible α values

within [θ1min, 1]. In computation, we set the initial value for α as the upper bound

one, and solve the corresponding linear program. Then we begin to decrease α by a

very small positive number ε (¼0.0001 for example) for each step t, namely,

αt ¼ 1 � ε � t, t ¼ 1, 2, . . ., until the lower bound θ1min is reached, and solve

each linear program of model (8.6) corresponding to αt and denote the

corresponding optimal objective value by Ωt. Note that not all values taken by α
within [θ1min, 1] lead to feasible solutions to program (8.6). Let Ω* ¼ maxt Ωt and

denote the specific αt associated with Ω* as α*. Note that it is likely that Ω* is

associated with several α* values.

172 J. Du et al.



Then Ω* associated with α* is solution to model (8.6). Denote e1�o ¼

α� ¼
XD
d¼1

ω�
d zdo

 !
, e2�o ¼

Xs
r¼1

μ�r2 yro and e�o ¼ e1�o � e2�o as DMUo’s bargaining

efficiency scores for the first and second stages and the overall process,

respectively.

With respect to the four properties associated with a bargaining solution, we

have (i) Pareto efficiency (PE) indicates that for the bargaining efficiency scores,

there is no possibility to improve one stage’s individual efficiency score without

decreasing the other individual efficiency score; (ii) invariance with respect to

affine transformation (IAT) reveals that if both the feasible region of bargaining

model (8.6) and the breakdown point are subjected to an affine transformation on

the payoff space R2, then the bargaining efficiency scores satisfy the same affine

transformation; (iii) independence of irrelevant alternatives (IIA) shows that the

bargaining efficiency scores will not change when the feasible region of bargaining

model (8.6) is decreased but still includes the bargaining solution; and

(iv) symmetry (SYM) demonstrates that if S, b
*

� �
is symmetric, where S is the

feasible region of bargaining model (8.6) and b
*

is breakdown point, then the

bargaining efficiency scores of both individual stages are equal to each other.

8.4 Mathematical Relationship

We finally look at the relationship between the bargaining efficiency scores

obtained from model (8.6) and the standard CRS efficiency scores. Let θ1o and θ2o
represent the standard (CRS) efficiency scores for the first and second stages,

respectively. It will be shown that when there is only one intermediate measure

linking the two stages, e1�o ¼ θ1o and e2�o ¼ θ2o.

Theorem 1 For any specificDMUo,Ωo � (θ1o � θ1min) � (θ2o � θ2min), whereΩo is
the (maximum) optimal value to model (8.6) (or model (8.4)).

Proof θ1o and θ
2
o can be obtained by solving the following two regular DEA models

(8.7) and (8.8), respectively.

θ1o ¼ Max

XD
d¼1

ŵ 1
d zdo

Xm
i¼1

v̂ i xio

s:t:

XD
d¼1

ŵ 1
d zdj

Xm
i¼1

v̂ i xij

� 1, j ¼ 1, . . . , n

v̂ i, ŵ
1
d > 0, i ¼ 1, . . . ,m, d ¼ 1, . . . ,D

ð8:7Þ
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θ2o ¼ Max

Xs
r¼1

û r yro

XD
d¼1

ŵ 2
d zdo

s:t:

Xs
r¼1

û r yrj

XD
d¼1

ŵ 2
d zdj

� 1, j ¼ 1, . . . , n

û r, ŵ
2
d > 0, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:8Þ

Let v�i , w
�
d and u�r be an optimal solution to the bargaining model (8.4). By

comparing the constraints in models (8.4), (8.7) and (8.8), we note that the feasible

regions of model (8.7) and (8.8) both contain the feasible region of model (8.4).

Thus, v�i and w�
d are a feasible solution to model (8.7), and w�

d and u�r are a feasible

solution to model (8.8). Therefore, we have

XD
d¼1

w�
d zdo

Xm
i¼1

v�i xio

� θ1o and

Xs
r¼1

u�r yro

XD
d¼1

w�
d zdo

� θ2o,

and furthermore Ωo � (θ1o � θ1min) � (θ2o � θ2min).

Q.E.D.

Based upon Theorem 1, under the special case of one intermediate measure, we

have

Theorem 2 If there is only one intermediate measure, then Ωo ¼
(θ1o � θ1min) � (θ2o � θ2min).

Proof Under the situation of one intermediate measure where D ¼ 1, let v̂ �
i and

ŵ 1�
1 be an optimal solution to model (8.7), and û �

r and ŵ
2�
1 be an optimal solution to

model (8.8), then we have θ1o ¼ ŵ 1�
1
z1oXm

i¼1

v̂ �
i xio

, θ2o ¼

Xs
r¼1

û �
r yro

ŵ 2�
1
z1o

, and
ŵ 1�

1

ŵ 2�
1

� 	
û �
r and ŵ

1�
1

can be another optimal solution to model (8.8). By the definition of θ1min and θ2min,

we know that θ1o � θ1min, and θ
2
o � θ2min. Therefore v̂

�
i , ŵ

1�
1 and

ŵ 1�
1

ŵ 2�
1

� 	
û �
r satisfy all

the constraints in our bargaining game model (8.4), indicating that v̂ �
i , ŵ

1�
1 and

ŵ 1�
1

ŵ 2�
1

� 	
û �
r are a feasible solution to model (8.4). Thus, we have

Ωo � ( θ1o � θ1min) � (θ2o � θ2min).

From Theorem 1, we have Ωo � (θ1o � θ1min) � (θ2o � θ2min). Therefore,

Ωo ¼ (θ1o � θ1min) � (θ2o � θ2min).

Q.E.D.
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Since the regular (CRS) efficiency scores for the first stage θ1o and for the second
stage θ2o are the maximum achievable efficiency scores for individual stages, based

upon Theorems 1 and 2, we have

Theorem 3 If there is only one intermediate measure, then e1�o ¼ θ1o and e2�o ¼ θ2o,
where e1�o and e2�o represent the bargaining efficiency scores to the first and second
stage of any specific DMUo obtained via model (8.6), respectively.

Proof In the case of one intermediate measure whereD ¼ 1, let v�i , w
�
1 and u

�
r be an

optimal solution to the bargaining model (8.4), and then e1�o ¼ w�
1
z1oXm

i¼1

v�i xio

� θ1min

and e2�o ¼

Xs
r¼1

u�r yro

w�
1
z1o

� θ2min. From the proof of Theorem 1, we have e1�o � θ1o and

e2�o � θ2o, and based on Theorem 2, we have (e1�o � θ1min) � (e2�o � θ2min) ¼ Ωo

¼(θ1o � θ1min) � (θ2o � θ2min). Therefore e
1�
o ¼ θ1o and e2�o ¼ θ2o must be true.

Q.E.D.

Theorem 3 also indicates that a unique pair of (bargaining) efficiency scores for

both stages are obtained for each DMU, which is (θ1o, θ2o), regardless the choice of
breakdown point. i.e., with one intermediate measure, model (8.4) is independent of

the breakdown point. However, such independence can no longer hold when

multiple intermediate measures are considered, which will be discussed later.

Liang et al. (2008) prove the same conclusion with respect to their leader-follower

and centralized models. We note, however, that Liang et al. (2008) models are

fundamentally different from this bargaining model. To further explain, we present

the centralized model in Liang et al. (2008) as follows.

ecentralizedo ¼ Max
Xs
r¼1

μryro

s:t:
Xs
r¼1

μryrj �
XD
d¼1

ωdzdj � 0, j ¼ 1, . . . , n

XD
d¼1

ωdzdj �
Xm
i¼1

γixij � 0, j ¼ 1, . . . , n

Xm
i¼1

γixio ¼ 1

μr, γi,ωd � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m, d ¼ 1, . . . ,D

ð8:9Þ

It can be seen that the Nash bargaining game model reduces to the centralized

model of Liang et al. (2008) when the breakdown point is set equal to (0, 0). Or,

when their centralized efficiency scores are used as breakdown points, the Nash

bargaining game model cannot improve the breakdown point, namely, the central-

ized model of Liang et al. (2008) provides a set of “best” overall bargaining

efficiency scores. However, this does not necessary imply that the results from

the centralized model should be used. The centralized model solution may not be
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acceptable to the two stages, or ideal with respect to improving the two stages’

operations. The bargaining model is not about finding the best overall efficiency

score, or the best solution, but rather is about finding the best achievable efficiency

through negotiation. A breakdown point (0, 0) only leads to the best overall effi-

ciency score, but not necessarily the best achievable efficiency for Stage 1 or 2.

A breakdown point of (0, 0) simply implies that the two stages will get an efficiency

score of zero if they do not negotiate. This may further imply that (0, 0) is not a

good candidate for a breakdown point in bargaining model.

8.5 Output-Oriented Bargaining Model

The above DEA bargaining model (8.4) is input-oriented. If an output-orientation is

taken into account, the bargaining model becomes

Max

Xm
i¼1

vi xio

XD
d¼1

wd zdo

� h1min

0
BBBB@

1
CCCCA �

XD
d¼1

wd zdo

Xs
r¼1

ur yro

� h2min

0
BBBB@

1
CCCCA

s:t:

Xm
i¼1

vi xio

XD
d¼1

wd zdo

� h1min

XD
d¼1

wd zdo

Xs
r¼1

ur yro

� h2min

Xm
i¼1

vi xij

XD
d¼1

wd zdj

� 1, j ¼ 1, . . . , n

XD
d¼1

wd zdj

Xs
r¼1

ur yrj

� 1, j ¼ 1, . . . , n

vi, ur, wd > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:10Þ
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where h1min and h2min represent the output-oriented CRS efficiency scores of the two

least ideal DMUs for the first and second stage, respectively. Since h1min ¼ 1
θ1min

and

h2min ¼ 1
θ2min

, model (8.4) and (8.10) are structurally the same except for the different

objective functions.

Let t1 ¼
XD
d¼1

wd zdo

 !�1

, t2 ¼
Xs
r¼1

ur yro

 !�1

, γi1 ¼ t1 vi, γi2 ¼ t2 vi, ωd ¼

t2 wd, μ r ¼ t2 ur. Note that γi1 ¼ t1 vi and γi2 ¼ t2 vi imply a linear relationship of

γ i2 ¼ t2
t1
γ i1 between γi1 and γi2. Therefore, we denote t2

t1
by β (> 0) and have

γ i2 ¼ β γ i1 for all i ¼ 1, . . ., m. Then model (8.10) can be equivalently converted

into model (8.11) with parameter β.

Max β
Xm
i¼1

γ i1 xio � h2min

Xm
i¼1

γi1 xio � h1min

XD
d¼1

ωd zdo þ h1min � h2min

s:t:
XD
d¼1

ωd zdo � h2min

Xm
i¼1

γi1 xio � h1min

Xs
r¼1

μr yro ¼ 1

XD
d¼1

ωd zdo ¼ β

XD
d¼1

ωd zdj �
Xs
r¼1

μr yrj � 0, j ¼ 1, . . . , n

β
Xm
i¼1

γi1 xij �
XD
d¼1

ωd zdj � 0, j ¼ 1, . . . , n

β > 0, γi1, γi2, ω d, μ r > 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, d ¼ 1, . . . ,D

ð8:11Þ

We haveh2min � β ¼
XD
d¼1

ωd zdo �
Xs
r¼1

μr yro ¼ 1, which provides both upper and

lower bounds on β, and indicates that the optimal value of β represents the second-

stage efficiency score for each DMU. Therefore model (8.11) can be solved as a

parametric linear program via searching over the possible β values within [1, h2min].

We should point out that the DEA bargaining model presented in this chapter is

not suitable for situations when one stage is input-oriented and the other is output-

oriented. It is because the resulting bargaining model cannot be transformed into a

parametric linear program like model (8.6) or (8.11).
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8.6 Applications

The Nash bargaining game approach is applied to two real world data sets. The first

one consists of 30 top US commercial banks with two intermediate measures, which

was used in Seiford and Zhu (1999) first, and then in Liang et al. (2008). The second

data set, which was previously studied both in Kao and Hwang (2008) and in Chen

et al. (2009), also has two intermediate measures and consists of 24 Taiwanese

non-life insurance companies.

8.6.1 Top US Commercial Banks

The data set consisting of 30 top US commercial banks is presented in Table 8.1.

The inputs to the first stage are number of employees, assets ($ million) and equity

($ million). The intermediate measures connecting two stages are revenue ($ mil-

lion) and profit ($ million). The outputs from the second stage are market value

($ million), earning per share ($) and returns to the investors (%). See Seiford and

Zhu (1999) for discussion on the above measures.

The CRS efficiency scores for the least ideal DMUs in the first and second stages

are calculated as θ1min ¼ 0.0775 and θ2min ¼ 0.0515, respectively. We next begin

with the initial value for α in model (8.6) as one, then decrease α by a small

positive number ε ¼ 0.0001 for each step t, namely, αt ¼ 1 � 0.0001 � t, t ¼ 1,2,

. . ., until the lower bound θ1min ¼ 0.0775 is reached. Solving the linear program of

model (8.6) for each step t corresponding to αt, we obtain a best heuristic search

solution to the bargaining efficiency scores of both individual stages and the overall

process, which are reported in columns 2 through 4 in Table 8.2. Column 5 shows

the corresponding value of the parameter α when the best heuristic search solution

is obtained. In this case, the value for α associated with the optimal solution is

unique for each DMU, indicating we have a unique pair of efficiency scores for both

individual stages.

For comparison, columns 6 through 8 display the corresponding results from

Liang et al. (2008) via the centralized model, which, as indicated above, could be

viewed as a special case of Nash bargaining model with breakdown point (0, 0).

Note that the efficiency scores of both individual stages and the overall process,

obtained through the bargaining game approach, are almost the same with those

obtained from Liang et al. (2008)’s centralized model, except for DMU 10. This

indicates that bargaining results are very similar to those obtained from the cen-

tralized model for this particular data set.

The centralized scores obtained from Liang et al. (2008) represent efficiency

pairs under the cooperative game structure that lead to the best overall efficiency

scores. Thus, if the centralized efficiency scores are used as breakdown point,

model (8.6) cannot further improve the bargaining efficiency scores for the two

stages and model (8.6) must yield scores identical to the centralized scores.
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In this case, we assume that such a payoff pair or breakdown point is acceptable to

the two stages if they do not bargain. Also, any breakdown point other than the

centralized efficiency scores will yield a smaller efficiency score for the overall

process.

The choice of the breakdown point cannot be arbitrary. For example, it is likely

that model (8.4) is infeasible if we use the minimum CRS efficiency score for each

stage as the breakdown point. Also, if both breakdown points are greater than the

corresponding centralized efficiency scores, model (8.4) will become infeasible.

This infeasibility is mainly caused by the fact that some breakdown points will

violate the constraints for individual efficiency scores in model (8.4).

Table 8.2 Results for US commercial banks with breakdown point {θ1min, θ2min}

Bank

Bargaining efficiency scores

α

Centralized

e1�o e2�o e1�o � e2�o e1;Centralizedo e2;Centralizedo eCentralizedo

1 1.0000 0.4487 0.4487 1.0000 1.0000 0.4487 0.4487

2 0.6821 0.5327 0.3634 0.6821 0.6821 0.5327 0.3634

3 0.7946 0.5305 0.4215 0.7946 0.7946 0.5305 0.4216

4 0.8463 0.5050 0.4274 0.8463 0.8463 0.5050 0.4274

5 1.0000 0.6061 0.6061 1.0000 1.0000 0.6061 0.6061

6 0.8179 0.5111 0.4180 0.8179 0.8180 0.5110 0.4180

7 0.7816 0.5042 0.3941 0.7816 0.7816 0.5042 0.3940

8 0.7451 0.6371 0.4747 0.7451 0.7451 0.6371 0.4747

9 0.7021 0.6389 0.4486 0.7021 0.7021 0.6389 0.4486

10 0.5868 0.5735 0.3365 0.5868 0.4884 0.6946 0.3393

11 0.6619 0.6281 0.4157 0.6619 0.6619 0.6282 0.4158

12 0.6906 0.6576 0.4541 0.6906 0.6906 0.6576 0.4541

13 0.5843 0.7640 0.4464 0.5843 0.5843 0.7641 0.4464

14 0.7131 0.5852 0.4173 0.7131 0.7131 0.5852 0.4173

15 0.8469 0.7582 0.6421 0.8469 0.8469 0.7582 0.6421

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 0.7144 0.7144 1.0000 1.0000 0.7144 0.7144

18 0.7974 1.0000 0.7974 0.7974 0.7974 1.0000 0.7974

19 0.7477 0.7811 0.5840 0.7477 0.7478 0.7811 0.5841

20 0.7541 0.7844 0.5915 0.7541 0.7542 0.7844 0.5916

21 0.6550 0.8660 0.5672 0.6550 0.6550 0.8661 0.5673

22 0.6491 0.8005 0.5196 0.6491 0.6491 0.8005 0.5196

23 0.6280 0.6330 0.3975 0.6280 0.6280 0.6330 0.3975

24 0.8711 0.9478 0.8256 0.8711 0.8711 0.9478 0.8257

25 0.7403 1.0000 0.7403 0.7403 0.7403 1.0000 0.7403

26 0.6344 0.8363 0.5305 0.6344 0.6345 0.8363 0.5306

27 0.6549 1.0000 0.6549 0.6549 0.6549 1.0000 0.6549

28 0.7735 0.8012 0.6197 0.7735 0.7736 0.8011 0.6198

29 0.8092 1.0000 0.8092 0.8092 0.8093 1.0000 0.8093

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: The optimal value of parameter α represents the first-stage bargaining efficiency score for

the corresponding DMU
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Recall that Liang et al. (2008) also develop a non-cooperative leader-follower

model where one of the two stages is treated as the leader and is given pre-emptive

priority to maximize its efficiency. That is, for example, when the first stage is

treated as the leader, the efficiency score for the first stage is calculated CRS score,

θ1o, because this θ1o is the best efficiency score DMUo can achieve. Then the

efficiency score for the second stage, e2o, is maximized given that the first stage’s

efficiency is fixed at θ1o.

Then the breakdown point of (min
j

θ1j

n o
¼ 0:6345, min

j
e2j

n o
¼ 0:3094) based

upon the leader-follower model of Liang et al. (2008) will ensure that model (8.4) is

feasible. Here, 0.6345 is the smallest (CRS) efficiency score for the first stage, and

0.3094 is the smallest leader-follower score for the second stage.

Similarly, based upon the case when the second stage is treated as the leader,

another breakdown point of (min
j

e1j

n o
¼ 0:3056, min

j
θ2j

n o
¼ 0:4859 ) can be

obtained.

Table 8.3 reports in columns 2 through 4 the bargaining efficiency scores

for both individual stages and the overall process corresponding to breakdown

point (min
j

θ1j

n o
¼ 0:6345, min

j
e2j

n o
¼ 0:3094); columns 5 through 7 report the

results corresponding to (min
j

e1j

n o
¼ 0:3056, min

j
θ2j

n o
¼ 0:4859).

We note that for DMUs 5, 8, 9, 16, 17, 18, 20, 21, 24, 25, 26, 29, 30, their

bargaining efficiency scores remain the same under the three different breakdown

points, which also are the centralized efficiency scores. Also bargaining efficiency

scores for DMU 26 under the breakdown point (min
j

θ1j

n o
¼ 0:6345, min

j
e2j

n o
¼ 0:3094), and scores for DMU 1 under the breakdown point (min

j
e1j

n o
¼ 0:3056,

min
j

θ2j

n o
¼ 0:4859) are equal to their respective leader-follower (noncooperative)

efficiency results. This indicates that under the bargaining model, DMU26 achieves

its CRS efficiency score for the first stage, and DMU1 achieves its CRS efficiency

score for the second stage.

Model (8.11) is also applied to the banking industry in Table 8.1. h1min and h2min

are calculated as h1min ¼ 1
θ1min

¼ 12:9032 and h2min ¼ 1
θ2min

¼ 19:4175. Table 8.4 reports

the results from (8.11). To make it comparable with the input-oriented bargaining

results, we list the reciprocal of each output-oriented efficiency score, and the input-

oriented results are listed in columns 2–4.

Seven DMUs, namely, DMUs 4, 10, 12, 13, 14, 22, and 23, have different

efficiency decompositions under input- and output-orientations. This indicates

that output-orientation can lead to different bargaining efficiency results from the

input-oriented ones.
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8.6.2 Taiwanese Non-life Insurance Companies

Kao and Hwang (2008) describe a two-stage process where 24 non-life insurance

companies use operational and insurance expenses to generate premiums in the first

stage, and then underwriting and investment profits in the second stage. The inputs

to the first stage are operational expenses and insurance expenses, and the outputs

Table 8.3 Bargaining efficiency scores with breakdown points based upon the leader-follower

model of Liang et al. (2008)

Bank

Breakdown point {0.6345, 0.3094} Breakdown point {0.3056, 0.4859}

e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o
1 1.0000 0.4487 0.4487 0.8381 0.4859 0.4072

2 0.6823 0.5324 0.3633 0.6793 0.5331 0.3621

3 0.7946 0.5305 0.4215 0.6858 0.5669 0.3888

4 0.8721 0.4882 0.4258 0.8171 0.5221 0.4266

5 1.0000 0.6061 0.6061 1.0000 0.6061 0.6061

6 0.8180 0.5110 0.4180 0.6898 0.5881 0.4057

7 0.7842 0.5021 0.3937 0.6624 0.5546 0.3674

8 0.7451 0.6371 0.4747 0.7451 0.6371 0.4747

9 0.7022 0.6388 0.4486 0.7021 0.6389 0.4486

10 0.8110 0.4058 0.3291 0.4884 0.6946 0.3392

11 0.7413 0.5164 0.3828 0.5659 0.6955 0.3936

12 0.7089 0.6344 0.4497 0.6684 0.6756 0.4516

13 0.6809 0.6098 0.4152 0.5702 0.7807 0.4452

14 0.7139 0.5843 0.4171 0.6831 0.5938 0.4056

15 0.8478 0.7565 0.6414 0.8469 0.7582 0.6421

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 0.7144 0.7144 1.0000 0.7144 0.7144

18 0.7974 1.0000 0.7974 0.7974 1.0000 0.7974

19 0.7484 0.7795 0.5834 0.7477 0.7811 0.5840

20 0.7541 0.7844 0.5915 0.7541 0.7844 0.5915

21 0.6550 0.8661 0.5673 0.6550 0.8661 0.5673

22 0.6732 0.7673 0.5165 0.6489 0.8007 0.5196

23 0.6429 0.6130 0.3941 0.6115 0.6479 0.3962

24 0.8711 0.9478 0.8256 0.8711 0.9478 0.8256

25 0.7403 1.0000 0.7403 0.7403 1.0000 0.7403

26 0.6345 0.8363 0.5306 0.6344 0.8363 0.5305

27 0.6573 0.9787 0.6433 0.6549 1.0000 0.6549

28 0.7736 0.8010 0.6197 0.7735 0.8012 0.6197

29 0.8092 1.0000 0.8092 0.8092 1.0000 0.8092

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: The optimal value of parameter α represents the first-stage bargaining efficiency score (e1�o )

for the corresponding DMU, and therefore we do not report α values in this table
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from the second stage are underwriting profit and investment profit. Direct written

premiums and reinsurance premiums act as the intermediate measures connecting

the two stages.

Table 8.5 shows the original data, and Table 8.6 reports the efficiency results

obtained from both noncooperative (leader-follower) model and centralized model

developed by Liang et al. (2008).

The same three breakdown points are considered in the bargaining game

approach as in the previous bank application. First of all, from models (8.7) and

(8.8), we get the CRS efficiency scores for stage 1’s and stage 2’s least ideal DMU

as θ1min ¼ 0.001725 and θ1min ¼ 0.001058, respectively. Also the smallest leader-

follower efficiency scores when either stage acts as the leader are calculated

Table 8.4 Output-oriented bargaining results for US commercial banks

Bank

Input-oriented Output-oriented

e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o
1 1.0000 0.4487 0.4487 1.0000 0.4487 0.4487

2 0.6821 0.5327 0.3634 0.6821 0.5327 0.3634

3 0.7946 0.5305 0.4215 0.7946 0.5305 0.4216

4 0.8463 0.5050 0.4274 0.8172 0.5216 0.4262

5 1.0000 0.6061 0.6061 1.0000 0.6061 0.6061

6 0.8179 0.5111 0.4180 0.8180 0.5110 0.4180

7 0.7816 0.5042 0.3941 0.7816 0.5042 0.3940

8 0.7451 0.6371 0.4747 0.7451 0.6371 0.4747

9 0.7021 0.6389 0.4486 0.7022 0.6387 0.4485

10 0.5868 0.5735 0.3365 0.6909 0.4828 0.3336

11 0.6619 0.6281 0.4157 0.6619 0.6282 0.4158

12 0.6906 0.6576 0.4541 0.6996 0.6482 0.4535

13 0.5843 0.7640 0.4464 0.6617 0.6369 0.4214

14 0.7131 0.5852 0.4173 0.7139 0.5843 0.4172

15 0.8469 0.7582 0.6421 0.8469 0.7582 0.6421

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 1.0000 0.7144 0.7144 1.0000 0.7144 0.7144

18 0.7974 1.0000 0.7974 0.7974 1.0000 0.7974

19 0.7477 0.7811 0.5840 0.7477 0.7810 0.5840

20 0.7541 0.7844 0.5915 0.7542 0.7844 0.5916

21 0.6550 0.8660 0.5672 0.6550 0.8661 0.5673

22 0.6491 0.8005 0.5196 0.6732 0.7673 0.5166

23 0.6280 0.6330 0.3975 0.6430 0.6130 0.3941

24 0.8711 0.9478 0.8256 0.8711 0.9478 0.8257

25 0.7403 1.0000 0.7403 0.7403 1.0000 0.7403

26 0.6344 0.8363 0.5305 0.6345 0.8363 0.5306

27 0.6549 1.0000 0.6549 0.6549 1.0000 0.6549

28 0.7735 0.8012 0.6197 0.7736 0.8011 0.6198

29 0.8092 1.0000 0.8092 0.8093 1.0000 0.8093

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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according to the results from Table 8.6, which are (min
j

θ1j

n o
¼ 0:5895, min

j
e2j

n o
¼ 0:0870) and (min

j
e1j

n o
¼ 0:2507, min

j
θ2j

n o
¼ 0:2795).

Table 8.7 reports the bargaining results for both individual stages and the overall

process associated with breakdown point {θ1min, θ2min}, (min
j

θ1j

n o
¼ 0:5895, min

j

e2j

n o
¼ 0:0870 ) and ðmin

j
e1j

n o
¼ 0:2507, min

j
θ2j

n o
¼ 0:2795Þ in columns

2 through 4, columns 5 through 7, and columns 8 through 10, respectively.

Table 8.5 Taiwanese non-life insurance company data

Company

Operation

expenses

Insurance

expenses

Direct

written

premiums

Reinsurance

premiums

Underwriting

profit

Investment

profit

1. Taiwan Fire 1,178,744 673,512 7,451,757 856,735 984,143 681,687

2. Chung Kuo 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754

3. Tai Ping 1,177,494 592,790 4,776,548 560,244 293,613 658,428

4. China

Mariners

601,320 594,259 3,174,851 371,863 248,709 177,331

5. Fubon 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,925,272

6. Zurich 2,627,707 668,363 9,747,908 952,326 1,713,598 415,058

7. Taian 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039

8. Ming Tai 3,789,001 1,873,530 17,267,266 1,134,600 3,899,530 622,868

9. Central 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098

10. The First 1,303,249 1,298,470 8,210,389 504,528 1,697,941 554,806

11. Kuo Hua 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259

12. Union 2,592,790 650,952 9,434,406 1,118,489 1,574,191 909,295

13. Shingkong 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047

14. South China 1,396,002 988,888 7,396,396 465,509 1,401,200 332,283

15. Cathay

Century

2,184,944 651,063 10,422,297 749,893 3,355,197 555,482

16. Allianz

President

1,211,716 415,071 5,606,013 402,881 854,054 197,947

17. Newa 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984

18. AIU 757,515 547,997 3,631,484 995,620 692,731 163,927

19. North

America

159,422 182,338 1,141,950 483,291 519,121 46,857

20. Federal 145,442 53,518 316,829 131,920 355,624 26,537

21. Royal &

Sunalliance

84,171 26,224 225,888 40,542 51,950 6,491

22. Asia 15,993 10,502 52,063 14,574 82,141 4,181

23. AXA 54,693 28,408 245,910 49,864 0.1 18,980

24. Mitsui

Sumitomo

163,297 235,094 476,419 644,816 142,370 16,976
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Note that as with the previous bank data, in this application, the value for

parameter α associated with the optimal solution is unique for each DMU through-

out the entire searching range, which also leads to a unique pair of efficiency scores

for both individual stages.

It can be seen from Table 8.7 that with breakdown point {θ1min, θ2min}, the

bargaining efficiency results are exactly the same as those obtained from Liang

et al. (2008)’s centralized model. Also from Table 8.7, note that for some DMUs,

such as DMUs 1, 2, 3, 4, 5, 6, 10, 12, 15, 22, 23, their respective bargaining

efficiency results remain unchanged under all three breakdown points, while for

the rest DMUs, such as DMUs 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20, 21, 24, their

respective bargaining efficiency scores are varied according to different break-

down points.

Table 8.6 Efficiency results for Taiwanese non-life insurance companies

DMU

Stage 1 as the leader Stage 2 as the leader Centralized

θ1j e2j θ1j � e2j e1j θ2j e1j � θ2j e1;Centralizedj e2;Centralizedj eCentralizedj

1 0.9926 0.7045 0.6993 0.9260 0.7134 0.6606 0.9926 0.7045 0.6993

2 0.9985 0.6257 0.6248 0.9908 0.6275 0.6217 0.9985 0.6257 0.6248

3 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900

4 0.7243 0.4200 0.3042 0.4981 0.4323 0.2153 0.7243 0.4200 0.3042

5 0.8375 0.8060 0.6750 0.7376 1.0000 0.7376 0.8306 0.9234 0.7670

6 0.9637 0.4010 0.3864 0.9606 0.4057 0.3897 0.9606 0.4057 0.3897

7 0.7521 0.3522 0.2649 0.3000 0.5378 0.1613 0.6706 0.4124 0.2766

8 0.7256 0.3780 0.2743 0.3898 0.5114 0.1993 0.6631 0.4150 0.2752

9 1.0000 0.2233 0.2233 0.4388 0.2920 0.1281 1.0000 0.2233 0.2233

10 0.8615 0.5409 0.4660 0.2587 0.6736 0.1743 0.8615 0.5409 0.4660

11 0.7405 0.1677 0.1242 0.4718 0.3267 0.1541 0.6468 0.2534 0.1639

12 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596

13 0.8107 0.2431 0.1970 0.3384 0.5435 0.1839 0.6719 0.3093 0.2078

14 0.7246 0.3740 0.2710 0.3097 0.5178 0.1604 0.6699 0.4309 0.2887

15 1.0000 0.6138 0.6138 0.7102 0.7047 0.5005 1.0000 0.6138 0.6138

16 0.9072 0.3356 0.3045 0.5980 0.3848 0.2301 0.8856 0.3615 0.3201

17 0.7233 0.4557 0.3296 0.2507 1.0000 0.2507 0.6276 0.5736 0.3600

18 0.7935 0.3262 0.2588 0.6549 0.3737 0.2447 0.7935 0.3262 0.2588

19 1.0000 0.4112 0.4112 0.9787 0.4158 0.4069 1.0000 0.4112 0.4112

20 0.9332 0.5857 0.5466 0.4073 0.9014 0.3671 0.9332 0.5857 0.5466

21 0.7505 0.2623 0.1969 0.6918 0.2795 0.1934 0.7321 0.2743 0.2008

22 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895

23 0.8501 0.4509 0.3833 0.6812 0.5599 0.3814 0.8425 0.4989 0.4203

24 1.0000 0.0870 0.0870 0.3987 0.3351 0.1336 0.4287 0.3145 0.1348
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8.7 Conclusions

This chapter introduces the Nash bargaining game model as a way of addressing the

conflict arising from intermediate measures, and presents an alternative approach to

evaluate the efficiency scores for both stages and the overall process. Furthermore,

it is proved that in the case of only one intermediate measure, the bargaining game

approach yields the same efficiency results as obtained from the separately-applied

standard DEA approach, and also with the non-cooperative and centralized

approaches in Liang et al. (2008).

Different breakdown points can be used to calculate the bargaining efficiency

scores. As a matter of fact, each DMU can use a specific breakdown point.

For example, based upon the leader-follower model of Liang et al. (2008), both�
min
j

θ1j

n o
, min

j
e2j

n o�
and

�
min
j

e1j

n o
, min

j
θ2j

n o�
can be used as breakdown

Table 8.7 Bargaining efficiency scores with three breakdown points

DMU

{θ1min, θ2min} {0.5895, 0.0870} {0.2507, 0.2795}

e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o e1�o e2�o e1�o � e2�o
1 0.9926 0.7045 0.6993 0.9926 0.7045 0.6993 0.9926 0.7045 0.6993

2 0.9985 0.6257 0.6248 0.9985 0.6257 0.6248 0.9985 0.6257 0.6248

3 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900 0.6900 1.0000 0.6900

4 0.7243 0.4200 0.3042 0.7243 0.4200 0.3042 0.7243 0.4200 0.3042

5 0.8306 0.9234 0.7670 0.8306 0.9234 0.7670 0.8306 0.9234 0.7670

6 0.9606 0.4057 0.3897 0.9606 0.4057 0.3897 0.9606 0.4057 0.3897

7 0.6706 0.4124 0.2766 0.7521 0.3522 0.2649 0.6200 0.4317 0.2677

8 0.6631 0.4150 0.2752 0.7256 0.3780 0.2743 0.6630 0.4150 0.2751

9 1.0000 0.2233 0.2233 1.0000 0.2233 0.2233 0.4390 0.2920 0.1282

10 0.8615 0.5409 0.4660 0.8615 0.5409 0.4660 0.8615 0.5409 0.4660

11 0.6468 0.2534 0.1639 0.7292 0.2066 0.1507 0.4718 0.3267 0.1541

12 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596 1.0000 0.7596 0.7596

13 0.6719 0.3093 0.2078 0.8107 0.2431 0.1971 0.4600 0.4344 0.1998

14 0.6699 0.4309 0.2887 0.7246 0.3740 0.2710 0.6699 0.4309 0.2887

15 1.0000 0.6138 0.6138 1.0000 0.6138 0.6138 1.0000 0.6138 0.6138

16 0.8856 0.3615 0.3201 0.8856 0.3615 0.3201 0.8687 0.3651 0.3172

17 0.6276 0.5736 0.3600 0.7231 0.4598 0.3325 0.6276 0.5736 0.3600

18 0.7935 0.3262 0.2588 0.7935 0.3262 0.2589 0.6551 0.3737 0.2448

19 1.0000 0.4112 0.4112 1.0000 0.4112 0.4112 0.9788 0.4158 0.4070

20 0.9332 0.5857 0.5466 0.9332 0.5857 0.5466 0.8159 0.6561 0.5353

21 0.7321 0.2743 0.2008 0.7505 0.2623 0.1969 0.6918 0.2795 0.1934

22 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895 0.5895 1.0000 0.5895

23 0.8425 0.4989 0.4203 0.8425 0.4989 0.4203 0.8425 0.4989 0.4203

24 0.4287 0.3145 0.1348 0.7752 0.1390 0.1078 0.3987 0.3351 0.1336

Note: The optimal value of parameter α represents the first-stage bargaining efficiency score (e1�o )

for the corresponding DMU, and therefore we do not report α values in this table
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points, where θ1j and e
2
j respectively represent the efficiency scores for stages 1 and

2 of DMUj when Stage 1 is treated as the leader, whereas e1j and θ2j respectively

represent the efficiency scores for stage 1 and 2 when Stage 2 takes the leader’s role.
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Chapter 9

Shared Resources and Efficiency

Decomposition in Two-Stage Networks

Yao Chen, Juan Du, H. David Sherman, and Joe Zhu

Abstract In many real world scenarios, decision making units (DMUs) may have a

two-stage structure with input resources shared by both stages of operations. The

distinguishing characteristic is that some of the inputs to the first stage are also

consumed by the second stage, and some of the shared inputs cannot be conve-

niently split up and allocated to operations of the two stages. Recognizing this

distinction is critical for these types of DEA applications because measuring the

efficiency of the production for first-stage outputs can be misleading and understate

the efficiency if DEA fails to consider that some of the inputs generate other

second-stage outputs. This chapter presents DEA models for measuring the perfor-

mance of two-stage network processes with non-splittable shared inputs.
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Keywords Efficiency • Intermediate measures • Shared resources • Two-stage

network

9.1 Introduction

Recently, a number of studies have looked at DMUs that have a two-stage structure

where besides inputs and outputs, there are a set of intermediate measures that exist

in-between the two stages. These intermediate measures are the outputs from the

first stage that become the only inputs to the second stage. In many real world

settings, inputs to the first stage are actually shared by both stages, and some of the

shared inputs cannot be split up and allocated to the two stage operations. For

example, consider the profitability and marketability stages in Seiford and Zhu

(1999). The first stage of profitability is measured using labor and assets as inputs

and profits and revenue as outputs. In the second stage of marketability, the profits

and revenue are then used as inputs, while market value, returns and earnings per

share are used as outputs. Note, however, that in this example, labor and assets are

actually shared inputs for both stages, i.e., both stages will use the labor and assets

of the bank, and many of these inputs cannot be separated into the elements that are

directly associated with generating profits and revenues versus the resources that

augment the investor estimate of the bank market value.

Hospitals represent another clear example of this phenomenon as is suggested by

Fig. 9.1. A common set of inputs including plant, equipment, administrative staff,

information technology, is used to provide stage 1 outputs such as medical records,

laundry, housekeeping, lab tests, and radiology treatments. Some hospitals have

more than 14 of these types of stage 1 activities, and these draw on a common group

of resource inputs. For example, medical records generates patient care tracking

and billing information using resources such as information technology, plant,

equipment, and administrative oversight. Laundry outputs include providing clean

linens and towels for patients as well as lab coats and operating room uniforms and

use hospital resources including plant, equipment, administrative and utilities.

These stage 1 activities provide services to patients in tracking medical records to

manage care as well as accumulate costs for billing. Housekeeping maintains the

rooms for patients along with other parts of the hospital. For patient care, in addition

to inputs from the stage one activities, other resources are used directly such as the

plant and equipment in patient rooms, administrative oversight of the inpatient

activities, and management time overseeing the nursing staff. These are just a few

examples of the similar activities in a hospital that generate stage 1 and stage

2 outputs. Analyzing the efficiency of stage 1 activities such as laundry without

recognizing that many of the personnel, plant and other resources are also used to

provide stage 2 outputs would not correctly characterize the efficiency of the laundry.

Shared inputs have been studied in DEA literature. For example, Cook and

Hababou (2001), and Cook et al. (2000) develop models that accommodate both

dedicated and shared inputs. Note that their models do not have to specify the

sharing proportions of shared inputs. This is a desirable feature because in
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reality those shared inputs cannot be conveniently split up and allocated to the

outputs. However, their DMUs do not have the afore-mentioned two-stage

structure.

Although the models developed in Seiford and Zhu (1999), Zhu (2000), and

Sexton and Lewis (2003) consider the two-stage structures, these studies utilize the

standard DEA models without modeling the issue of shared inputs. As demon-

strated in Chen and Zhu (2004), standard DEA models are not a good choice for

measuring the performance of two-stage processes, because they do not address the

potential conflict arising from the dual role of intermediate measures. For example,

the second stage may have to reduce its inputs (intermediate measures) in order to

achieve an efficient status. Such an action would, however, imply a reduction in the

first-stage outputs, thereby reducing the efficiency of that stage. Some studies such

as Kao and Hwang (2008) and Liang et al. (2008) correctly address this conflict, and

explicitly provide an efficiency decomposition of the overall efficiency into both

individual stages. However, shared inputs are not modeled. If we model the shared

inputs as in Cook and Hababou (2001) or Cook et al. (2000), the models proposed

by Kao and Hwang (2008) and Liang et al. (2008) will become highly non-linear

and a global optimal solution cannot be guaranteed.

Fig. 9.1 Hospital example of shared resources
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In summary, some of the desirable features in modeling DMUs with a two-stage

structure are (i) DEA models are linear; (ii) intermediate measures are modeled in a

correct way; and (iii) an efficiency decomposition can be obtained so that we have

not only the overall efficiency score for the two-stage process, but also the effi-

ciency scores for the two individual stages. This chapter presents the work in Chen

et al. (2010), whose models not only satisfy the above important features, but also

address the shared inputs.

9.2 Two-Stage VRS Model with Shared Inputs

Figure 9.2 shows a generic two-stage process where some inputs are directly

associated with both stages. Suppose that there are a set of n DMUs denoted by

DMUj ( j ¼ 1, . . ., n) and that each DMUj ( j ¼ 1, . . ., n) has m inputs denoted

by xij (i ¼ 1, . . ., m) to the entire process. Parts of these m inputs are the only inputs

to the first stage while others are shared as inputs in both stages. These two types of

inputs are denoted as xi1j i1∈I1ð Þ and shared inputs xi2j i2∈I2ð Þ, respectively, where
I1 [ I2 ¼ {1,2, . . .,m}. Suppose also that each DMUj ( j ¼ 1, . . ., n) has t outputs
denoted by zdj (d ¼ 1, . . ., t) from the first stage, which then become inputs to the

second stage and are referred to as intermediate measures. The outputs from the

second stage are denoted by yrj (r ¼ 1, . . . s).
Since inputs i2 ∈ I2 are shared by both stages, we assume that all xi2j i2∈I2ð Þ are

divided into αi2j xi2j and 1� αi2j
� �

xi2j 0 � αi2j � 1
� �

, corresponding to the portions

of shared inputs used by the first and second stage, respectively. Similar to the

constraints in Cook and Hababou (2001), all αi2j i2∈I2, j ¼ 1, . . . , nð Þ will be

required to be within certain intervals, namely L1i2j � αi2j � L2i2j.

Based upon the variable returns to scale (VRS) model of Banker et al. (1984), the

VRS efficiency scores for DMUo in the first and second stages are calculated

respectively by

Stage1 Stage2

zd,d = 1,...,txi1 
(i1 ∈ I1)

xi2 
(i2 ∈ I2) shared and cannot be split up

yr,r = 1,...,s

Fig. 9.2 Two-stage process

with shared non-separable

inputs
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Max

Xt
d¼1

η1dzdo þ uAX
i1∈I1

vi1xi1o þ
X
i2∈I2

v1i2αi2oxi2o

s:t:

Xt
d¼1

η1dzdj þ uAX
i1∈I1

vi1xi1j þ
X
i2∈I2

v1i2αi2jxi2j
� 1, j ¼ 1, . . . , n

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

η1d, vi1 , v
1
i2
� ε, d ¼ 1, . . . , t, i1∈I1, i2∈I2; uA free

ð9:1Þ

Max

Xs
r¼1

uryro þ uB

X
i2∈I2

v2i2 1� αi2oð Þ xi2o þ
Xt
d¼1

η2dzdo

s:t:

Xs
r¼1

uryrj þ uB

X
i2∈I2

v2i2 1� αi2j
� �

xi2j þ
Xt
d¼1

η2dzdj

� 1, j ¼ 1, . . . , n

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

ur, η2d, v
2
i2
� ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i2∈I2; uBfree

ð9:2Þ

As pointed out in a number of studies (e.g., Chen and Zhu (2004), applying

models (9.1) and (9.2) separately does not correctly model the intermediate

measures zdj (d ¼ 1, . . ., t). Because model (9.2) tries to reduce zdj (d ¼ 1, . . ., t),
which is assumed to be kept at its current level in model (9.1). An alternative

approach to measuring the efficiency of the two-stage process is to view them from

a centralized perspective, and determine a set of optimal weights on the interme-

diate measures that maximize the aggregate or global efficiency score, as would be

true where the manufacturer and retailer jointly determine the price, order quantity,

etc. to achieve maximum profit (Huang and Li 2001).

Therefore, similar to Kao and Hwang’s (2008) assumption and the centralized

model in Liang et al. (2008), we assume that η1d ¼ η2d ¼ ηd for all d ¼ 1, . . ., t in

models (9.1) and (9.2). We also assume that v1i2 ¼ v2i2 ¼ vi2 for all i2 ∈ I2 because

these are the same types of inputs.
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We propose to combine the two stages in a weighted average of efficiency scores

of stages 1 and 2 as follows

w1 �

Xt
d¼1

ηdzdo þ uAX
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2αi2oxi2o
þ w2 �

Xs
r¼1

uryro þ uB

X
i2∈I2

vi2 1� αi2oð Þ xi2o þ
Xt
d¼1

ηdzdo

ð9:3Þ

where w1 and w2 are user-specified weights such that w1 + w2 ¼ 1.

Since w1 and w2 are intended to represent the relative importance or contribution

of the performances of the first and second stage, respectively, to the overall

performance of the DMU in the whole process, one reasonable choice of each

weight is the proportion of total resources devoted to each stage, reflecting the

relative size of a stage. To be more specifically, we define

w1 ¼

X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2αi2oxi2o

X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2xi2o þ
Xt
d¼1

ηdzdo

and

w2 ¼

X
i2∈I2

vi2 1� αi2oð Þxi2o þ
Xt
d¼1

ηdzdo

X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2xi2o þ
Xt
d¼1

ηdzdo

ð9:4Þ

where
X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2xi2o þ
Xt
d¼1

ηdzdo represents the total size of or total amount

of resources consumed by the whole two-stage process, while
X
i1∈I1

vi1xi1oþ

X
i2∈I2

vi2αi2oxi2o and
X
i2∈I2

vi2 1� αi2oð Þxi2o þ
Xt
d¼1

ηdzdo represent the sizes of the first

and second stages, respectively. These weights themselves are not optimization

variables, but rather are functions of the optimization variables.

Thus, under VRS, the overall efficiency score of the two-stage process forDMUo

can be evaluated by solving the fractional program (9.5).
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θ�o ¼ Max

Xt
d¼1

ηdzdo þ uA þ
Xs
r¼1

uryro þ uB

X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2xi2o þ
Xt
d¼1

ηdzdo

s:t:

Xt
d¼1

ηdzdj þ uAX
i1∈I1

vi1xi1j þ
X
i2∈I2

vi2αi2jxi2j
� 1, j ¼ 1, . . . , n

Xs
r¼1

uryrj þ uB

X
i2∈I2

vi2 1� αi2j
� �

xi2j þ
Xt
d¼1

ηdzdj

� 1, j ¼ 1, . . . , n

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

ur, ηd, vi1 , vi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

uA, uB free

ð9:5Þ

By applying the Charnes-Cooper transformation, fractional program (9.5) can be

converted to model (9.6).

θ�o ¼ Max
Xt
d¼1

πdzdo þ
Xs
r¼1

μryro þ u1 þ u2

s:t:
Xt
d¼1

πdzdj þ u1 �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

ωi2αi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj þ u2 �
X
i2∈I2

ωi2 1� αi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o þ
Xt
d¼1

πdzdo ¼ 1

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

μr, πd,ωi1 , ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

u1, u2 free

ð9:6Þ
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Model (9.6) is still non-linear since there exist the non-linear item
X
i2∈I2

ωi2αi2jxi2j

in some constraints. By letting βi2j ¼ ωi2αi2j j ¼ 1, . . . , nð Þ, model (9.6) is

linearized as

θ�o ¼ Max
Xt
d¼1

πdzdo þ
Xs
r¼1

μryro þ u1 þ u2

s:t:
Xt
d¼1

πdzdj þ u1 �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

βi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj þ u2 �
X
i2∈I2

ωi2 � βi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o þ
Xt
d¼1

πdzdo ¼ 1

L1i2jωi2 � βi2j � L2i2jωi2 , i2∈I2, j ¼ 1, . . . , n

μr, πd,ωi1 ,ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

u1, u2 free

ð9:7Þ

9.3 Efficiency Decomposition

Once we obtain an optimal solution to linear program (9.7), the efficiency scores for

both individual stages can be calculated accordingly. However, since model (9.7)

can have alternative optimal solutions, the decomposition of the overall efficiency

defined in (9.3) may not be unique. Therefore we follow Kao and Hwang’s (2008)

approach to find a set of multipliers which produce the highest first or second stage

efficiency score while maintaining the overall efficiency score of the entire process.

Let w�
1 and w�

2 represent optimal weights based upon model (9.7). Note that in

model (9.7), we have
X
i1∈I1

ω�
i1
xi1o þ

X
i2∈I2

ω�
i2
xi2o þ

Xt
d¼1

π�dzdo ¼ 1. Thus, we have

w�
1 ¼

X
i1∈I1

ω�
i1
xi1o þ

X
i2∈I2

β�i2oxi2o and w�
2 ¼ 1 � w�

1, where ω�
i1
,ω�

i2
, β�i2o, π

�
d

i1∈I1, i2∈I2, d ¼ 1, . . . , tð Þ represent optimal values for ωi1 ,ωi2 , βi2o, πd in

model (9.7).

Denote the overall efficiency score for DMUo obtained from (9.7) as θ�o. Suppose
that the first-stage efficiency is maximized first while maintaining the overall

performance. We have
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θ1�o ¼ Max

Xt
d¼1

ηdzdo þ uAX
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2αi2oxi2o

s:t:

Xt
d¼1

ηdzdj þ uAX
i1∈I1

vi1xi1j þ
X
i2∈I2

vi2αi2jxi2j
� 1, j ¼ 1, . . . , n

Xs
r¼1

uryrj þ uB

X
i2∈I2

vi2 1� αi2j
� �

xi2j þ
Xt
d¼1

ηdzdj

� 1, j ¼ 1, . . . , n

Xt
d¼1

ηdzdo þ uA þ
Xs
r¼1

uryro þ uB

X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2xi2o þ
Xt
d¼1

ηdzdo

¼ θ�o

w�
1 �

Xt
d¼1

ηdzdo þ uAX
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2αi2oxi2o
� θ�o

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

ur , ηd, vi1 , vi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2; uA, uB free

ð9:8Þ

Model (9.8) can be converted into linear program (9.9).

θ1�o ¼ Max
Xt
d¼1

πdzdo þ u1

s:t:
Xt
d¼1

πdzdj þ u1 �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

βi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj þ u2 �
X
i2∈I2

ωi2 � βi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

1� θ�o
� � Xt

d¼1

πdzdo þ
Xs
r¼1

μryro þ u1 þ u2 � θ�0
X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o

 !
¼ 0

w�
1

Xt
d¼1

πdzdo þ u1

 !
� θ�oX

i1∈I1

ωi1xi1o þ
X
i2∈I2

βi2oxi2o ¼ 1

L1i2jωi2 � βi2j � L2i2jωi2 , i2∈I2, j ¼ 1, . . . , n
μr, πd,ωi1 ,ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2; u1, u2 free

ð9:9Þ
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Then the second-stage efficiency score for DMUo can be calculated as

θ2o ¼ θ�o�w�
1
θ1�o

w�
2

. Note that (*) is used in θ1�o to indicate that the first-stage efficiency

score is optimized first. In this case, the resulting efficiency score for the second

stage is denoted as θ2o without (*).
In a similar way, the second stage can be optimized first without hurting the

overall efficiency θ�o.

θ2�o ¼ Max
Xs
r¼1

μryro þ u2

s:t:
Xt
d¼1

πdzdj þ u1 �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

βi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj þ u2 �
X
i2∈I2

ωi2 � βi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

1� θ�o
� � Xt

d¼1

πdzdo þ
Xs
r¼1

μryro þ u1 þ u2 � θ�0
X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o

 !
¼ 0

w�
2

Xs
r¼1

μr yro þ u2

 !
� θ�o

X
i2∈I2

ωi2 � βi2o
� �

xi2o þ
Xt
d¼1

πdzdo ¼ 1

L1i2jωi2 � βi2j � L2i2jωi2 , i2∈I2, j ¼ 1, . . . , n

μr, πd,ωi1 ,ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2; u1, u2 free

ð9:10Þ

Then the first-stage efficiency score for DMUo can be calculated as θ
1
o ¼ θ�o�w�

2
θ2�o

w�
1

.

If the results satisfy θ1o ¼ θ1�o or θ2o ¼ θ2�o , then the conclusion can be reached

that an unique efficiency decomposition is obtained.

9.4 Two-Stage CRS Model with Shared Inputs

9.4.1 Overall Efficiency

Note that if we assume uA ¼ uB ¼ 0, the above models become the constant returns

to scale (CRS) models of Charnes et al. (1978). Thus all previous discussions are

open to be applied to the CRS situation.

The following models (9.11) and (9.12) will assess the efficiency of the first and

second stages of DMUo, respectively.
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Max

Xt
d¼1

η1dzdoX
i1∈I1

vi1xi1o þ
X
i2∈I2

v1i2αi2oxi2o

s:t:

Xt
d¼1

η1dzdjX
i1∈I1

vi1xi1j þ
X
i2∈I2

v1i2αi2jxi2j
� 1, j ¼ 1, . . . , n

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

η1d, vi1 , v
1
i2
� ε, d ¼ 1, . . . , t, i1∈I1, i2∈I2

ð9:11Þ

Max

Xs
r¼1

uryro

X
i2∈I2

v2i2 1� αi2oð Þ xi2o þ
Xt
d¼1

η2dzdo

s:t:

Xs
r¼1

uryrj

X
i2∈I2

v2i2 1� αi2j
� �

xi2j þ
Xt
d¼1

η2dzdj

� 1, j ¼ 1, . . . , n

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

ur, η2d, v
2
i2
� ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i2∈I2

ð9:12Þ

Under the assumption of η1d ¼ η2d ¼ ηd for all d ¼ 1, . . ., t and v1i2 ¼ v2i2 ¼ vi2 for

all i2 ∈ I2, the weighted average efficiency of both stages is presented as

w1 �

Xt
d¼1

ηdzdoX
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2αi2oxi2o
þ w2 �

Xs
r¼1

uryro

X
i2∈I2

vi2 1� αi2oð Þ xi2o þ
Xt
d¼1

ηdzdo

ð9:13Þ

where w1 and w2 are user-specified weights such that w1 + w2 ¼ 1. The same

choice on w1 and w2 is made with (9.4) to reflect the relative importance of either

stage. The overall efficiency is evaluated by fractional program (9.14), which is

then linearized as model (9.15).
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θ�o ¼ Max

Xt
d¼1

ηdzdo þ
Xs
r¼1

uryro

X
i1∈I1

vi1xi1o þ
X
i2∈I2

vi2xi2o þ
Xt
d¼1

ηdzdo

s:t:

Xt
d¼1

ηdzdjX
i1∈I1

vi1xi1j þ
X
i2∈I2

vi2αi2jxi2j
� 1, j ¼ 1, . . . , n

Xs
r¼1

uryrj

X
i2∈I2

vi2 1� αi2j
� �

xi2j þ
Xt
d¼1

ηdzdj

� 1, j ¼ 1, . . . , n

L1i2j � αi2j � L2i2j, i2∈I2, j ¼ 1, . . . , n

ur, ηd , vi1 , vi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

ð9:14Þ

θ�o ¼ Max
Xt
d¼1

πdzdo þ
Xs
r¼1

μryro

s:t:
Xt
d¼1

πdzdj �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

βi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj �
X
i2∈I2

ωi2 � βi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o þ
Xt
d¼1

πdzdo ¼ 1

L1i2jωi2 � βi2j � L2i2jωi2 , i2∈I2, j ¼ 1, . . . , n

μr, πd,ωi1 ,ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

ð9:15Þ

9.4.2 Efficiency Decomposition

Let w�
1 and w�

2 represent optimal weights based upon model (9.15), which

are calculated as w�
1 ¼

X
i1∈I1

ω�
i1
xi1o þ

X
i2∈I2

β�i2oxi2o and w�
2 ¼ 1 � w�

1, where ω
�
i1
,ω�

i2
,

β�i2o, π
�
d i1∈I1, i2∈I2, d ¼ 1, . . . , tð Þ represent optimal values obtained from

model (9.15).

If Stage 1 is given priority, the decomposition model maintaining the overall

performance θ�o is developed as
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θ1�o ¼ Max
Xt
d¼1

πdzdo

s:t:
Xt
d¼1

πdzdj �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

βi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj �
X
i2∈I2

ωi2 � βi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

1� θ�o
� � Xt

d¼1

πdzdo þ
Xs
r¼1

μryro � θ�0
X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o

 !
¼ 0

w�
1

Xt
d¼1

πdzdo

 !
� θ�oX

i1∈I1

ωi1xi1o þ
X
i2∈I2

βi2oxi2o ¼ 1

L1i2jωi2 � βi2j � L2i2jωi2 , i2∈I2, j ¼ 1, . . . , n

μr, πd,ωi1 ,ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

ð9:16Þ

Then the second-stage efficiency score can be calculated as θ2o ¼ θ�o�w�
1
θ1�o

w�
2

.

Similarly, to optimize Stage 2 first, we propose

θ2�o ¼ Max
Xs
r¼1

μryro

s:t:
Xt
d¼1

πdzdj �
X
i1∈I1

ωi1xi1j þ
X
i2∈I2

βi2jxi2j

 !
� 0, j ¼ 1, . . . , n

Xs
r¼1

μryrj �
X
i2∈I2

ωi2 � βi2j
� �

xi2j þ
Xt
d¼1

πdzdj

" #
� 0, j ¼ 1, . . . , n

1� θ�o
� �Xt

d¼1

πdzdo þ
Xs
r¼1

μryro � θ�0
X
i1∈I1

ωi1xi1o þ
X
i2∈I2

ωi2xi2o

 !
¼ 0

w�
2

Xs
r¼1

μr yro

 !
� θ�o

X
i2∈I2

ωi2 � βi2o
� �

xi2o þ
Xt
d¼1

πdzdo ¼ 1

L1i2jωi2 � βi2j � L2i2jωi2 , i2∈I2, j ¼ 1, . . . , n

μr, πd,ωi1 ,ωi2 � ε, r ¼ 1, . . . , s, d ¼ 1, . . . , t, i1∈I1, i2∈I2

ð9:17Þ

The efficiency score for Stage 1 is θ1o ¼ θ�o�w�
2
θ2�o

w�
1

. A unique efficiency decompo-

sition is obtained when θ1o ¼ θ1�o or θ2o ¼ θ2�o .
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9.5 Illustrative Application

Wang et al. (1997) utilize DEA to study the marginal benefits of information

technology (IT) with respect to a two-stage process in firm-level banking industry.

In their first stage, the banks use fixed assets, IT investment, and personnel as

inputs to generate deposit dollars as output (intermediate measure). During the

second stage, banks use the deposit dollars as a source of funds to invest in

securities and to provide loans. Profit and fraction of loans recovered are regarded

as two outputs from the second stage. Obviously, the IT budget, personnel support

and fixed assets needed in stage 2 are ignored. In other words, fixed assets, IT

budget and employees are directly associated with both stages and they should be

treated as shared inputs. We therefore use model (9.7) to re-visit their data set as

shown in Table 9.1.

Table 9.1 Data

Bank

Fixed assets

($ billion)

IT budget

($ billion)

Employees

(thousand)

Deposits

($ billion)

Profit

($ billion)

Fraction of loans

recovered

1 0.713 0.15 13.3 14.478 0.232 0.986

2 1.071 0.17 16.9 19.502 0.34 0.986

3 1.224 0.235 24 20.952 0.363 0.986

4 0.363 0.211 15.6 13.902 0.211 0.982

5 0.409 0.133 18.485 15.206 0.237 0.984

6 5.846 0.497 56.42 81.186 1.103 0.955

7 0.918 0.06 56.42 81.186 1.103 0.986

8 1.235 0.071 12 11.441 0.199 0.985

9 18.12 1.5 89.51 124.072 1.858 0.972

10 1.821 0.12 19.8 17.425 0.274 0.983

11 1.915 0.12 19.8 17.425 0.274 0.983

12 0.874 0.05 13.1 14.342 0.177 0.985

13 6.918 0.37 12.5 32.491 0.648 0.945

14 4.432 0.44 41.9 47.653 0.639 0.979

15 4.504 0.431 41.1 52.63 0.741 0.981

16 1.241 0.11 14.4 17.493 0.243 0.988

17 0.45 0.053 7.6 9.512 0.067 0.98

18 5.892 0.345 15.5 42.469 1.002 0.948

19 0.973 0.128 12.6 18.987 0.243 0.985

20 0.444 0.055 5.9 7.546 0.153 0.987

21 0.508 0.057 5.7 7.595 0.123 0.987

22 0.37 0.098 14.1 16.906 0.233 0.981

23 0.395 0.104 14.6 17.264 0.263 0.983

24 2.68 0.206 19.6 36.43 0.601 0.982

25 0.781 0.067 10.5 11.581 0.12 0.987

26 0.872 0.1 12.1 22.207 0.248 0.972

27 1.757 0.0106 12.7 20.67 0.253 0.988
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In this case, model (9.7) becomes

θ�o ¼ Max πDo þ μPPo þ μRRo þ u1 þ u2

s:t: πDj þ u1 � βFjFj þ βI jIj þ βEjEj

� � � 0, j ¼ 1, . . . , n

μPPj þ μRRj

� �þ u2 � ωF � βFj
� �

Fj þ ωI � βI j
� �

Ij þ ωE � βEj
� �

Ej þ πDj

� �
� 0, j ¼ 1, . . . , n

ωFFo þ ωIIo þ ωEEo þ πDo ¼ 1

0:4ωF � βFj � 0:6 ωF, j ¼ 1, . . . , n

0:25 ωI � βI j � 0:75ωI , j ¼ 1, . . . , n

0:55 ωE � βEj � 0:75ωE, j ¼ 1, . . . , n

μP, μR, π,ωF,ωI,ωE � ε; u1, u2free

ð9:18Þ

where fixed assets (F), IT budget (I ), and employees (E) are treated as shared inputs
as αFF and (1 � αF) F, αII and (1 � αI) I, as well as αEE and (1 � αE) E between

two stages. The lower and upper bounds are specified as 0.40 � αF � 0.60, 0.25 �
αI � 0.75 and 0.55 � αE � 0.75. These constraints are converted into the last three

constraints in model (9.18).

Tables 9.2 and 9.3 report the results of the overall efficiency and efficiency

decomposition when the first-stage efficiency score is maximized first under VRS

and CRS, respectively. Tables 9.4 and 9.5 report overall efficiency and efficiency

Table 9.2 VRS results (stage 1 takes priority)

Bank

Overall

efficiency θ�o

Deposit

efficiency θ1�o

Loan

efficiency θ2o w�
1 w�

2 α�F α�I α�E
1 0.817416 0.902544 0.735635 0.48997 0.51003 0.4000 0.5000 0.5500

2 0.884392 0.894746 0.876417 0.43506 0.56494 0.4000 0.5000 0.5500

3 0.745634 0.697699 0.779187 0.41176 0.58824 0.4000 0.5000 0.5500

4 1.000000 1.000000 1.000000 0.47677 0.52323 0.6000 0.5000 0.7500

5 0.998006 1.000000 0.996396 0.44665 0.55335 0.5231 0.5000 0.4639

6 0.810887 1.000000 0.718858 0.32734 0.67266 0.4582 0.5000 0.5500

7 1.000000 1.000000 1.000000 0.41767 0.58233 0.6000 0.5000 0.7500

8 0.758876 0.769498 0.748291 0.49909 0.50091 0.4000 0.2500 0.5500

9 1.000000 1.000000 1.000000 0.37193 0.62807 0.4000 0.5000 0.5500

10 0.641277 0.700543 0.563920 0.56621 0.43379 0.4000 0.2500 0.5500

11 0.638457 0.696925 0.562096 0.56635 0.43365 0.4000 0.2500 0.5500

12 0.891486 0.970490 0.843485 0.37794 0.62206 0.4000 0.2500 0.4917

13 0.950591 1.000000 0.908177 0.46190 0.53810 0.6000 0.5000 0.7385

14 0.680918 0.850776 0.534268 0.46333 0.53667 0.4000 0.5000 0.5500

15 0.804134 0.869254 0.761576 0.39523 0.60477 0.4000 0.5000 0.5500

16 1.000000 1.000000 1.000000 0.34468 0.65532 0.4000 0.2500 0.5500

17 1.000000 1.000000 0.999998 0.34806 0.65194 0.6000 0.7500 0.5985

18 1.000000 1.000000 1.000000 0.30843 0.69157 0.4000 0.5000 0.5500

(continued)
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Table 9.2 (continued)

Bank

Overall

efficiency θ�o

Deposit

efficiency θ1�o

Loan

efficiency θ2o w�
1 w�

2 α�F α�I α�E
19 0.822764 1.000000 0.677141 0.45104 0.54896 0.5997 0.5000 0.5500

20 1.000000 1.000000 1.000000 0.45904 0.54096 0.6000 0.5000 0.7500

21 1.000000 1.000000 1.000000 0.56425 0.43575 0.6000 0.5000 0.6066

22 1.000000 1.000000 1.000000 0.47247 0.52753 0.6000 0.5000 0.7500

23 1.000000 1.000000 1.000000 0.45146 0.54854 0.6000 0.5000 0.6539

24 1.000000 1.000000 1.000000 0.36579 0.63421 0.6000 0.5000 0.5724

25 0.767069 0.890467 0.647451 0.49222 0.50778 0.4000 0.2500 0.5500

26 0.872988 1.000000 0.782691 0.41552 0.58448 0.6000 0.5000 0.7500

27 1.000000 1.000000 1.000000 0.52843 0.47157 0.6000 0.7500 0.7500

Table 9.3 CRS results (stage 1 takes priority)

Bank

Overall

efficiency θ�o

Deposit

efficiency θ1�o

Loan

efficiency θ2o w�
1 w�

2 α�F α�I α�E
1 0.809051 0.877548 0.771997 0.35105 0.64895 0.4000 0.5000 0.5500

2 0.855189 0.893773 0.824813 0.44049 0.55951 0.4000 0.5000 0.5500

3 0.730706 0.711527 0.748419 0.48015 0.51985 0.4000 0.5000 0.5500

4 0.904087 0.713145 0.999999 0.33436 0.66564 0.4000 0.5000 0.5500

5 0.857950 0.641374 0.974511 0.34989 0.65011 0.4000 0.2500 0.5500

6 0.750373 0.984808 0.634402 0.32982 0.67081 0.4000 0.2500 0.5500

7 1.000000 1.000000 1.000000 0.41563 0.58437 0.6000 0.5000 0.7500

8 0.749277 0.736279 0.762046 0.49554 0.50446 0.4000 0.2500 0.5500

9 0.611823 0.723234 0.533634 0.41239 0.58761 0.4000 0.5000 0.5500

10 0.635599 0.680372 0.602233 0.42700 0.57300 0.4000 0.2500 0.5500

11 0.633172 0.677297 0.600303 0.42690 0.57310 0.4000 0.2500 0.5500

12 0.773044 0.622073 0.840380 0.30845 0.69155 0.4000 0.2500 0.5500

13 0.927622 1.000000 0.876124 0.41572 0.58428 0.6000 0.5000 0.7115

14 0.629430 0.773005 0.516998 0.43916 0.56084 0.4000 0.2500 0.5500

15 0.696454 0.859753 0.543272 0.48402 0.51598 0.4000 0.2500 0.5500

16 0.721130 0.884557 0.596487 0.43266 0.56734 0.4000 0.2500 0.5500

17 0.897636 1.000000 0.830094 0.39752 0.60248 0.6000 0.2500 0.5563

18 1.000000 1.000000 1.000000 0.41058 0.58942 0.4000 0.5000 0.6024

19 0.815065 1.000000 0.689946 0.40354 0.59646 0.5868 0.5000 0.5500

20 1.000000 1.000000 1.000000 0.32872 0.67128 0.4000 0.2500 0.5500

21 1.000000 1.000000 1.000000 0.33484 0.66516 0.4402 0.2500 0.5500

22 0.949163 0.899387 0.972158 0.31600 0.68400 0.4000 0.5000 0.5500

23 0.958367 0.869308 0.999999 0.31855 0.68145 0.4000 0.5000 0.5500

24 0.922196 1.000000 0.879230 0.35576 0.64424 0.5525 0.7500 0.5500

25 0.734708 0.910991 0.603834 0.42608 0.57392 0.4000 0.2500 0.5500

26 0.866254 1.000000 0.772482 0.41215 0.58785 0.6000 0.5000 0.7500

27 1.000000 1.000000 1.000000 0.40300 0.59700 0.6000 0.7500 0.7500
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decomposition when stage 2 is given priority under VRS and CRS, respectively.

Each table demonstrates the overall efficiency for the whole process in column

2, the efficiency scores for the first (deposit) and second (loan) stages in columns

3 and 4, the optimal weights attached to either stage in columns 5 and 6, and the

values of α�F, α
�
I , α

�
E from columns 7 to 9. α�F, α

�
I , α

�
E indicate the optimal pro-

portions of three inputs distributed between two stages.

From the efficiency decomposition results in Tables 9.2, 9.3, 9.4 and 9.5,

we notice that under VRS, DMU 4, 7, 9, 16, 18, 20, 21, 22, 23, 24, 27 have a

unique efficiency decomposition while DMU 17 and 26 have a unique efficiency

decomposition in an approximate sense when ignoring trivial errors. DMU 7, 18,

20, 21, 27 have a unique efficiency decomposition while DMU 4 and 23 have an

approximately unique efficiency decomposition when ignoring trivial errors

under CRS.

Table 9.4 VRS results (stage 2 takes priority)

Bank

Overall

efficiency θ�o

Deposit

efficiency θ1o

Loan

efficiency θ2�o w�
1 w�

2 α�F α�I α�E
1 0.817416 0.647684 0.980472 0.48997 0.51003 0.6000 0.5000 0.7500

2 0.884392 0.734271 1.000000 0.43506 0.56494 0.4000 0.5000 0.6933

3 0.745634 0.382241 1.000000 0.41176 0.58824 0.5251 0.5000 0.7500

4 1.000000 1.000000 1.000000 0.47677 0.52323 0.5356 0.5000 0.7500

5 0.998006 0.995536 1.000000 0.44665 0.55335 0.5254 0.5000 0.7313

6 0.810887 0.700251 0.864725 0.32734 0.67266 0.6000 0.7500 0.7500

7 1.000000 1.000000 1.000000 0.41767 0.58233 0.6000 0.5000 0.5500

8 0.758876 0.516874 1.000000 0.49909 0.50091 0.4000 0.7500 0.6595

9 1.000000 1.000000 1.000000 0.37193 0.62807 0.6000 0.5000 0.3670

10 0.641277 0.420902 0.928921 0.56621 0.43379 0.6000 0.7500 0.7500

11 0.638457 0.418934 0.925161 0.56635 0.43365 0.6000 0.7500 0.7500

12 0.891486 0.712880 1.000000 0.37794 0.62206 0.6000 0.3060 0.8089

13 0.950591 0.984595 0.921401 0.46190 0.53810 0.3073 0.5000 0.7500

14 0.680918 0.614391 0.738354 0.46333 0.53667 0.6000 0.5000 0.7500

15 0.804134 0.631571 0.916907 0.39523 0.60477 0.6000 0.5000 0.7500

16 1.000000 1.000000 1.000000 0.34468 0.65532 0.4000 0.2500 0.5500

17 1.000000 1.000000 1.000000 0.34806 0.65194 0.4322 0.7500 0.7500

18 1.000000 1.000000 1.000000 0.30843 0.69157 0.4000 0.5000 0.5500

19 0.822764 0.808300 0.834647 0.45104 0.54896 0.6000 0.5000 0.7500

20 1.000000 1.000000 1.000000 0.45904 0.54096 0.4000 0.5000 0.5500

21 1.000000 1.000000 1.000000 0.56425 0.43575 0.4000 0.5000 0.5681

22 1.000000 1.000000 1.000000 0.47247 0.52753 0.6000 0.5000 0.5500

23 1.000000 1.000000 1.000000 0.45146 0.54854 0.4711 0.5000 0.5500

24 1.000000 1.000000 1.000000 0.36579 0.63421 0.6000 0.5000 0.5724

25 0.767069 0.526775 1.000000 0.49222 0.50778 0.4000 0.6722 0.5500

26 0.872988 0.999988 0.782699 0.41552 0.58448 0.6000 0.5000 0.7500

27 1.000000 1.000000 1.000000 0.52843 0.47157 0.6000 0.7500 0.7500
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9.6 Conclusions

This chapter presents models for a two-stage process with shared input resources

between both stages. In reality, many DMUs actually have this kind of structures.

Beyond the hospital and banking examples referenced earlier, many non-profit and

government organizations also have two-stage processes. Other examples can be

found in corporations, which are ultimately accountable to shareholders. Increasing

shareholder value is one of their primary objectives or outputs. Increasing value

requires generating a return on funds invested by shareholders – return on equity.

This process is a two-stage process. A set of resources is used by the corporation

including plant and equipment, information technology and senior management.

Such set of corporate resources are inputs used to generate operating results

measured by revenues and profits, the stage 1 outputs. However, these outputs

alone are not sufficient to generate increased shareholder value. While sales growth

Table 9.5 CRS results (stage 2 takes priority)

Bank

Overall

efficiency θ�o

Deposit

efficiency θ1o

Loan

efficiency θ2�o w�
1 w�

2 α�F α�I α�E
1 0.809051 0.490733 0.981248 0.35105 0.64895 0.6000 0.5000 0.7500

2 0.855189 0.671250 1.000000 0.44049 0.55951 0.4637 0.5000 0.7500

3 0.730706 0.472306 0.969374 0.48015 0.51985 0.6000 0.5000 0.7500

4 0.904087 0.713143 1.000000 0.33436 0.66564 0.4000 0.5000 0.5500

5 0.857950 0.594015 1.000000 0.34989 0.65011 0.4136 0.2500 0.7500

6 0.750373 0.657693 0.795236 0.32982 0.67081 0.6000 0.5000 0.7500

7 1.000000 1.000000 1.000000 0.41563 0.58437 0.4000 0.5000 0.7500

8 0.749277 0.494043 1.000000 0.49554 0.50446 0.6000 0.5006 0.7500

9 0.611823 0.462001 0.716969 0.41239 0.58761 0.6000 0.7500 0.7500

10 0.635599 0.232047 0.936330 0.42700 0.57300 0.6000 0.7500 0.7500

11 0.633172 0.230624 0.933029 0.42690 0.57310 0.6000 0.7500 0.7500

12 0.773044 0.264194 1.000000 0.30845 0.69155 0.6000 0.3718 0.7500

13 0.927622 0.950684 0.911212 0.41572 0.58428 0.7945 0.5000 0.7500

14 0.629430 0.525840 0.710535 0.43916 0.56084 0.6000 0.5000 0.7500

15 0.696454 0.609251 0.778255 0.48402 0.51598 0.6000 0.5000 0.7500

16 0.721130 0.606705 0.808384 0.43266 0.56734 0.6000 0.7500 0.7500

17 0.897636 0.742494 1.000000 0.39752 0.60248 0.6000 0.3241 0.7500

18 1.000000 1.000000 1.000000 0.41058 0.58942 0.4000 0.5000 0.5500

19 0.815065 0.803035 0.823204 0.40354 0.59646 0.6000 0.5000 0.7500

20 1.000000 1.000000 1.000000 0.32872 0.67128 0.4000 0.2500 0.5500

21 1.000000 1.000000 1.000000 0.33484 0.66516 0.4000 0.2500 0.5591

22 0.949163 0.839120 1.000000 0.31600 0.68400 0.4000 0.5000 0.6463

23 0.958367 0.869306 1.000000 0.31855 0.68145 0.4000 0.5000 0.5500

24 0.922196 0.781304 1.000000 0.35576 0.64424 0.5917 0.2500 0.7500

25 0.734708 0.512093 0.899980 0.42608 0.57392 0.6000 0.7500 0.7500

26 0.866254 0.999984 0.772493 0.41215 0.58785 0.6000 0.5000 0.7500

27 1.000000 1.000000 1.000000 0.40300 0.59700 0.4000 0.2500 0.5500

206 Y. Chen et al.



and profits are a key measure of performance, the ability to attract financing through

debt at favorable interest rates to invest in future product and market development

directly influences the estimated future value of the business. Arranging favorable

financing through debt or equity to support investments in new products and markets

or acquisitions draws on the corporate resources such as treasury and strategic

planning and uses the plant and equipment and information technology – all inputs –

share resources – also are used in stage 1. In addition, a critical element is that the

stage 1 operating results are also a key input to obtaining loans at attractive interest

rates and equity funds to grow through investment or acquisitions to increase

shareholder value. Hence, measuring the efficiency of the business in using it

resources to generate profits and revenues understates the efficiency because many

of those resources are also used to generate increased shareholder value along with

the stage 1 operating outputs. Here again, the example is just an illustration of the

two stage aspects of the corporation. Individual industries will have differing

elements of the two stage process aimed at increasing shareholder value.

This chapter extends the work of Kao and Hwang (2008), and Liang et al. (2008)

under the assumption that DMUs have control over both stages, and provides a

mechanism for developing network DEA models with shared inputs/outputs. In

situations where one stage’s operation possesses the priority to be optimized, one

can adopt the leader-follower model of Liang et al. (2008) with one stage of the

operations as the leader and the other as the follower. This is a future research topic.
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Chapter 10

A Network-DEA Model with Internal

Dynamic Effects

Chien-Ming Chen

Abstract Modern production networks are comprised of a large collection of

interrelated value-adding processes. Adding to this, the flow time of such a complex

network can easily go from weeks to months, making time an influential factor in

constructing efficient frontier for the network technology. Both the network struc-

ture and dynamics in the production environment stand in sharp contrast with the

standard DEA model, which assumes that the internal process is a “black box” and

that inputs and outputs are independent across time periods. In light of the above

limitations, this chapter introduces an approach to computing the technical

efficiency scores for a dynamic production network and its sub-processes.

Keywords Network • Productive efficiency • Dynamic effects

10.1 Introduction

A production network can be viewed as a generalization of a value chain and

consists of a set of inter-related sub-processes with directed links. These

sub-processes are inter-related in a sense that one sub-process’s outputs may be

used by another sub-process as inputs. As a production network may span across

multiple companies in different geographical regions or countries, the productive

activities engaged by different sub-processes may be dependent on each other
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across time. Hence in the analysis of technical efficiencies of a network, this

dynamic interdependence must be taken into account. The network model

considered in this article is one in which a sub-process’s outputs in period t may

influence other sub-processes in both t and a finite number of subsequent periods

(t + 1, t + 2, . . ., t + n). For example, in a multi-echelon production network, the

stock level of a supplier in a certain month may influence the service level of a

retailer in the following months.

The model described in this chapter is therefore distinct from the traditional

DEA in two major ways. The first distinction is that our unit of analysis is a network

of multiple processes, instead of a single process or decision-making unit (DMU).

This type of model is usually referred to network-DEA models in the literature

(e.g.,Yang et al. 2000; Castelli et al. 2001, 2004; Lewis and Sexton 2004). In these

studies, the interdependence between different sub-decision-making units

(SDMUs) is represented by an intra-connected production network, in which

SDMUs may consume inputs (which can be either exogenous inputs or intermediate

outputs produced by other SDMUs) to yield outputs (which again can be interme-

diate outputs or final outputs of the DMU). These underlying interrelationships

among SDMUs are hidden in the traditional DEA methodology.

The studies on network-DEA models in the literature, however, assume that the

input-output correspondence is complete and close in each evaluation period. This

assumption can be interpreted from two different angles. On the DMU level, this

means that inputs used by the DMU as a whole in one period will not affect its

output in any subsequent periods. Down to the SDMU level, this assumption means

that inputs used by one SDMU will not affect the output production of any

downstream SDMUs that are connected to it. In practice, however, one can easily

find examples in which such an assumption would be violated. One straightforward

example is the use of inventory. Other common examples include (1) capital

accumulation, (2) the use of fertilizer or pesticide in agriculture and the cross-

period impact of pollution in the environmental context, and (3) various managerial

activities used to improve organizational performance, such as the investment in

advertising (Clarke 1976) and the implementation of a new human-resource strat-

egy (Huselid and Becker 1996). In some situations, the intermediate output can

even have a negative short-term influence on production (see, e.g., De Meyer and

Ferdows 1990; Cooper et al. 2004).

Färe and Grosskopf (1996) introduce the formulation of storable inputs to allow

asynchronism between the appearance of inputs and the use of inputs in the

dynamic production model. While their approach considers dynamics of produc-

tion, Färe and Grosskopf, instead of adopting a broader network perspective,

confine their analysis to the dynamics of a single production process linked over

multiple time periods. In their study, the intertemporal effect is limited to inputs

only, and the perishableness of storable inputs is not considered. Moreover, the

emphases of Färe and Grosskopf (1996) and other recent studies concerning

quasi-fixed inputs within the dynamic framework (e.g., Nemoto and Goto 2003;

Ouellette and Vierstraete 2004) center primarily on the efficient allocation or
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adjustment of inputs over time. The literature does not provide a clear guideline as

for how to incorporate dynamic effects in production networks into efficiency

measurement—these effects have been largely neglected or assumed to be

nonexistent, say, by imposing balancing constraints on the network production

model (e.g., Castelli et al. 2004). Therefore the impact of dynamic effects on

efficiencies remains unclear and still requires formal and systematic treatment.

This chapter discusses a unified framework to analyze the performance of a

dynamic production network. I first provide a analytical definition of the structure

of production networks. The intent is to develop a systematic view on the structure

of production networks, so as to facilitate legitimate comparisons among the

production units in the sub-network. I then introduce a new efficiency measure to

assess the performance of different hierarchical levels in the dynamic production

system. The proposed efficiency measure can be decomposed in a way similar to the

approach used to analyze the structure of the network. The output of the analysis

can provide specific recommendations to managers at different organizational

levels. In addition, I show that the new measure is closely related to the conven-

tional DEA efficiency indexes in the literature. Finally, I investigate the relationship

between the returns-to-scale properties of DMUs and those of its constituting

SDMUs. This result is crucial to determining the minimum input requirement in

the general network production model. Revealing this linkage also sheds new light

on how a DMU can improve its scale performance from within.

10.2 Network DEA Models

To lay the groundwork for subsequent discussions, I next briefly introduce the

conventional DEA. In the conventional DEA model, the production processes

within a DMU are treated as a black box (i.e., only the input/output quantities at

the DMU level are considered). I then formalize the concept of dynamic production

networks.

10.2.1 Conventional DEA-Efficiency

Consider a set of DMUs indexed by K, operating at a particular time period

tm within the observation window indexed by T. For all k ∈ K, DMUk uses inputs

xtmk ¼ ½xtmpk�jPjp¼1∈ℜjPj
þ to produce outputs ztmk ¼ ½ztmuk�jUju¼1∈ℜjUj

þ , where P and

U are respectively the index sets for inputs and outputs, and ℜ∗
þ represents the

*-dimensional semipositive real space. For the time being, all inputs used are

assumed to have a contemporaneous correspondence to outputs, meaning that

inputs contribute only to the production in the same time period and vice versa.

10 A Network-DEA Model with Internal Dynamic Effects 211



The input-oriented technical efficiency of DMU0 can be measured by the CCR

model below (Charnes et al. 1978):

f CCRððxtm0 , ztm0 Þjðxtmk , ztmk Þ8k ∈ KÞ ¼ ~
ϑ

tm

0 ,
~λ 0, ~s

tm�
P0 , ~s tmþU0

� �

¼ argmin ϑtm0 � ε

�X
p∈ P

stm�p þ
X
u∈U

stm�u

���(
X
k∈ K

λkx
tm
pk þ stm�p0 ¼ ϑtm0 x

tm
p0 8p∈P,

X
k∈K

λkz
tm
uk � stmþu0 ¼ ztmu0 8u∈U,

λk, s
tmþ
p0 , stmþu0 are nonnegative real numbers

)
,

where ~λ 0 ¼ ½λk�jKjk¼1, ~s
tm�
P0 ¼ ½~s tm�p0 �jPjp¼1, ~s

tmþ
U0 ¼ ½~s tmþu0 �jUju¼1,

ε is a non-Archimedean infinitesimal:

ð10:1Þ

The first argument of the optimal set mapping fCCR is the input-output ordered

pair of DMU0. The second argument, namely ðxtmk , ztmk Þ 8k∈K, represents the

collection of all input/output data used to construct the referenced technology

with which DMU0 is compared. The objective of the LP in (10.1) is to proportion-

ally minimize the input vector of DMU0 and simultaneously maximize possible

input and output slacks, provided that the output vector is feasible in the program.

In particular, denoting the optimal solution of LP (10.1) by ð~ϑ tm
0 ,

~λ 0, ~s
tm�
P0 , ~s tmþU0 Þ, it

can be shown that ~ϑ tm
0 ∈ ð0, 1�, and ~ϑ tm

0 x
tm
0 � ~s tm�P0 represents the minimal input

consumption while ztm0 þ ~s tmþU0 is still producible. Then DMU0 is called weakly

efficient if ~ϑ tm
0 ¼ 1, and CCR-efficient if it is weakly efficient and the slack vectors

~s tm�P0 , ~s tmþU0 are componentwise zero. Note that CCR-efficiency is by definition a

stronger property than weakly efficiency. Assumption on variable returns-to-scale

(VRS) technology can be implemented by appending one additional constraint such

that λk’s sum up to one (see Banker and Thrall (1992) for discussions on returns-to-

scale in DEA). To make a clear distinction, the result obtained from LP (10.1) is

henceforth referred to as “DEA-efficiencies”.

10.2.2 Motivational Example

I next use an example to exemplify that conventional DEA and network DEA

models in the literature can break down in the presence of dynamic effects. In this

example, we want to measure the efficiency of three supply chains (DMUs), each

consisting of a manufacturing plant (Mfg) and a distribution center (DC) to perform

production activities (see Fig. 10.1). The input, output, inventory quantities (inv.),
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and efficiencies scores are shown in Table 10.1. Particularly, in Column 4 the italic

figures in the parentheses indicate the level of intermediate outputs that in effect

contributes to the concurrent final outputs, and Column 5 displays the inventory

level of DCs. For example, the Mfg-a uses 8 units of input to produce 5 units of

intermediate product in time period t0; the corresponding DC receives the interme-

diate outputs and processes it with its labor input to produce 6 units of final output.

For the moment let us assume all DCs use labor in proportion to the level of

intermediate outputs used. So its effect can be neglected, and we can focus on the

dynamic effect of intermediate outputs. More specifically, in t0 DC-a and DC-c

actually used 3 units and 4 units of the intermediate outputs, so in t0 2 units of

intermediate outputs were inventoried in DC-a, 1 unit for DC-c, and none for DC-b.

These inventoried intermediate outputs are then used to produce DC’s outputs in t1,
and for the moment the quality of the inventory are assumed to remain constant over

time (i.e., one unit of input stored in this period can be used equivalently as one unit

of input in the next period). Thus only DCs are influenced by the dynamic effect.

The Mfgs (DCs) of these three supply chains are benchmarked with Mfgs (DCs)

of the same period. The figures in the parentheses of Columns 3, 8 and 9 give the

ranks of the efficiency scores. When dynamic effects are considered in the analysis,

all DCs are CCR-efficient in time period t0 and t1 (Column 7). Given the fact that all

DCs are actually CCR-efficient, the operation of Mfg should be the only source of

inefficiency and therefore the supply chains’ efficiency ranking should follow

those of Mfgs (Column 3). However, the rankings obtained from the CCR model

Mfg-a

DC-a

xm

zdc zdc zdc

DMUa

Mfg-b

DC-b

xm

DMUb
ym ymym

Mfg-c

DC-c

xm

DMUc

Fig. 10.1 Illustration

of the supply chain example

Table 10.1 Data and evaluation results of the supply chain example

DMU xm ym effm ym inv. zdc effdc
a effDMU

b effDMU
c

(t0)a
b
c

8

10

12

5

5

5

1.00(1)

0.80(2)

0.67(3)

5(3)
5(5)
5(4)

2

0

1

6

10

8

1.00

1.00

1.00

0.75(2)

1.00(1)

0.67(3)

0.60(2)

0.80(1)

0.53(3)

(t1)a
b
c

12

10

8

5

5

5

0.67(3)

0.80(2)

1.00(1)

5(7)
5(5)
5(6)

0

0

0

14

10

12

1.00

1.00

1.00

0.78(2)

0.67(3)

1.00(1)

0.67(2)

0.57(3)

0.85(1)
aDC’s real efficiency
bDMU’s efficiency scores given by the CCR DEA model
cDMU’s efficiency scores given by the index from Lewis and Sexton (2004)
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(Column 8) and the model of Lewis and Sexton (2004) (Column 9) deviate from the

anticipated results in both t0 and t1, indicating that these two models may produce

misleading results in the presence of dynamic effects.

10.2.3 Production Networks

Next I formally introduce the analysis of production networks. Consider the case

where two SDMUs I1 and J1 are found in DMUk 8k ∈ K (see Fig. 10.2). Then, in

the case of no dynamic effect, the input/output vectors related to DMUk can be

recast as xtmk ¼ ½xtmI1k xtmJ1k� and ztmk ¼ ½ztmJ1k�, where xtmI1k ∈ℜjPI j
þ and xtmJ1k ∈ℜjPJ j

þ are the

external inputs used by I1 and J1 in time period tm, respectively. Clearly

jPIj þ jPJj ¼ jPj. In particular, SDMU I1 uses x
tm
I1k

to produce intermediate outputs

ytmI1J1k∈ℜjQj
þ , where the subscripts specify the origin I1 and the destination J1 of the

intermediate outputs indexed by Q. The intermediate outputs can be alternatively

expressed as a vector ½ytmqI1J1k�
jQj
q¼1. SDMU J1 employs both xtmJ1k and y

tm
I1J1k

produced by

I1 to yield the final outputs ztmJ1k. Thus homogeneity of SDMUs can be defined as:

Definition 1 (Homogeneous SDMUs) Two SDMUs I1 and I2 are homogeneous if

and only if they employ the same inputs to produce the same outputs. Two SDMUs

belong to the same layer if they are homogeneous.

By Definition 1, the membership of a layer is actually defined in terms of the

homogeneity of SDMUs. Consequently, homogenous SDMUs can measure their

relative efficiencies by making use of LP (10.1) with all other SDMUs in the same

layer being the reference group. Moreover I1 and J1 can only be compared with their

counterparts in their own layers according to this definition.

10.2.3.1 Layers in a DMU

We can further extend the concept to the case where individual layers within one

DMU consist of multiple SDMUs. In this extended framework, the environment

described in the preceding subsection becomes a special case. However, by treating

SDMU-I1 SDMU-J1

yI1J1k

xJ1k

tm

tm

zJ1k
tmxI1k

tm

DMUk

Fig. 10.2 Production

networks (no dynamic

effect)
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individual layers in the multi-SDMU model as black boxes, the model will reduce

to the single-SDMU case. Now consider the case where there are two layers I and
J in each DMU (i.e., two distinct groups of homogeneous SDMUs). SDMUs in

these two layers in DMUk can be represented by the non-empty layer sets LI
k and

LJ
k, respectively. Further, denote two universal layer sets by LI and LJ, where

LI ¼
S

k ∈ KLI
k and LJ ¼

S
k ∈ KLJ

k. These notations allows is to analytically

describe each DMUk in terms of its constituent SDMUs: ðLk
I ,L

k
J ,A

kÞ, where
LI

k � LI and LJ
k � LJ and Ak denotes the arc set of DMUk. The arc set represents

the connectivities between SDMUs in one layer to those in the other. More

generally, the production process of an arbitrary DMUk comprising a total of

l layers, can be described as an ordered (l + 1)-tuples ðLk
1,L

k
2, . . . ,L

k
l ,A

kÞ.
Furthermore, let Sk denote the collection of all SDMUs in DMUk, then[l

i¼1
Lk
i ¼ Sk, and Lk

l1

T
Lk
l2
¼ ∅ for any l1, l2 ∈ l, l1 6¼ l2. These expressions

imply that each SDMU can belong to one layer only, and each DMU has at least one

SDMU in each layer. Here it is assumed that SDMUs do not consume intermediate

outputs from SDMUs in the same layer, and therefore SDMUs within each layer are

not interconnected. Now we are ready to define the structural homogeneity of

DMUs that have multiple layers of SDMUs:

Definition 2 (Structurally homogeneous DMUs) DMU-k1 and DMU-k2 are

structurally homogeneous if, and only if Ak1 ¼ Ak2 and nðLk1
l Þ ¼ nðLk2

l Þ for all l,
where n(�) is equal to the cardinality of the set.

Definition 2 defines the homogeneity of DMUs in terms of their layer structure.

Similar to the homogeneity notion in conventional DEA, Definition 2 determines

which DMUs are amenable to the analysis of our model. Also, it is clear that

structural homogeneity implies the homogeneity in the conventional DEA models

but the reverse does not necessarily hold true. In conclusion, I show that production

networks can be characterized by the structural relationship between different

hierarchical production units: a DMU’s operation comprises the flows from and

between the exterior and its internal layers, and the layers’ production activities are

fulfilled by their subordinate SDMUs.

10.2.4 Dynamic Effects in the Duo-Layer Network

I now introduce the analysis to the dynamic effect in a duo-layer production

network. To facilitate the presentation, later discussions will be limited to the

single-SDMU model, which is shown in Figs. 10.3a and 10.4. Nevertheless,

the concept used to construct the single-SDMU model (hereafter “the model”) is

equally applicable in the extended multi-SDMU model (see Fig. 10.3b). In the

model, dynamic effects prevail only in the layer LJ and are represented by

the shaded triangle in Figs. 10.3 and 10.4. The notations used here follow those
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introduced in the preceding subsections. So in tm ∈ T, DMUk uses x
tm
k ¼ ½xtmI1k xtmJ1k�

to produce ztmk ¼ ½ztmJ1k�. Specifically, if we denote the i-th SDMU in layer I of

DMUk by s(i, I, k), then s(1, I, k) consumes xtmI1k to produce the intermediate output

ytmI1J1k, and s(1, J, k) employs both ytmI1J1k and xtmJ1k to yield ztmJ1k.

As for the dynamic factors, let us define αtmtnI1J1k
¼ ½αtmtnqI1J1k

�jQjq¼1 where αtmtnqI1J1k

∈ ½0, 1� 8q∈Q. For DMUk, each component in this vector specifies the proportion

of an intermediate output q that was produced by s(1, I, k) in tm, received by

∑

DMUk

SDMU-I1

SDMU-I1

SDMU-I2 SDMU-J2

SDMU-J1

SDMU-Ii SDMU-Ij

SDMU-J1

αqI1J1k
yqI1J1k

tntn tn

(1 − αqI1J1k
)yqI1J1k

tntn tn

αqIiJjk
yqIiJjk

tntn tn

DMUk

xI1k
tn

xIik

tn

zJ1k
tn

xJ1k
tn

zJjk
tn

xJjk
tn

βq
tn αqI1J1k

yqI1J1k
tmtn tmtm

∑

{m|m≤n}

{m|m≤n}

(1 − αqIiJjk
)yqIiJjk

tntn tn

βq
tn αqIiJjk

yqIiJjk
tmtn tmtm

a

b

Fig. 10.3 Single-SDMU and multi-SDMU model (cross-section view). (a) Single-SDMU model.

(b) Multi-SDMU model
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s(1, J, k) and takes effect in tn. The effectiveness of the unconsumed intermediate

output is contingent on the factor βtmtn ¼ ½βtmtnq �jQjq¼1, where β
tmtn
q � 0 8q ∈ Q. The

value of this factor will depend on the operational environment. This factor can

readily express the degree of perishableness of intermediate outputs when the value

is strictly less than one. We can further assume that (i) the dynamic effects influence

the target periods only, and these effects will be fully exploited in the target periods

(i.e, no compound effect exists), and (ii) the system does not produce residual

dynamic effect affecting the production in all subsequent periods beyond the

observation window T (see, e.g., Fig. 10.4). Then by definition it follows that:X
fnjn�m;tm, tn ∈ Tg

αtmtnqI1J1k
¼ 1 8tm∈T, q∈Q, k∈K ð10:2Þ

Note that zero is not a permissible value for αtmtnqI1J1k
when tm ¼ tn ¼ t0 (i.e., the

first period of production), since in this case the model would violate the production

axiom—null inputs produce non-zero outputs in the first period t0 of production

(see, e.g., Färe and Grosskopf 1996, p. 12). Similarly it also follows that βtmtn is a
non-zero vector. Then the effective intermediate outputs used by s(1, J, k) in tn for
production are (see also Fig. 10.3):

αtntnqI1J1k
ytnqI1J1k þ

X
fmjm�n, tm, tn ∈ Tg

βtmtnq αtmtnqI1J1k
ytmqI1J1k 8q∈Q ð10:3Þ

To succinctly demonstrate the core ideas of the proposed model, in the remainder

I focus on the efficiency measuring in the two-period case, i.e., T ¼ {t0, t1}. In this

setting, the dynamic effects only influence the adjacent time period. Formally, this

s(1,I,k) s(1,I,k)

s(1,J,k)s(1,J,k)

zt0
J1k zt1

J1k

DMUk in t0 DMUk in t1

xI1k
t1

xJ1k
t1xJ1k

t0

xI1k
t0

αqI1J1k
yqI1J1k

t0t1 t0

αqI1J1k
yqI1J1k

t1t1 t1αqI1J1k
yqI1J1k

t0t0 t0

βq
t1αqI1J1k

yqI1J1k
t0 t1 t0t0

Fig. 10.4 Dynamic structure of the single-SDMU model
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means αtmtnI1J1k
¼ 0 for all {tm, tn ∈ T j tn � tm > 1} and k ∈ K. As can be seen in

Fig. 10.4, only αt0t0I1J1k
of the intermediate outputs of s(1, I, k) ∈ LI is contemporane-

ous, contributing their effects to the production of s(1, J, k) ∈ LJ concurrently, and

the rest will dynamically influence s(1, J, k)’s production in the next time period.

Thus in time t1, s(1, J, k) uses not only part of the intermediate outputs produced by

s(1, I, k) in time t1, but also those produced in the previous time period due to the

dynamic effect. Finally, note that the dynamic effect can be either physically observ-

able (e.g., inventory) or only conceptual (e.g., improvement in human resources)

in nature, so the shaded triangles in the figures only symbolize the effect.

10.3 Efficiency Measurement

The mathematical formulations of the proposed network-DEAmodel and efficiency

measures will be introduced in this section. Following the formulation of LP (10.1)

shown earlier, I limit the discussion to the input-oriented measure only, and the

technology is assumed to exhibit constant returns-to-scale (CRS). Output-oriented

measures can be developed and implemented analogously. Our model describes the

situation where each DMU consists of two SDMUs and the first SDMU provides its

intermediate outputs to the other SDMU. More specifically, the model depicts a

two-SDMU production network, in which the production of the second SDMU is

affected by the dynamic effect. The DEA-efficiencies of SDMUs are derived and

interpreted as in LP (10.1), and the results are subsequently used to compute our

new efficiency measure. I use the new measure to evaluate DMUs and their SDMUs

according to their ability to use minimal inputs to produce a given level of outputs

in the dynamic production network.

10.3.1 DEA Efficiencies: SDMUs

Consider a set of homogeneous DMUs operating over time periods T. Each DMU

has two layers of SDMUs I, J, and each DMU has one SDMU within each layer.

Referring to Fig. 10.3a, we can see that s(1, I, k) ¼ LI
k and s(1, J, k) ¼ LJ

k. Using

the notations defined earlier, we can identify the following properties:

nðLIÞ ¼ nðLJÞ ¼ k, nðLk
I Þ ¼ nðLk

JÞ ¼ 1

nðSkÞ ¼ nðLk
I

[
Lk
JÞ ¼ nðLk

I Þ þ nðLk
JÞ ¼ 2,Ak1 ¼ Ak2 for all k, k1, k2∈K:

Measuring SDMU’s DEA-efficiency is straightforward. Each SDMU is

benchmarked with other SDMUs in the same layer set operating in the same time

period. Formally, the efficiency of SDMUs can be measured by invoking LP (10.1):
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Efficiency of s(1, I, 0) in time t0:

ð~ϑ t0
I10
, ~λ 0, ~s

t0�
PII10

, ~s t0þQI10Þ ¼ f CCR ðxt0I10, yt0I10Þjðxt0I1k, yt0I1kÞ 8k∈K

� �
ð10:4Þ

Efficiency of s(1, I, 0) in time t1:

ð~ϑ t1
I10
, ~λ 0, ~s

t1�
PII10

, ~s t1þQI10Þ ¼ f CCR ðxt1I10, yt1I10Þjðxt1I1k, yt1I1kÞ 8k∈K

� �
ð10:5Þ

Efficiency of s(1, J, 0) in time t0:

ð~ϑ t0
J10

, ~λ 0, ~s
t0�
PJJ10

, ~s t0�QJ10, ~s
t0þ
UJ10

Þ ¼ f CCR ðxt0J10, zt0J10Þjðxt0J1k, zt0J1kÞ 8k∈K

� �
,

where xt0J1k ¼ xt0J1k αt0t0I1J1k
� yt0I1J1k

� �h i ð10:6Þ

Efficiency of s(1, J, 0) in time t1:

ð~ϑ t1
J10

, ~λ 0, ~s
t1�
PJJ10

, ~s t1�QJ10, ~s
t1þ
UJ10

Þ ¼ f CCR ðxt1J10, zt1J10Þjðxt1J1k, zt1J1kÞ 8k∈K

� �
,

where xt1J1k ¼ xt1J1k αt1t1I1J1k
� yt1I1J1k þ βt0t1 � αt0t1I1J1k

� yt0I1J1k
� �h i

ð10:7Þ
where “�” in (10.6) and (10.7) denotes the componentwisemultiplication of twovectors.

Observe that in (10.4) and (10.5) y is the production output, while in (10.6) and (10.7) it

is treated as an input. Since t1 is the final period, it holds that α
t0t0
I1J1k

þ αt0t1I1J1k
¼ αt1t1I1J1k

¼ ijQj where ijQj is an jQj vector with all components equal to one. Consequently,

model (10.6) and (10.7) will reduce to the conventional DEA model without dynamic

effects if αt0t0I1J1k
¼ ijQj. Before introducing the new efficiency measure in the dynamic

environment, let us first prove the following theorem, which shows the relationship

between DEA-efficiencies of SDMUs and that of their parent DMU.

Theorem 1 If s(1, I, k) and s(1, J, k) are both CCR-efficient in some period, then
DMUk is CCR-efficient in that period.

Proof Suppose that DMUk is not CCR-efficient. Then there must exist some vectors

~s �PII1k
, ~s �PJJ1k

and ~s þUJ1k and at least one of them is semipositive, such that ðxI1k �
~s �PII1k

, yI1J1kÞ and ð½yI1J1k xJ1k � ~s �PJJ1k
�, zJ1k þ ~s þUJ1kÞ are both feasible in s(1, I, k)’s

and s(1, J, k)’s respective DEA models LP (10.1). This contradicts the assumption

that s(1, I, k) and s(1, J, k) are both CCR-efficient. Thus the result follows. □

Note that the converse of the theorem is not necessarily true. This can be observed

from the fact that CCR-efficiencies of a DMU do not give further information about

the levels of intermediate outputs in the DMU. Thus CCR-efficiencies of SDMUs

are not assured. To illustrate, consider a simple two-SDMU example consisting of

DMUa and DMUb as in Fig. 10.2. Let (2, 3, 1, 1) and (1, 1, 1, 1) denote (input of
s(1, I,�), intermediate output, input of s(1, J,�), final output) of these two DMUs.

Note that DMUb is CCR-efficient but s(1, I, b) is not.
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10.3.2 Ψ -Efficiencies of SDMUs and DMU

According to the layer structure developed earlier, we can see that the operation of a

production network system depends on the collaborative production of its internal

multiple layers, whose tasks are further carried out by the SDMUs belonged to the

corresponding layer. Likewise, we can measure the efficiency of production net-

works by first estimating the efficiencies of SDMUs, then of layers, then finally of

the entire DMU. Our new efficiency measure considers both the network structure

and the dynamic effect in production. The underlying concept of our approach still

adheres to the classical notion of productivity in production economics, namely

“consuming less inputs to produce equivalent outputs.” In our network production

model, the minimal input requirements of layers are computed by applying

backward-induction-like techniques to the second layer then to the first, assuming

that all SDMU are technically efficient.

Here, in the case of two-period, duo-layer with one SDMU in each layer, I define

two input-oriented efficiency indices (10.8) and (10.9) with respect to s(1, J, k) and
s(1, I, k), i.e., ΨJ1k and ΨI1k, respectively.

ΨJ1k : ¼ max
p∈ PJ, q∈ Q

X
t∈ T

x∗t
pJ1kX

t∈ T

xtpJ1k
,

X
t∈ T

y∗t
qI1J1kX

t∈ T

ytqI1J1k

8><
>:

9>=
>;

¼ max
p∈ PJ, q∈ Q

X
t∈ ft0, t1g

ð~ϑt
J1k

xtpJ1k � ~st�pJ1kÞX
t∈ ft0, t1g

xtpJ1k
,

X
t∈ ft0, t1g

ð~ϑt
J1k

ytqI1J1k � ~st�qJ1kÞX
t∈ ft0, t1g

ytqI1J1k

8>><
>>:

9>>=
>>;,

where x∗ and y∗ represent the possible minimized input use:

ð10:8Þ

ΨI1k : ¼ max
p∈ PI

X
t∈ T

x∗t
pI1kX

t∈ T

xtpI1k

8><
>:

9>=
>;

¼ max
p∈ PI

max
q∈ Q

fξqg � ð~ϑt0
I1k
xt0pI1k � ~st0�pI1kÞ þ ~ϑt1

J1k
ð~ϑt1

I1k
xt1pI1k � ~st1�pI1kÞ

xt0pI1k þ xt1pI1k

8<
:

9=
;

where ξq ¼
ð~ϑ t0

J1k
αt0t0qI1J1

yt0qI1J1 � ~s t0�qI1J1kÞ þ ð~ϑ t1
J1k

αt0t1qI1J1
βt0t1q yt0qI1J1 � ~s t1�qI1J1kÞ

yt0qI1J1

¼ ~ϑ t0
J1k

αt0t0qI1J1
þ ~ϑ t1

J1k
ð1� αt0t0qI1J1

Þβt0t1q � ~s t0�qI1J1k þ ~s t1�qI1J1k
yt0qI1J1

,

x∗represents the possible minimized input use:

ð10:9Þ
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Derivations of (10.8) and (10.9) are recounted as follows. The numerator

of (10.8) and (10.9) represents the minimal aggregate input requirement with

respect to the aggregate final output in these two periods. The denominators

consist of the aggregate inputs used by the SDMU. To compute the numerator

of ΨJ1k, the efficiencies and input slacks of s(1, J, k) in t0 and t1 are first derived

from (10.6) and (10.7). The maximum operator, instead of the minimum, is

applied to the ratio because otherwise one cannot ensure that the final output

vectors are still producible after implementing this reduction ratio. ΨI1k bears a

relatively complex structure, because s(1, I, k) is entangled in the dynamic effect

that it imposes on s(1, J, k).
Similar to the SDMU in LJ, s(1, I, k) will invoke (10.4) and (10.5) to obtain the

required entries of the efficiency index (10.9). Subsequently, we can derive the

numerator of (10.9) in two steps corresponding to the production in t0 and t1. In t1,

s(1, I, k) first has to reduce its input vector to ~ϑ t1
I1k
xt1I1k � ~s t1�PII1k

to render itself

technically efficient. Secondly, s(1, I, k) has to further reduce its outputs, and

thereby its inputs, by a ratio ~ϑ t1
J1k

in order to accommodate itself to the input

reduction from s(1, J, k) in t1. So in t1, s(1, I, k) can reduce its input to ~ϑ t1
J1k

ð~ϑ t1
I1k

xt1I1k � ~s t1�PII1k
Þ and s(1, J, k) can still produce zt1J1k. Similarly, in t0, s(1, I, k) can first

reduce its input levels to ~ϑ to
I1k
xt0I1k � ~s t0�PII1k

. In the second step, we need to consider

the input reduction from s(1, J, k) in both t0 and t1 due to the dynamic effect

(see Fig. 10.4 for an illustration). This reduction factor, denoted by ξq in (10.9),

is the ratio of the minimally required level of intermediate outputs to the observed

intermediate outputs produced at time period t0. In particular, the terms within the

first pair of parentheses in the numerator of ξq correspond to the minimal require-

ment of intermediate output q for the production of s(1, J, k) in t0 (results derived
from (10.6)); the terms within the second pair of parentheses have a similar

meaning except for the term t1 and the additional decay factor in the formulation

(results derived from (10.7)). So (10.9) indicates that the input requirement of

s(1, I, k) in t0 also relates to the performance of s(1, J, k) in both t0 and t1 due to

the intra-connected network structure and the dynamic effect. The influence of the

performance of s(1, J, k) in t1 on the index depends on the intensity of dynamic

effects that s(1, I, k) contributes to s(1, J, k). This dynamic interrelation will be

further discussed in the next subsection.

A SDMU s(i, I, k) is called input-oriented Ψ-efficient if, and only if ΨIik ¼ 1.

Based on (10.8) and (10.9), we can observe several properties of these two

Ψ-efficiency indexes:

Property 1 ΨJ1k∈ ð0, 1�, and s(1, J, k) is Ψ-efficient

(a) If and only if s(1, J, k) is weakly efficient in both t0 and t1, and either st0�pJ1k
¼ st1�pJ1k ¼ 0 for at least one p ∈ PJ or s

t0�
qJ1k

¼ st1�qJ1k ¼ 0 for at least one q ∈ Q.

(b) If s(1, J, k) is CCR-efficient in both t0 and t1.
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Proof From LP (10.1) we know xt∗pJ1k � ~ϑ t∗
J1k

xt∗pJ1k � ~s t∗�pJ1k
, and yt∗qJ1k � ~ϑ t∗

J1k
yt∗qJ1k

�~s t∗�qJ1k
for ∗ ¼ 1, 2 and all p ∈ PJ, q ∈ Q. Hence ΨJ1k ∈ ð0, 1� because input

vectors are semipositive (see also Theorem 3.3 in Cooper et al. 2006). Given

ΨJ1k ¼ 1, there must exist at least one p ∈ PJ (or one q ∈ Q), such that equalities

hold in the above two inequalities. Thus ~ϑ t0
J1k

¼ ~ϑ t1
J1k

¼ 1, and either ~s t0�pJ1 ¼ ~s t1�pJ1
¼ 0 for some p ∈ PJ or ~s

t0�
qJ1

¼ ~s t1�qJ1 ¼ 0 for some q ∈ Q. Then the sufficiency of

(a) is proved. The necessity of (a) can be shown by simple algebraic substitutions.

The proof of (b) follows immediately from (a). □

Property 2 ΨI1k ∈ ð0, 1�, and s(1, I, k) is Ψ-efficient

(a) If and only if the following three conditions are all met: (1) s(1, I, k) and

s(1, J, k) are weakly efficient in both t0 and t1, (2) st0�pI1k ¼ st1�pI1k ¼ 0 for at

least one p ∈ PI, and (3) st0�qI1J1k ¼ st1�qI1J1k ¼ 0, and either βt0t1q ¼ 1 or αt0t0qI1J1k

¼ 1 for some q ∈ Q.
(b) If s(1, I, k) and s(1, J, k) are CCR-efficient in both t0 and t1 and either β

t0t1
q ¼ 1

or αt0t0qI1J1k
¼ 1 for some q ∈ Q. □

Proof Similar to the proof of Property 1.

The Ψ-efficiency of a DMU is defined as in Definition 3. This definition is also

applicable in the general case where multiple SDMUs exist in each layer.

Definition 3 (Ψ-efficiencies of DMUs) DMUk’s input-oriented Ψ-efficiency is

defined by

Ψk ¼
Y
i∈ Lk

I

ΨIik

0
@

1
A

1=nðLk
I Þ Y

j∈ Lk
J

ΨJjk

0
@

1
A

1=nðLk
JÞ

and DMUk is called input-oriented Ψ-efficient if, and only if Ψk ¼ 1.

By Definition 3, two properties follow immediately from Properties 1 and 2.

Property 3 Ψk ∈ (0, 1] and DMUk is Ψ-efficient if, and only if s(1, I, k) and
s(1, J, k) are both Ψ-efficient.

Property 4 If DMUk is Ψ-efficient, then DMUk is at least weakly efficient in
t0 and t1.

10.3.3 Discussions on Ψ -Efficiencies

The first remark is that the Ψ-efficiency of s(1, I, k) depends not only on its own

performance, but also on the performance of s(1, J, k) to an extent moderated by

the dynamic parameters. Observe that s(1, I, k) and s(1, J, k) will become
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independent of each other in production, if there does not exist any connection

between these two layers. In this case, the former intermediate output changes into

the final output, and s(1, I, k) is no longer associated with s(1, J, k) in terms of

the DMU’s final outputs. Therefore its Ψ-efficiency can be measured in a way

similar to (10.8).

Property 1 indicates that CCR-efficiency is a sufficient condition for s(1, J, k)
to be Ψ-efficient, while weakly efficiency is not. Properties 1 and 2 together

imply that by Definition 3 there can be no Ψ-efficient DMU at all, either because

of the internal inefficiency or the production externality due to the dynamic

effect. However, the non-existence of efficient DMUs can be considered a

relative merit of our approach, as compared to the conventional DEA, because

the network-DEA model is more sensitive in detecting inefficiencies. If we

assume that either intermediate outputs are of equivalent effect in t1 as in t0
(i.e., βt0t1q ¼ 1, no decay effect), or they are contemporaneous (i.e., αt0t0qI1J1

¼ 1, so

the decay factor becomes irrelevant), Property 2 is actually quite similar to

Property 1, except for those conditions related to the efficiencies of s(1, J, k).

However, Property 2 does not hold when βt0t1 and αt0t0I1J1k
are strictly less than one.

In fact, s(1, I, k) is then Ψ-inefficient by default in this two-period model. This is

because the utility of a proportion of the intermediate outputs will inevitably be

nullified by the decay factor. Definition 3 specifies the Ψ-efficiency of a DMU as

the product of two geometric means, which individually can be interpreted as the

average Ψ-efficiency of a layer in the DMU. In other words, a DMU’s

Ψ-efficiencies depend on the Ψ-efficiencies of its layers, which will further rely

on the performance of those SDMUs within the corresponding layer. Property 3

shows that a DMU is Ψ-efficient if and only if all SDMUs within the DMU are

also Ψ-efficient. Therefore, under some appropriate assumptions on the parame-

ters of dynamic effects, SDMU’s CCR-efficiencies can imply DMU’s

Ψ-efficiencies, which also suggests that the DMU is weakly efficient in both

periods (Property 4).

Finally, we can schematically summarize the relationships between the

Ψ-efficiency and the DEA-efficiency of different production units (see

Fig. 10.5). This figure shows a new perspective on the connections between

All SDMU
CCR-eff.
in t0, t1

DMU
CCR-eff.
in t0, t1

All SDMU
weakly-eff.
in t0, t1

DMU
weakly-eff.
in t0, t1

One
SDMU

weakly-eff.
in t0, t1

ΨI1
 -eff.

and
ΨJ1

 -eff.

Ψk-eff.

Theorem1
a

g
h
Prop.1(a)
Prop.2(a)

c Prop.3

d

Prop.4

f

e

b

Prop.1(b)
Prop.2(b)

Fig. 10.5 Relationships

among Ψ-efficiencies and
DEA-efficiencies
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static and dynamic efficiencies, and it also provides a road map for decision-

makers to reexamine and improve their performance. Links in the figure (i.e., a,
b, c and d ) are substantiated by the corresponding Theorem or Property anno-

tated beside the link. Link f and g come directly from the definition via e. Link
h is affirmed by the above discussion, from which we know that Ψ-efficiencies of
SDMUs imply their own weakly efficiencies. Yang et al. (2000) proved that a

DMU is CCR-efficient if and only if all SDMUs in the DMU are also

CCR-efficient. This finding is not entirely compatible to our model (cf. link

a in Fig. 10.5) due to the discrepant internal structures: in our terminology, the

production network in Yang et al. can be described as a single-SDMU, multi-

layer production network, in which no linkage exists between layers. Link e was
proved in Castelli et al. (2004).

10.4 RTS of Production Networks

By exploring the internal structure of a DMU, we can identify the relationship

between the RTS property of a DMU and that of its constituting layers of SDMUs.

Disclosing this interrelationship helps signify new insights that the decision-maker

at the DMU level can employ to improve the scale efficiency from within.

Before investigating the RTS properties, let us first check whether introducing

network structures will interfere with the propensity of the RTS of a DMU. Let us

first look at the invariance property of production networks. Consider now for every

DMUk there are two layers LI
k and LJ

k inside, and each layer can include single or

multiple SDMUs. I use the backward-induction technique introduced in the previ-

ous section to calculate the Ψ-efficiency index. Then, if LJ
k needs to reduce the

aggregate use of intermediate outputs produced by LI
k by, say, 20 %, will the

subsequent input reduction of LI
k vary if output reductions are not allocated evenly

to each SDMU in LI
k? One can also relate this situation to the scenario where the

demand for a certain product is declining in the market but its impact to different

suppliers is asymmetrical. This is an important issue, because otherwise the RTS

property of a DMU will lose tractability in the network environment. Define the

degree of RTS as the ratio between the proportional increase in inputs and

the corresponding proportional increase in outputs. Then the back-attributively
invariant property means that, if the SDMUs that are being back-attributed have

the same degree of RTS,1 the total amount of input saved in this layer is invariant

even under different back-attribution schemes, provided that the mix of aggregate

intermediate outputs of the downstream layer remains constant after reductions.

1 This is not to be confused with the CRS assumption in the conventional DEA model, as the latter

is a special case of the former.
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Specifically, for some θ ∈ (0, 1], the constant-mix condition between two layers

can be mathematically represented as:

X
i∈ Lk

I

X
j∈ Lk

J

~yqIiJjk ¼ θ
X
i∈ Lk

I

X
j∈ Lk

J

yqIiJjk 8q∈Q ð10:10Þ

where ~yqIiJjk denotes the reduced level of intermediate output q corresponding to

the aggregate input reduction of LJ
k. So the mix among different intermediate

outputs is maintained after reduction. Additionally, denoting the degree of RTS of

s(i, I, k) by ζIi , the same degree of RTS assumption is equivalent to the following

condition:

ζIi ¼ ζI for all i∈Lk
I : ð10:11Þ

The above statements can be formally summarized in the following proposition.

Proposition 1 Suppose LI
k precedes LJ

k in terms of flows, then the total amount of
inputs reduced in LI

k by performing backward-induction is back-attributively
invariant if and only if all SDMUs in LI

k have the same degree of RTS, provided
that the intermediate output mix remains constant.

Proof of Proposition 1 Let ~ϑ Jjk be the DEA-efficiency score of s( j, J, k) ∈ LJ
k. By

this score we can identify s( j, J, k)’s efficient target, which uses intermediate

outputs ~ϑ JjkyqIiJj � ~s �qJjk8q∈Q and input ~ϑ JjkxpJj � ~s �pJjk8p∈PJ to produce the

given level of final outputs. By the constant-mix assumption (10.10), the following

equation holds for the aggregate intermediate output reduction of LJ
k:

X
j∈ Lk

J

ð1� ~ϑ JjkÞ
X
i∈ Lk

I

yqIiJjk þ ~s �qJjk

0
@

1
A ¼ θYq 8q∈Q

where θ∈ ð0, 1� is some constant and Yq ¼
X
i∈ Lk

I

X
j∈ Lk

J

yqIiJjk ð10:12Þ

Thus we can omit the subscript q without the risk of confusion. Let ϕIi∈ ½0, 1� be
the ratio of the total reductions in the intermediate outputs allocated to s(i, I, k), and
it thereby has to reduce its outputs by the amount equal to (10.13).

ϕIikθY, where
X
i∈ Lk

I

ϕIi ¼ 1 ð10:13Þ

The reduction in inputs consumed by s(i, I, k) is proportional to its output

reductions, because of the assumption that LI
k exhibits the same degree of RTS as
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defined in (10.11). ThusζIi ¼ ζI holds for all i ∈ LI
k. Then the total input reductions

can be expressed via: X
i∈ Lk

I

ðζIiϕIiθYÞ ¼ ζIθY
X
i∈ Lk

I

ϕIi ¼ ζIθY ð10:14Þ

Equation (10.14) indicates that the total input reduction is invariant with

different values of ϕIi . This shows the necessity of the condition. To prove the

sufficiency, the total reduction in inputs used by LI
k can be written as:X

i∈ Lk
I

ζIiϕIiθY ¼ θY
X
i∈ Lk

I

ϕIiζIi ð10:15Þ

Given that total amount of input saved in LI
k is attributively invariant, the

summation term on the right side of (10.15) has to be a constant for different

ϕIi ∈ ½0, 1�. Thus ζIi ¼ ζI must hold for all i ∈ LI
k. This also implies that all

s(i, I, k) ∈ LI
k exhibit the same degree of RTS ζI in production. □

As opposed to the assumption of the same degree of RTS in Proposition 1, if the

technology of LI
k exhibits variable degrees of RTS (i.e., for different i ∈ I, s(i, I, k)

can produce at different degrees of RTS), then the problem will become compli-

cated, since now different allocation schemes can result in different total input

reductions of the precedent layer. Moreover, output reductions itself can lead to

changes in RTS of LI
k. Thus here in this study constant RTS (CRS) is assumed in all

layers.

Following Proposition 1, two corollaries can be derived (cf. Färe and

Grosskopf 1996, p. 163).

Corollary 1 If LI
k and LJ

k exhibit CRS, then DMUk also exhibits CRS.

Corollary 2 Suppose DMUk is Ψ k-efficient and denote ζk as the degree of RTS of
DMUk, ζI as that of s(i, I, k)8i, ζJ as that of s(j, J, k)8j. Then ζk ¼ ζIζJ.

Corollary 1 suggests that the DMU can achieve CRS if all of its constituent

SDMUs also operate on CRS. However the reverse is not necessarily true, since one

layer with increasing RTS and the other with decreasing RTS can also result in CRS

at the DMU level. Färe and Grosskopf (1996) proved the sufficient condition for a

network consisting of a series of technologies to exhibit CRS. Corollary 1 is in line

with their finding. However the production network in their study corresponds to a

multi-layer version of the single-SDMU model without dynamic effects, which is

different from our model. Corollary 2 reveals the causal relationship of the RTS

properties between a DMU and its SDMUs. Thus decision-makers have to seek the

balance between two layers to optimize the scale performance. For example, a

DMU can increase the overall scale of the layer exhibiting increasing RTS, and

diminish the overall scale of the layer exhibiting decreasing RTS. Additionally, the

DMU must simultaneously maintain the efficiencies of all its SDMUs and promote

a well-connected coordination between two layers (i.e., incorporating the influence
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of dynamic effects into decision-makings). Consequently, one can also consider

increasing or decreasing the number of SDMUs that possess a specific RTS, so as

to improve scale performance and balance supply and demand between layers

(e.g., downsize, merge, enlarge or acquire new SDMUs).

10.5 Numerical Example

The proposed efficiency measure is applied to a numerical example consisting of

six DMUs and two observation periods t0 and t1 (see Fig. 10.3a and Table 10.2).

Using the notation defined earlier, we now have s(1, I, k) and s(1, J, k) for k ¼ 1 to 6,

and T ¼ {t0, t1}. The control factor β
t0t1
q is assumed to be unity. αt0t0qI1J1k

is designated

to be 0.7 for all k. The data and the efficiency scores are tabulated in Table 10.2. It can
be seen that no SDMU in LI is Ψ-efficient, whereas one SDMU in layer LJ is

Ψ-efficient. Moreover, the mean Ψ-efficiency score of the SDMUs in LI (� 0.72)

is lower than that of LJ (� 0.81). This result indicates LJ outperforms LI as a whole.

Specifically, only s(1, J, 3) is Ψ-efficient because it is CCR-efficient in t0 and t1
(Columns 14 and 15). This result is clear from Properties 1 and 2. Unlike in DEA

models, none of the six DMUs achieves Ψ-efficiency (Column 13), because they did

not use minimal inputs vector xI1 and xJ1 to produce the given level of final outputs.

Insights and directions for improvements can be discovered by decomposing the

DMU’s Ψ-efficiency score into SDMU’s Ψ-efficiencies (Columns 11 and 12). The

feature of efficiency decomposition is a clear advantage over the ordinary DEA

analysis, which comparatively reveals deficient information for improving the inter-

nal production processes.

10.6 Discussion and Conclusion

This study shows that conventional DEA approaches may lead to biased results due

to the dynamic effect in production networks, and proposes a systematic approach

to incorporate the effect into efficiency measurement. The proposed Ψ-efficiency
measure is built upon the hierarchical and interrelated production structure within a

DMU. Using this approach, decision-makers can inerrably delve into the produc-

tion network and pinpoint areas for improvement. Various connections between the

DEA efficiency and the Ψ-efficiency have been established. This chapter also

shows, in the network production, the RTS properties of DMUs can be character-

ized by those of its constitutive SDMUs. In all, decision-makers can substantially

benefit from our approach to methodically analyzing and seeking for performance

improvements in the dynamic production network.

This study has several additional implications. This study adverts to an impor-

tant, yet much-ignored issue in efficiency measuring caused by dynamic effects in a

production network. So decision-makers should carefully consider dynamic effects
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when assessing organizational performance, especially for those production units

with identifiable internal structures. Similarly, decision-makers should also attend

to external dynamic effects in production. Therefore the management should pay

equivalent attention to the dynamic interactions among DMUs within a larger body

of production. Secondly, DMU’s efficiencies relate closely to SDMUs’ efficiencies,

but the former in general do not imply the latter. So exploring the internal structure

of a DMU should help detect additional areas for improvement. In practice,

however, decision-makers may need to consider the trade-off between the cost of

obtaining detailed information about internal activities, and the ensuing economic

benefit from additional knowledge of inefficiencies. As for the scale performance in

production networks, the finding here indicates that decision-makers should

improve DMU’s scale efficiency by first adjusting the scales of all SDMUs inside

the DMU to an optimal size. Finally, as the proposed model is conditional on the

values of dynamic parameters, one interesting follow-up direction is to incorporate

econometric methodologies, stochastic modeling techniques or resort to expert

opinion to appropriately determine the empirical values of the dynamic parameters

in the proposed model.

As noted earlier, a concomitant downside of parameterization of the dynamic

effect is that analysts need to find a reliable way to estimate this effect. The

estimation issue is examined in Chen and Van Dalen (2010), in which an econo-

metric model for panel data is used to estimate the dynamic effect. In retrospect, the

above methodology may not be completely satisfactory because inefficiency is not

considered during the estimation of the dynamic parameters. One interesting future

direction is to develop a single-stage efficiency model in which the dynamic effect

and inefficiencies can be estimated simultaneously; see, for example, the single-

stage stochastic frontier model by Battese and Coelli (1995).
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Chapter 11

Slacks-Based Network DEA

Kaoru Tone and Miki Tsutsui

Abstract Traditional DEA models deal with measurements of relative efficiency

of DMUs regarding multiple-inputs versus multiple-outputs. One of the drawbacks

of these models is the neglect of intermediate products or linking activities. After

pointing out needs for inclusion of them to DEA models, we propose a slacks-based

network DEA model that can deal with intermediate products formally. Using this

model we can evaluate divisional efficiencies along with the overall efficiency of

decision making units (DMUs).

Keywords Data envelopment analysis • Network DEA • SBM • WSBM

• Divisional efficiency • Overall efficiency

11.1 Introduction

Traditional DEA models deal with measurements of relative efficiency of DMUs

regarding multiple-inputs versus multiple-outputs. One of the drawbacks of these

models is the neglect of internal or linking activities. For example, many companies

are comprised of several divisions that are linked as illustrated in Fig. 11.1.

Part of the material in this chapter is adapted from European Journal of Operational Research,
Vol. 197, Tone K., & Tsutsui M., Network DEA: A slacks-based measure approach, 243–252,
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In the example, the company has three divisions. Each division utilizes its own input

resources for producing its own outputs. However, there are linking activities

(or intermediate products) as shown by Link 1 ! 2, Link 1 ! 3 and Link 2 ! 3.

Link 1 ! 2 indicates that parts of the outputs from Division 1 are utilized as inputs

to Division 2. In traditional DEAmodels, every activity should belong to either input

or output but not to both. So usually they employ multiple steps for evaluation, using

intermediate products as outputs in one step and as inputs in another step. Thus, these

models cannot deal with intermediate products directly in a single step.

Although there may be many variants of this process flow, the existence of

linking activities is an indispensable part of Network DEA models.

Within traditional DEA models there are at least two approaches for evaluating

the efficiency of multi-division organizations.

11.1.1 Aggregation (Black Box)

A simple approach is to aggregate these divisions into a single company which

utilizes Inputs 1, 2 and 3, and produces Outputs 1, 2 and 3 (Fig. 11.2). However,

using this approach we neglect internal linking activities, and thus, we cannot

evaluate the impact of division-specific inefficiencies on the overall efficiency of

the company as a whole. Furthermore, this model might choose an inappropriate

pair of input vs. output for evaluation and assign an unreasonable score to the

concerned DMU, since DEA selects the most favorable pair for the DMU in the

sense of maximizing the ratio scale (see Cooper et al. 2007, p. 25). In other words,

the analysis does not fully access the underlying diagnostic value potentially

available to management. This model often rouses a problem involving degree of

freedom in that the number of input and output items increases relative to the

Division 1 

Division 2 

Input 1 

Output 1

Division 3 

Output 2

Output 3 

Link 1→3

Input 3 

Link 1→2

Link 2→3

Input 2 

Fig. 11.1 Company with

three linked divisions
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number of DMUs. As a rule of thumb, DEA demands that the number of DMUs

should be at least three times larger than the sum of numbers of inputs outputs as

otherwise DEA is apt to lose discriminating power (see Cooper et al. 2007, p. 284).

We will point to this in Sects. 11.5 and 11.6.

11.1.2 Separation

The second approach is to evaluate divisional efficiency individually (Fig. 11.3).

In this case, we evaluate the efficiency of Division 1 of each company among the set

of DMUs using Input 1 as input, and Output 1, Link 1 ! 2 and Link 1 ! 3 as

outputs. Similarly we evaluate the efficiency of Division 2 of each company among

the set of DMUs using Link 1 ! 2 and Input 2 as inputs, and Link 2 ! 3 andOutput

2 as outputs. In this way, we can evaluate efficiency of each division of a company

among the set of DMUs, and hence can find benchmarks for each division. However,

this approach does not account for the continuity of links between divisions.

11.1.3 Needs for Network DEA

The above observations lead us to consider a DEA model called “Network DEA

model” that accounts for divisional efficiencies as well as the overall efficiency in a

unified framework. This means that we evaluate the total efficiency of DMUs as the

main objective which involves divisional efficiencies as its components. Network

DEA models were introduced in the innovative book (Färe and Grosskopf 1996) by

Division 2

Input 

Output 

Division 3

Output Output 

Link 1→3

Input 

Link 1→2

Link 2→3

Input 

Division 1

Fig. 11.2 Black box

11 Slacks-Based Network DEA 233



Färe and Grosskopf (see also Färe 1991; Färe and Grosskopf 2000). They investi-

gated the so-called “black box” for the first time. Their models were extended by

several authors.

The network DEA model (Lewis and Sexton 2004) proposed by Lewis and

Sexton has a multi-stage structure as an extension of the two-stage DEA model

proposed in Sexton and Lewis (2003). This study solves a DEA model for each

node independently. For an output-oriented model, firstly a general DEA model is

solved for the upstream node at the 1st stage to obtain the optimal solution of

outputs. At the next stage, a part of (or all of) optimal outputs obtained at the

upstream node are applied as intermediate inputs to the next node. After solving

DEA models for all nodes in turn, a final optimal output is obtained at the last node.

The firm-level efficiency score is measured as the final optimal output divided by an

observed output.

Prieto and Zofio (2007) applied network efficiency analysis within an input–

output model initiated by Koopmans (1951). They optimized primary input alloca-

tions, intermediate products and final demand products by way of Network DEA

techniques and succeeded in applying their models to input–output database of

OECD countries.

Löthgren and Tambour (1999) applied Network DEA model to a sample of

Swedish pharmacies with organizational objectives that necessitates a monitoring

of efficiency and productivity as well as customer satisfaction. They compared the

Division 1 

Division 2 

Input 1

Output 1

Division 3

Output 2

Output 3

Input 3

Input 2

Link 1→3

Link 1→2

Link 2→3

Link 1→2

Link 2→3

Link 1→3

Fig. 11.3 Separation
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results of Network DEA models with those of traditional DEA models (see also

Chen 2009; Kao 2009).

The above Network DEAmodels utilize the radial measure of efficiency, e.g. the

CCR (Charnes et al. 1978) or the BCC (Banker et al. 1984) models as the basic

DEA methodology and the production possibility set. The radial models stand on

the assumption that inputs or outputs undergo proportional changes. However, this

assumption needs care. For example, if we employ labor, materials and capital as

inputs, some of them are substitutional and do not change proportionally.

This chapter introduces a network DEA model, that uses the slacks-based

measure (SBM: Tone 2001; Pastor et al. 1999) approach for evaluating efficiency.

The SBM is a non-radial method and is suitable for measuring efficiencies when

inputs and outputs may change non-proportionally. This model can decompose the

overall efficiency into divisional ones. Furthermore, we employ the weighted SBM

model (Cooper et al. 2007; Tsutsui and Goto 2009) in order to incorporate the

importance of divisions. These weights are set exogenously. We also investigate

several properties of Network DEA models and show that, under the variable

returns-to-scale assumption, every division has at least one efficient DMU (decision

making unit) for the division, whereas under the constant returns-to-scale assump-

tion it is possible that some division has no efficient DMUs for the division.

The remainder of this chapter unfolds as follows. In the next section, we introduce

several network structures in actual business situations. Then in Sect. 11.3, we

propose Network DEA (NDEA) models based on the weighted slacks-based

measure (WSBM) approach. We discuss the characteristics of the divisional

efficiencies in Sect. 11.4. Illustrative examples are introduced in Sect. 11.5. We

extend our models in Sect. 11.6. We summarize the results and conclude the chapter

in the last section. This chapter is written based on Tone and Tsutsui (2009).

11.2 Several Examples of Network Structures

We introduce network structures from actual businesses which motivated this study.

11.2.1 Electric Power Companies

Figure 11.4 exhibits typical vertically integrated electric utility companies

consisting of generation, transmission and distribution divisions.

The generation division (Division 1) uses several inputs such as capital, labor

and fuel (Input 1) and produces electric power. Then it becomes an intermediate

input for the transmission division (Link 1–2). In the transmission division (Divi-

sion 2), companies utilize capital and labor inputs (Input 2) as well as the interme-

diate inputs from generation division (Link 1–2). Electricity through transmission

lines is sent to distribution division as intermediate output (Link 2–3) or sales to
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large customers (Output 2) that do not utilize distribution line. The distribution

division (Division 3) uses capital and labor inputs (Input 3) and the intermediate

input from the transmission division (Link 2–3) and provides electricity to small

customers (Output 3).

11.2.2 Hospitals

Kaihara et al. (2007) private communication report the standard structure of

Japanese general hospitals as depicted in Fig. 11.5. A general hospital consists of

divisions, such as medical department, clinical laboratory, radiology, pharmacy and

dietetic department. Each division has its own inputs; labor, materials and capital,

and outputs; incomes. These divisions are connected by internal links. For example,

a part of patients checked up at medical department is sent to radiology department.

In order to evaluate the efficiency of general hospitals we need to account these

divisions as a whole including linking activities. Thus, a network DEA model is

appropriate for this purpose.

11.2.3 Broadcasting Companies

Broadcasting companies consist of two divisions; production and transmission.

Using labor, materials and capital, the production division produces programs.

A part of these products can be marketed to other media, while they are interme-

diate products to the transmission division. This division utilizes its own labor,

materials and capital to send the programs to audiences. Figure 11.6 displays this
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Labor 
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Generated
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Fig. 11.4 Vertically integrated electric power companies
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network structure. Product of the production division is the link (intermediate

product) to the transmission division. This network structure is reported by (Asai

(2007), private communication).

11.2.4 Financial Holding Companies

Seiford and Zhu (1999) pointed out that financial holding companies have two

stages; profit generation and market value creation as exhibited in Fig. 11.7.

Usually this process is studied in the two stage approaches; profitability and

marketability. In the first stage, the profitability sector utilizes employees, assets
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and stockholders’ equity to produce revenues and profits. The second stage

measures (stock) marketability in the stock market by the revenue and profits it

generates. It can be seen that revenues and profits serve as intermediate factors in

the sense that they are outputs from the first stage and inputs to the second stage.

The market sector produces market values, total returns to investors and earnings

per share as outputs (Seiford and Zhu 1999). Thus, revenues and profits are

linking activities between the two sectors and a network structure is recognized

in this field.

11.3 Basic Framework of Network DEA

In this section, we introduce slacks-based Network DEA model referring to its

production possibility set, efficiency and projection.

11.3.1 Notation and Production Possibility Set

We deal with n DMUs ( j ¼ 1,. . ., n) consisting of K divisions (k ¼ 1,. . ., K ). Let

mk and rk be the numbers of inputs and outputs to Division k, respectively.

We denote the link leading from Division k to Division h by (k,h) and the set of

links by L. The observed data are x k
j ∈Rmkþ

n o
j ¼ 1, . . . , n; k ¼ 1, . . . ,Kð Þ (input

resources to DMUj at Division k), y k
j ∈Rrkþ

n o
j ¼ 1, . . . , n; k ¼ 1, . . . ,Kð Þ (output

products from DMUj at Division k) and z
k;hð Þ
j ∈R

t k;hð Þ
þ

n o
j ¼ 1, . . . , n; k; hð Þ∈Lð Þ

(linking intermediate products from Division k to Division h) where t(k,h) is the

number of items in Link (k,h).

Equity 
Assets 

Profitability 

Labor 

EPS 

Market 

Marketability

Revenue Profit

Stock 

Fig. 11.7 Financial holding companies

238 K. Tone and M. Tsutsui



The production possibility set {(xk,yk,z(k,h))} is defined by

xk �
Xn

j¼1 x
k
j λ

k
j k ¼ 1, . . . ,Kð Þ

yk �
Xn

j¼1 y
k
j λ

k
j k ¼ 1, . . . ,Kð Þ

z k;hð Þ ¼
Xn

j¼1 z
k;hð Þ
j λ kj

�8 k; hð Þ� �
as outputs from k

�
z k;hð Þ ¼

Xn

j¼1 z
k;hð Þ
j λhj

�8 k; hð Þ� �
as inputs to h

�
Xn

j¼1 λ
k
j ¼ 1 8kð Þ, λ kj � 0

�8j, k�
ð11:1Þ

where λk ∈ Rn
þ is the intensity vector corresponding to Division k (k ¼ 1, . . ., K ).

We notice that the above model assumes the variable returns-to-scale (VRS) for

production. That is, the production frontiers are spanned by the convex hull of the

existing DMUs. However, if we neglect the last constraint ∑ j=1
nλkj ¼ 1(8 k), we

can deal with the constant returns-to-scale (CRS) case as well.

DMU o(o ¼ 1, . . ., n) can be represented by

x k
o ¼ Xkλk þ sk�o k ¼ 1, . . . ,Kð Þ

y k
o ¼ Ykλk � skþo k ¼ 1, . . . ,Kð Þ

eλk ¼ 1 k ¼ 1, . . . ,Kð Þ
λk � 0, sk�o � 0, skþo � 0, 8kð Þ

ð11:2Þ

where

Xk ¼ x k
1 ; . . . ; x

k
n

� �
∈ Rmk�n

Yk ¼ y k
1 ; . . . ; y

k
n

� �
∈ Rrk�n:

ð11:3Þ

and sk�o (skþo ) are the input (output) slack vectors.

As regard to the linking constraints, we have several options of which we present

two possible cases.

(a) The “free” link value case.

The linking activities are freely determined (discretionary) while keeping

continuity between input and output:

Z k;hð Þλh ¼ Z k;hð Þλk: 8 k; hð Þð Þ ð11:4aÞ

where

Z k;hð Þ ¼ z
k;hð Þ
1 ; . . . ; z k;hð Þ

n

� �
∈ Rt k;hð Þ�n: ð11:5Þ
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This case can serve to see if the current link flow is appropriate or not in

the light of other DMUs’, i.e. the link flow may increase or decrease in the

optimal solution of the linear programs which we will introduce in the next

section.

(b) The “fixed” link value case.

The linking activities are kept unchanged (non-discretionary):

z k;hð Þ
o ¼ Z k;hð Þλh

�8 k; hð Þ�
z k;hð Þ
o ¼ Z k;hð Þλk:

�8 k; hð Þ� ð11:4bÞ

This case corresponds to the situation where the intermediate products are

beyond the control of DMUs. However, if all link values are fixed, this case

reduces structurally to the separation model described in Sect. 11.1.2 with

non-discretionary inputs and outputs.

Throughout this chapter, we assume that all data are positive, since basically

we employ the slacks-based measure (SBM) that demands positive data.

11.3.2 Efficiency

For each DMUo, we define several efficiency scores depending on the selected

orientation, input, output or non-oriented, as follows.

11.3.2.1 Input–Oriented Efficiency θ�o

We evaluate the input-oriented efficiency of DMUo by solving the following linear

program:

θ�o ¼ min
λk, sk�o

XK

k¼1 w
k 1� 1

mk

Xmk

i¼1
sk�io
x kio

0
@

1
A

2
4

3
5

subject to 11:2ð Þ, and 11:4að Þ or 11:4bð Þ
ð11:6Þ

where
PK

k¼1 w
k ¼ 1, wk � 0 (8 k) and wk is the relative weight of Division kwhich

is determined corresponding to its importance, e.g. cost share and supplied

exogenously.

This model is called the weighted SBM model (WSBM), an extension of the

SBM. See Cooper et al. (2007) for details.

Definition 1 (Input-oriented overall efficiency)

We call θ�o the overall input-efficiency of DMUo. If we have θ�o ¼ 1, the DMUo is

called overall input-efficient.
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Definition 2 (Input-oriented divisional efficiency)

Using the optimal input slacks sk��o of (11.6), we define the input-oriented divi-

sional efficiency by

θ k
o ¼ 1� 1

mk

Xmk

i¼1
sk��io

x kio

� �
k ¼ 1, . . . ,Kð Þ: ð11:7Þ

θko is the divisional efficiency index which optimizes the overall efficiency θ�o. If we
have θko ¼ 1, then the DMUo is called input-efficient for the division k.

We notice that the above divisional efficiency score is not always uniquely

determined,1 although the overall efficiency is uniquely obtained as the linear

program optimum. In Sect. 11.6.1, we present a scheme for deciding divisional

efficiency scores uniquely.

The overall input-oriented efficiency score is the weighted arithmetic mean of

the divisional scores

θ�o ¼
XK

k¼1 w
kθ k

o : ð11:8Þ

This measure is useful for comparing the total productivity of DMUo among the

concerned DMUs. It will serve not only managers but also regulatory agencies to

compare DMUs in the firm-level view point.

11.3.2.2 Output-Oriented Efficiency τ�o

We evaluate the output-oriented efficiency of DMUo by solving the following linear

program:

1=τ�o ¼ max
λk, skþo

XK

k¼1 w
k 1þ 1

rk

Xrk

r¼1
skþro
y kro

0
@

1
A

2
4

3
5

subject to 2ð Þ, and �
4a
�
or

�
4b

� ð11:9Þ

where
PK

k¼1 w
k ¼ 1, wk � 0 (8 k), and wk is the relative weight of Division kwhich

is determined corresponding to its importance.

Definition 3 (Output-oriented overall efficiency)

We call τ�o the overall output-efficiency of DMUo. If we have τ�o ¼ 1, the DMUo is

called overall output-efficient.

1 In order to see the range in which a divisional efficiency may vary, we can solve the maximum

and the minimum of θko subject to (11.2), (11.4a) or (11.4b) while keeping the overall efficiency at
the optimal value θ�o.
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Definition 4 (Output-oriented divisional efficiency)

In order to confine the score into the range [0, 1], we define the output-oriented

divisional efficiency score by

τ ko ¼
1

1þ 1
rk

Xrk

r¼1
skþ�ro

y kro

� � k ¼ 1, . . . ,Kð Þ: ð11:10Þ

where skþ�o is the optimal output-slacks for (11.9).

The output-oriented overall efficiency score is the weighted harmonic mean of

the divisional scores

1

τ�o
¼

XK

k¼1
wk

τ ko
: ð11:11Þ

11.3.2.3 Non-oriented Efficiency ρ�o

Accounting for both input and output slacks, we can evaluate the non-oriented

efficiency of DMUo as follows:

ρ�o ¼ min
λk, sk�o , s

kþ
o

XK

k¼1 w
k 1� 1

mk

Xmk

i¼1
sk�io
x kio

0
@

1
A

2
4

3
5

XK

k¼1 w
k 1þ 1

rk

Xrk

r¼1
skþro
ykro

0
@

1
A

2
4

3
5

subject to 2ð Þ, and �
4a
�
or

�
4b

�
:

ð11:12Þ

where
PK

k¼1 w
k ¼ 1, wk � 0 (8 k), and wk is the relative weight of Division

k which is determined corresponding to its importance.2 We can solve this problem

by transforming into a linear program using Charnes and Cooper transformation

(see Tone 2001).

Definition 5 (Non-oriented overall efficiency)

We call ρ�o the non-oriented overall efficiency of DMUo. If we have ρ�o ¼ 1, the

DMUo is called overall efficient.

2 Although other forms of the objective function might be possible, we chose (11.12) for alignment

with the non-oriented SBM model proposed in Tone (2001). This form serves to interpret its dual

linear programming problem as the virtual profit efficiency model (see (Tone 2001)).
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Definition 6 (Non-oriented divisional efficiency)

We define the non-oriented divisional efficiency score by

ρ k
o ¼

1� 1
mk

Xmk

i¼1
sk��io

x kio

� �

1þ 1
rk

Xrk

r¼1
skþ�ro

ykro

� � k ¼ 1, . . . ,Kð Þ: ð11:13Þ

where sk��o and skþ�o are optimal input- and output-slacks for (11.12).

The overall non-oriented efficiency score is a weighted mean of the divisional

efficiency scores but is neither their arithmetic nor their harmonic mean.

We notice that the above divisional and overall efficiencies are units-invariant,

i.e. they are independent of the units in which the inputs, outputs and links are

measured.

Since the number of inputs and outputs may differ division by division and DEA

scores are affected by the number, i.e. large number tends to give a high average

score, care is needed in comparing divisional scores mutually.

Comparing the results by (11.4a) and (11.4b), we can see how the linking

activities exert influence over the efficiency of each division.

11.3.3 Projection

Let an optimal solution to (11.6), (11.9) or (11.12) be (λ* k,sk��o ,skþ�o ). Then we have

the projection onto the frontier as follows:

xk�o  x k
o � sk��o k ¼ 1, . . . ,Kð Þ

yk�o  y k
o þ skþ�o : k ¼ 1, . . . ,Kð Þ ð11:14Þ

If we employ the constraints (11.4b) for links, then the link values are unchanged

(fixed). If we utilize the constraints (11.4a) (free link case), then we have the

projection as follows:

z k;hð Þ�
o  Z k;hð Þλk�: 8 k; hð Þð Þ ð11:15Þ

11.3.4 Reference Set

Using the optimal intensity vector λ*k we have:

Definition 7 (Reference set)

We define the reference set of the division k for DMUo by

R k
o ¼ j λk�j > 0

���n o
j∈ 1; . . . ; nf gð Þ: ð11:16Þ
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Using this notation we can express xko and yko as

x k
o ¼

X
j∈R k

o

x k
j λ

k�
j þ sk��o , y k

o ¼
X
j∈R k

o

y k
j λ

k�
j � skþ�o : ð11:17Þ

11.4 Several Properties of Slacks-Based Network

DEA Models

In this section we discuss several properties of the slacks-based NDEA models.

11.4.1 Overall Versus Divisional Efficiencies

We have defined the overall efficiencies corresponding to input, output and

non-oriented orientations by (11.6), (11.9) and (11.12), and then the divisional

efficiencies corresponding to these models are defined respectively by (11.7),

(11.10) and (11.13).

Between the overall and divisional efficiencies we have:

Theorem 1 A DMU is overall efficient if and only if it is efficient for all divisions.
We notice that it can happen that there exists no overall efficient unit, in contrast

to the traditional DEA models (see examples in Sect. 11.5.3), and furthermore that

in a certain NDEA model some division may have no divisional efficient DMUs

(see an example in Sect. 11.5.4).

11.4.2 Divisional Efficiency

Let us denote the sets of inputs, outputs, incoming links and outgoing links for

Division k, respectively by Xk ¼ {xkj }, Y
k ¼ {ykj }, Z

(pk) ¼ {z
ðpkÞ
j } and Z(kq) ¼

{z
ðkqÞ
j } where j ¼ 1, . . ., n. We notice that some of inputs and outputs may be

vacant. However, we assume that all divisions in the model are at least indirectly

connected by links.

In this section, we demonstrate that under the variable returns-to-scale (VRS)

assumption every division has at least one divisionally efficient DMU. However,

the constant returns-to-scale (CRS) cases are mixed. For the fixed link case under

CRS, every division has at least one divisionally efficient DMUwhereas for the free

link case under CRS it is possible that some division has no divisionally

efficient DMU.
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11.4.2.1 The Variable Returns-to-Scale (VRS) Case

Under the VRS assumption, we have the following theorem:

Theorem 2 Under the variable returns-to-scale assumption, every division has at
least one divisionally efficient DMU.

Proof We sort the n DMUs in the division k in ascending order in input values

using Input i as the ith key. We further sort the resultant in descending order in

output values using Output r as the mk + r th key. Then the lexicographical

minimum (top) DMU has sk�o ¼ 0 and skþo ¼ 0 for every feasible λk under the

VRS assumption, even if there are tied DMUs. Thus, the division has at least one

efficient DMU regardless of the orientation.

Q.E.D

11.4.2.2 The Constant Returns-to-Scale (CRS) Case

For the CRS assumption, we have two options; the free link case (11.4a) and the

fixed link case (11.4b). For the later we have:

Theorem 3 Under the constant returns-to-scale assumption with the fixed link
case, every division has at least one divisionally efficient DMU.

Proof As we noticed earlier in Sect. 11.3.1, the fixed link case reduces to the

separation model with non-discretionary inputs and outputs corresponding to

the fixed links. Hence we can solve this case separately division by division.

Therefore, every division has at least one efficient DMU in the division.

Q.E.D.

As a consequence of the separation model, we have:

Corollary 1 For the fixed link case, DMUs in the reference set are divisionally
efficient.

So far, we have demonstrated the existence of the divisionally efficient (θko ¼ 1)

DMU for slacks-based NDEA models under the VRS assumption as well as for the

CRS with the fixed link case. The remaining is the case of the CRS with the free

link. In Sect. 11.5.4, we show a counter example that has no divisionally efficient

DMU in this case.

11.4.3 Efficiency of the Projected DMU

We defined the projection of DMUo by (11.14) and (11.15) (free link case).

Theorem 4 The projected DMU is overall efficient.

Proof We prove the theorem in the input-oriented case.

11 Slacks-Based Network DEA 245



We evaluate the efficiency of the projected DMU (xk�o ,yk�o ,zk�o ) (k ¼ 1, . . ., K ).

Let an optimal solution be λk�; sk��o ; skþ�o

� �
k ¼ 1, . . . ,Kð Þ. Then we have:

xk�o ¼ Xkλk� þ sk��o , yk�o ¼ Ykλk� � skþ�o , z k;hð Þ�
o ¼ Zkλk�: ð11:18Þ

Replacing (xk�o ,yk�o ) by (11.14), we have

x k
o ¼ Xkλk� þ sk��o þ sk��o and y k

o ¼ Ykλk� � skþ�o � skþ�o : ð11:19Þ

Corresponding to this expression we have the overall efficiency:

ρo ¼ min
XK

k¼1 w
k 1� 1

mk

Xmk

i¼1
sk��io þ sk��io

xkio

� �	 

: ð11:20Þ

If any member of sk��o

� �
k ¼ 1, . . . ,Kð Þ is positive, then it holds that

ρo < ρ�o: ð11:21Þ

This contradicts the optimality of ρ�o. Thus, we have sk��o ¼ 0 k ¼ 1, . . . ,Kð Þ.
Hence, the projected DMU is overall efficient.

Similarly we can prove the theorem in the output-oriented and non-oriented

models.

Q.E.D.

11.5 Illustrative Examples

We present an illustrative example of electric power companies for describing

slacks-based Network DEA and compare the results with traditional approaches.

Also we demonstrate an example with the free link case that has no divisionally

efficient DMUs.

11.5.1 Data

As introduced in Sect. 11.2 (Fig. 11.4), the vertically integrated electric power

companies consist of several divisions such as generation, transmission and distri-

bution. For illustrative purpose, we choose ten vertically integrated power compa-

nies in the U.S. in 1994 obtained from “Form No.1” published by the Federal

Energy Regulatory Commission (FERC). The inputs, outputs and links are as

follows:
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Generation (Div 1):

Input 1 ¼ Labor input (number of employees)

Transmission (Div 2):

Input 2 ¼ Labor input (number of employees)

Output 2 ¼ Electric power sold to large customers

Distribution (Div 3):

Input 3 ¼ Labor input (number of employees)

Output 3 ¼ Electric power sold to small customers

Link (1–2) ¼ Electric power generated

(Output from Generation Division and Input to Transmission Division)

Link (2–3) ¼ Electric power distributed

(Output from Transmission Division and Input to Distribution Division)

Table 11.1 exhibits data for inputs, outputs and links of the ten DMUs; A

to J. Numbers in each column of the table are obtained from the source data by

dividing some standard of the column. So we do not denote the units. This has no

effect on the efficiency scores, since all DEA models employed are units-invariant.

11.5.2 Results of Black Box and Separation Models

First, we solved the aggregated (black box) model explained in Sect. 11.1.1, using

Inputs 1, 2 and 3, and Outputs 2 and 3 where Links were neglected (see Fig. 11.2).

Throughout this section, we utilized the input-oriented SBM (slacks-based

measure) under the variable returns-to-scale (VRS) assumption for evaluating

Table 11.1 Sample data

Div1 Div2 Div3 Link

DMU Input1 Input2 Output2 Input3 Output3 Link12 Link23

A 0.838 0.277 0.879 0.962 0.337 0.894 0.362

B 1.233 0.132 0.538 0.443 0.18 0.678 0.188

C 0.321 0.045 0.911 0.482 0.198 0.836 0.207

D 1.483 0.111 0.57 0.467 0.491 0.869 0.516

E 1.592 0.208 1.086 1.073 0.372 0.693 0.407

F 0.79 0.139 0.722 0.545 0.253 0.966 0.269

G 0.451 0.075 0.509 0.366 0.241 0.647 0.257

H 0.408 0.074 0.619 0.229 0.097 0.756 0.103

I 1.864 0.061 1.023 0.691 0.38 1.191 0.402

J 1.222 0.149 0.769 0.337 0.178 0.792 0.187

Average 1.020 0.127 0.763 0.560 0.273 0.832 0.290
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efficiency (see (Cooper et al. 2007)). The column “Aggregation (Black box)” in

Table 11.2 reports the results.

Next, we solved the separation model explained in Sect. 11.1.2.3 Table 11.2

reports the results where “Overall score” indicates the weighted average 0.4 �
Div1 + 0.2 � Div2 + 0.4 � Div3. The numbers 0.4, 0.2 and 0.4 are weights to

Div 1, Div 2 and Div 3, respectively, which are utilized in the following Network

DEA model too. This weight selection is just for illustrative purpose. No significant

correlation is observed between the two efficiencies; Aggregation and Overall. This

is quite natural, since we neglected the internal linking activities in the former.

The scores of the black box model tend to be higher than those of the separation

model (Fig. 11.8). Actually, these two models cannot be fairly comparable, because

the number of inputs is different between the two models. However, this figure

clearly explains that the discriminate power of the black box model is inferior to

that of the separation model. In addition, it shows that the ranks of the scores of the

two models are not always corresponding, e.g. F is scored worse in the black box

model, while better in the separation model.

11.5.3 Results of Slacks-Based Network DEA

We now return to the Network DEA model taking account the links inside the black

box. We minimize the objective function (11.6) subject to the constraints (11.2),

Table 11.2 SBM scores for black box and separation models

DMU

Aggregation

(Black box)

Separation

Overall

scorea
Divisional score

Div1 Div2 Div3

A 1.000 0.659 0.633 0.662 0.684

B 0.531 0.657 0.260 0.763 1.000

C 1.000 0.984 1.000 1.000 0.959

D 1.000 0.719 0.297 1.000 1.000

E 1.000 0.547 0.202 1.000 0.665

F 0.681 0.844 1.000 0.635 0.792

G 1.000 0.855 0.712 1.000 0.926

H 1.000 0.893 0.787 0.890 1.000

I 1.000 0.915 1.000 1.000 0.786

J 1.000 0.640 0.263 0.672 1.000

Average 0.921 0.771 0.615 0.862 0.881
aOverall score indicates 0.4*Div1 + 0.2*Div2 + 0.4* Div3

3 In solving the separation model, links were treated as ordinary (discretionary) inputs or outputs as

explained in Sect. 1.2, and hence the continuity of link values between divisions were not assured.

Also, the separation model takes into account the inefficiency associated with the link variables,

whereas the NSBM does not.
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and (11.4a) or (11.4b), i.e. the input-oriented network model under VRS assump-

tion. As weights to objective function, we employ w1 ¼ 0.4 (Division 1), w2 ¼ 0.2

(Division 2) and w3 ¼ 0.4 (Division 3). This set of weights conforms to the above

weights in Sect. 11.5.2. The results of the fixed link case (11.4b) are displayed in

Table 11.3 while the free link case (11.4a) is exhibited in Table 11.4 where

the overall efficiency (θ�o) together with divisional efficiencies is displayed.4

The divisional efficiency means the individual term (11.7) in the objective function.

In the “Reference” column, A1 indicates DMU A in the Division 1. This means

λ1A > 0 in the optimal solution. Since the constraint (11.4a) is tighter than (11.4b),

0

0.2

0.4

0.6

0.8

1

1.2

A B C D E F G H I J

Black Box Separate

Fig. 11.8 Comparisons of scores between black box and separation models

4We checked the uniqueness of the divisional efficiency scores as described in Footnote 1 and

found no alternate optima.

Table 11.3 Slacks-based network DEA: fixed link case

DMU

Overall

score

Divisional score Reference Link

Div1

(0.4)

Div2

(0.2)

Div3

(0.4) Div1 Div2 Div3 Link12 Link23

A 0.478 0.633 0.339 0.393 C1,F1 C2,D2,E2,I2 D3,H3 0.894 0.362

B 0.739 0.349 1.000 1.000 C1,G1 B2 B3 0.678 0.188

C 0.968 1.000 1.000 0.919 C1 C2 B3,D3,J3 0.836 0.207

D 0.719 0.297 1.000 1.000 C1,F1 D2 D3,H3 0.869 0.516

E 0.456 0.263 1.000 0.377 C1,G1 E2 D3,H3 0.693 0.407

F 0.719 1.000 0.403 0.596 F1 C2,H2,I2 D3,H3 0.966 0.269

G 0.947 1.000 1.000 0.868 G1 G2 D3,H3 0.647 0.257

H 0.969 0.922 1.000 1.000 C1,G1 H2 H3 0.756 0.103

I 0.832 1.000 1.000 0.581 I1 I2 D3,H3 1.191 0.402

J 0.590 0.288 0.377 1.000 C1,G1 C2,G2,H2 J3 0.792 0.187

Average 0.742 0.675 0.812 0.773 0.832 0.29
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the overall score of the former (fixed link case) is larger than that of the latter (free

link case) for every DMU.

Figure 11.9 compares scores of the separate model and network models (fixed

and free link cases). The trends of three models are roughly similar but exhibit sharp

contrast to that of the black box model explained in Fig. 11.8. However, we can find

gaps among three models, which must be caused by the difference of assumption on

the links among divisions. As we mentioned, the separation model does not take

account of the links, and therefore, the gap between the separation and network

models implies the “linking effects”. The separation model cannot catch the full

story in the case when the linking effects inside DMUs actually exist.

Concerning two network models, the scores of the fixed link case exceed or

equal to those of the free case. The gap of two models explains “link effects”.

Figure 11.10 shows the “Link effect ratio (LER)” of links measured as projected

0

0.2

0.4

0.6

0.8

1

1.2

A B C D E F G H I J

Separate Fixed Free

Fig. 11.9 Comparisons of scores among separate and two network models

0.8

0.9

1

1.1

1.2

1.3

1.4

A DB C E F G H I J

SOR12

SOR23

Fig. 11.10 Link effect ratio
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links in free case divided by actual links (see Table 11.4). If there exists the gap

between the two network models in Fig. 11.10, the link effect ratio is not equal to

unity, and if the ratio is larger than unity, the DMU should increase the link value,

and vice versa.

11.5.4 Example with No Divisionally Efficient DMUs

As we have demonstrated in Theorems 2 and 3, the VRS models and the fixed link

CRS model have at least one efficient DMU within every division. However, as to

the free link CRS model, the proposition is not always effected. In this section, we

exhibit a counter example which has no efficient DMU within a certain division.

We observe 4 DMUs with the same network structure as the previous example.

Table 11.5 exhibits the data. We solved this problem using the input-oriented free

link NDEA model under the CRS assumption and obtained the results exhibited in

Table 11.6. We found no efficient DMU in Division 1, while other divisions have an

efficient DMUs; N for Division 2 and L for Division 3. This indicates that all DMUs

in Division 1 need improvement. Table 11.7 reports the projection of inputs, out-

puts and links onto the efficient frontiers by the formulas (11.14) and (11.15).

Actually, all inputs to Division 1 are reduced proportionally to their scores of

Division 1. On the other hand, other divisions and links have benchmarks that

remain unchanged in the projection. This occurrence of vacancy of divisionally

efficient DMUs in some division is one of characteristics of this model which

cannot be expected by traditional DEA models.

Table 11.5 Data for four DMUs

Div1 Div2 Div3 Link

DMU Input1 Input2 Output2 Input3 Output3 Link12 Link23

K 3 10 2 5 2 8 2

L 14 1 1 5 5 9 5

M 16 2 2 11 4 7 4

N 19 0.5 2 7 4 11 4

Table 11.6 Results of

the input-oriented free

link CRS model

DMU Overall Score Div1(0.4) Div2(0.2) Div3(0.4)

K 0.71 0.875 0.2 0.8

L 0.6723 0.3683 0.625 1

M 0.2986 0.2578 0.25 0.3636

N 0.5154 0.2171 1 0.5714
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11.6 Extensions

In this section, we introduce several extensions of the NDEA model.

11.6.1 Uniqueness Issue of Divisional Efficiencies

Although the overall efficiency is uniquely determined by the program (11.6) in the

input-oriented model, slacks are not necessarily unique. Hence, the divisional

efficiency in (11.7) may suffer from non-uniqueness issue.

In the model (11.6), we use wk as the relative weight of Division k, which reflects
importance of each division. Based on wk, we can prioritize divisions. Under this

priority principle, we propose the following scheme for overcoming this

non-uniqueness problem. If any other priority rule exists, we can cope with it in

the similar way.

For convenience sake, here we define the last division K has the top priority and

those of K�1, K�2,. . ., 1 decrease in this order.

11.6.1.1 Divisional Efficiency in K

First, we solve the program (11.6) and obtain the overall efficiency θ�o. Then we

minimize divisional efficiency in K while keeping the overall efficiency at θ�o.
Let us denote the divisional efficiency in K thus obtained by θK�o .

θK�o ¼ min 1� 1

mK

XmK

i¼1
sK��io

xKio

� �
ð11:22Þ

subject to

XK

k¼1 w
k 1� 1

mk

Xmk

i¼1
sk�io
x kio

� �	 

¼ θ�o ð11:23Þ

and (11.2), (11.4a) or (11.4b).

11.6.1.2 Divisional Efficiency in k

We repeat this process in the descending order of priority until k ¼ 2. Thus,

divisional efficiency in k (θk�o ) is measured by the following program.

θk�o ¼ min 1� 1

mk

XmK

i¼1
sk��io

xkio

� �
ð11:24Þ
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subject to

1� 1

mK

XmK

i¼1
sK�io
xKio

0
@

1
A ¼ θK�o

⋮

1� 1

mk

Xmk

i¼1
sk�io
x kio

0
@

1
A ¼ θkþ1�o

ð11:25Þ

and (11.2), (11.4a) or (11.4b), and (11.23).

Divisional efficiency in the division 1 can be obtained from θ�o, θ
K�
o , . . ., θ2�o .

Through this scheme, we can obtain unique divisional efficiency scores θk�o (8k)
for the input-oriented model. As for the output-oriented and non-oriented models,

we can develop similar processes for uniqueness issues.

11.6.2 Incorporation of Link Flows in Efficiency
Measurements

In the above cases, link flows do not directly concern with the objective function.

They are related with efficiency scores only through link constraints (11.4a) or

(11.4b). However, if we want to account their excesses (in the input-oriented case)

or shortfalls (in the output-oriented case) into the objective function, we can modify

the model as follows.

(i) In the input-oriented case, we consider the slacks of the link ( f,k) as input to
Division k and set link constraints as

z f ;kð Þ
o ¼ Z f ;kð Þλk þ s f ;kð Þ�

o

Z f ;kð Þλf ¼ Z f ;kð Þλk

s f ;kð Þ�
o � 0

ð11:4cÞ

The objective function is modified as:

θ�o ¼ min
XK

k¼1 w
k� 1� 1

mk þ
X

f∈Pk
t f ;kð Þ

Xmk

i¼1
sk�io
xkio
þ
X

f∈Pk

s
f ;kð Þ�

fo

z
f ;kð Þ

fo

0
@

1
A

2
4

3
5

subject to 2ð Þ and �
4c
�
,

ð11:26Þ

where
PK

k¼1 w
k� ¼ 1, wk � � 0 (8 k) and Pk is the set of divisions having

the link ( f,k) ∈ L (antecessor of Division k) and t( f,k) is the number of items

in the link. We optimize (11.26) in terms of {λk}, {sk�o } and {s
ðf ;kÞ�
o }.
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(ii) In the output-oriented case, we consider the slacks of the link (k,h) as output
from Division k and set link constraints as;

z k;hð Þ
o ¼ Z k;hð Þλk � s k;hð Þþ

o

Z k;hð Þλh ¼ Z k;hð Þλk

s k;hð Þþ
o � 0

ð11:4dÞ

The objective function is modified to

1=τ�o ¼ max
XK

k¼1 w
k 1þ 1

rk þ
X

h∈Fk
t k;hð Þ

Xrk

r¼1
skþro
ykro
þ
X

h∈Fk

s
k;hð Þþ
ho

z
k;hð Þ
ho

0
@

1
A

2
4

3
5

subject to 2ð Þ and �
4d

�
:

ð11:27Þ

where
PK

k¼1 w
k ¼ 1, wk � 0 (8 k) and Fk is the set of divisions having the link

(k,h) ∈ L (successor of Division k). We optimize (11.27) in terms of {λk},
{skþo } and {s

ðk;hÞþ
o }.

(iii) In the case that links are categorized into either input type (the less the better)

or output type (the more the better), we can unify the above (i) and (ii) models

into the non-oriented case in the similar way as the non-oriented model

described in Sect. 11.3.2.3.

11.6.3 The Role of Intensity Vector λ

One of the characteristics of the NDEA is that it has an intensity vector λk ¼
(λk1, . . .,λ

k
n)
T ∈ Rn (λk � 0) specific to each Division k (k ¼ 1, . . ., K ).We observe

the role of this vector in this section.

11.6.3.1 The Identical Intensity Vector Case

In this case we assume a common intensity vector λ ¼ λk for every division

k (k ¼ 1, . . ., K ). Thus, DMUo can be expressed as follows:

x k
o ¼ Xkλþ sk�o

y k
o ¼ Ykλ� skþo

z k;hð Þ
o ¼ Z k;hð Þλ
eλ ¼ 1

λ � 0, sk�o � 0, skþo � 0:

ð11:28Þ
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Now let us define matrices X, Y and Z as follows:

X ¼
X1

X2

⋮
XK

0
BB@

1
CCA∈ R

m1þ���þmKð Þ�n
þ ,Y ¼

Y1

Y2

⋮
YK

0
BB@

1
CCA∈ R

r1þ���þrKð Þ�n
þ , ð11:29Þ

Z ¼ Z k;hð Þ k; hð Þ∈ Lj
� �

∈ R

X
k;hð Þ∈L

t k;hð Þ
� �

�n
þ : ð11:30Þ

Using these notations, DMUo can be expressed as,

xo ¼ Xλþ s�o
yo ¼ Yλ� sþo
zo ¼ Zλ

ð11:31Þ

where s�o ¼ s1�o ; . . . ; sK�o
� �T∈ Rm1þ���þmK and sþo ¼ s1þo ; . . . ; sKþo

� �T∈ Rr1þ���þrK .
Thus this case reduces to a traditional DEA model added by the last linking

constraint. This model has (m1 + � � � + mK) inputs, (s1 + � � � + sK) outputs and

∑(k,h) ∈ Lt(k,h) linking constraints. In the case the sum of these numbers grows up

to n (the number of DMUs), this model might lose discriminating power. As a rule

of thumb, DEA demands that the number of DMUs should be at least three times

larger than the sum of the number of inputs and outputs. The equality condition for

the linking constraints will further narrow the feasible region and many DMUs may

be judged as efficient in consequence.

11.6.3.2 Connectivity Among Divisions

In the preceding section, we have observed a special case regarding the decision

variable λ; identical. In this case, all divisions of DMUo are evaluated by an

identical set of referent DMUs, i.e. all divisions have the same benchmarks.

In the NDEA models, however, benchmarks can vary division by division. Such

diversified benchmarks among divisions might embrace supervisors in choosing

peers to follow as a company.

These two extreme cases can be unified via the following connectivity index

δ(h,k)(�0) ((h,k) ∈ L) as

λhj � λ kj

��� ��� � δ h;kð Þ j ¼ 1, . . . n; h; kð Þ∈ Lð Þ ð11:32Þ

The case δ(h,k) ¼ 0 (8 (h,k)) corresponds to the identical λ, while the case

δ(h,k) ¼ ∞ (8 (h,k)) corresponds to the independent λ setting, i.e. slacks-based

NDEA models.
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In our experiments with 56 Japanese (11.9) and the US (47) electric power

companies, the identical λ case, i.e. δ(h,k) ¼ 0 (8 (h,k)), almost lost discriminating

power and many companies were judged efficient, whereas δ(h,k) ¼ 0.01 (8 (h,k))
case demonstrated discrimination of efficiency and reasonable connectivity among

divisions, i.e. compelling benchmarks. Appropriate setting of the connectivity

index is an experimental issue. See Tsutsui (2007) for details.

11.7 Concluding Remarks

In this chapter, we have proposed a network DEA model based on the weighted

SBM (WSBM) approach which accounts for the importance of each division. Thus,

we can evaluate multi-divisional efficiencies and the overall efficiency in a unified

framework.

The following subjects are discussed.

1. We have developed the slacks-based NDEA model under the fixed

(non-discretionary) link and the free (discretionary) link assumptions. In the

latter case, the optimal link values may increase or decrease from the observed

ones. Comparisons of both results (fixed and free) give suggestions for improve-

ments in the intermediate production policy. Thus, we can analyze economy and

diseconomy of internal links by comparing fixed-link and free-link models.

2. We have proved that, under the VRS assumption, every division has at least one

divisionally efficient DMU. This also holds for the case the fixed link under

the CRS.

3. For the CRS and free link case, we have demonstrated a counter example in

which a division has no divisionally efficient DMU. This may suggest improve-

ments of the division as a whole. Also, it may reflect an unstable or unbalanced

network structure in the problem of concern.

As an extension model of slacks-based NDEA to intertemporal analysis, Tone

and Tsutsui (2010) proposed slacks-based dynamic DEA model, which takes

account carry-over activities of DMUs such as retained earnings and facilities.

These are incorporated into the model as input from the previous period and output

to the next period.

Network and dynamic model is also proposed in Tone and Tsutsui (2014).

Vertically, this model deals with multiple divisions connected by links of network

structure within each period and, horizontally, it combines the network structure by

means of carry-over activities between two succeeding periods.

Finally, we hope that these studies serve as a basis for extending theory and

applications of DEA models which have been growing rapidly worldwide.
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Chapter 12

DEA Models for Extended Two-Stage

Network Structures

Yongjun Li, Yao Chen, Liang Liang, and Jianhui Xie

Abstract This chapter discusses DEA modeling technique for a two-stage network

process where the inputs of the second stage include both the outputs from the first

stage and additional inputs to the second stage. Two models are proposed to

evaluate the performance of this type two-stage network structures. One is a

non-linear centralized model whose global optimal solutions can be estimated

using a heuristic search procedure. The other is a non-cooperative model, in

which one of the stages is regarded as the leader and the other is the follower.

The newly developed models are illustrated with a case of regional R&D of China.

Keywords Data envelopment analysis (DEA) • Two-stage • Game

12.1 Introduction

Data envelopment analysis (DEA), developed by Charnes et al. (1978), is a math-

ematical programming approach for analyzing the relative performance of peer

decision making units (DMUs) which have multiple inputs and multiple outputs.

Cooper et al. (2004) has shown that DEA can be applied in various of settings, such

as performance evaluation in education, bank and bank branch, sports, retailing,

engineering and health care. In conventional DEAmodels, DMUs are seen as black-

boxes and the internal structure of DMUs is ignored. In recent years, a number

of studies have looked at DMUs with network structures (see, e.g., Färe and
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Grosskopf 2000; Liang et al. 2006; Tone and Tsutsui 2009; Castelli et al. 2004;

Kao 2009a, b; Kao and Hwang 2008; Liang et al. 2008). In a recent survey by Cook

et al. (2010a), the authors point out several approaches in modeling DMUs with a

two-stage network structure. Typically, models are developed based upon additive

or geometric mean efficiency decompositions.

For example, Cook et al. (2010b) develop models for DMUs with network

structures based upon additive efficiency decomposition. Their approach can be

viewed as a centralized model of Liang et al. (2008). The centralized model of Liang

et al. (2008) assumes the overall efficiency is a product or sum of divisional

efficiencies. For example, consider the approach of Kao and Hwang (2008)

where a set of insurance companies are assumed to have a two-stage operations of

premium acquisition and profit generation. The overall efficiency is then a product

of premium acquisition efficiency and profit generation efficiency. Liang

et al. (2008) classify this type of modeling technique or efficiency decomposition

as cooperative or centralized game approach, as the efficiency scores of all

sub-DMUs or stages are simultaneously optimized.

Liang et al. (2008) further introduce modeling two-stage network DMUs from

the perspective of the non-cooperative game. The non-cooperative approach is

characterized by the leader-follower, or Stackelberg game. For example, if we

assume that the first stage of premium acquisition is the leader, then the first

stage performance is more important, and the efficiency or performance of the

second stage of profit generation is computed subject to the requirement that

the efficiency of the first stage is to stay fixed. In a similar manner, we can also

assume the second stage is the leader and the first stage is the follower.

Note that while the centralized model approach of Liang et al. (2008) can be

applied to DMUs with any network structures by assuming the overall efficiency is

a weighted average of individual stage (or divisional) efficiencies, the leader-

follower cannot be easily applied. Note also that the approach of Liang

et al. (2008) or Kao and Hwang (2008) is developed under the assumption that

the outputs from the first stage all become the only inputs to the second stage. The

current chapter extends Liang et al. (2008) and Kao and Hwang (2008) by assuming

that the second stage has its own inputs in addition to outputs from the first stage.

In fact, Liang et al. (2008) studied this type of two-stage network structure in

analyzing the performance of a set of hypothetical supply chains. Other examples

can be found in manufacturing with two sub-processes, one is production and the

other is distribution. The inputs of first stage are manufacturing facilities, raw

materials and components, laborers and operating fees of manufacturing depart-

ment, the outputs of first stage are finished goods which are also part of the inputs to

the second stage. Another part of inputs to the second stage are advertisement fee,

employees of market department.

Due to the existence of additional inputs to the second stage, the approach of

Liang et al. (2008) results a non-linear program that cannot be converted into linear

programming problems if we assume that the overall efficiency is a geometric mean

of two stages’ efficiency. The current chapter develops procedures to convert the

resulting non-linear programs into parametric linear programs so that the global
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optimal solution can be found if one adopts the centralized and leader-follower

approaches of Liang et al. (2008). Therefore, the current chapter extends the

approach of Liang et al. (2008) to more general two-stage network structures.

The remainder of the chapter is organized as follows. In the next section we

extend the models of Liang et al. (2008) to evaluate performance of the two-stage

network structure with additional inputs to the second stage. Relations between the

two approaches are established. The two approaches are then illustrated with an

example about regional R&D process in China. We demonstrate how to estimate

the global optimal solution from our converted non-linear program. Conclusions are

given in the last section.

12.2 DEA Models

Figures 12.1 and 12.2 graphically illustrate two types of two-stage network struc-

ture. Figure 12.1 studied by Liang et al. (2008) or Kao and Hwang (2008) assumes

that the outputs from the first stage all become the only inputs to the second stage.

These measures in-between the two stages are called intermediate measures.

Figure 12.2 relaxes the above assumption by introducing inputs to the second

stage in addition to the intermediate measures.

We assume that each DMUj ( j ¼ 1, 2, . . ., n) has m inputs to the first stage, xij,
(i ¼ 1, 2, . . ., m) and D outputs (intermediate measures) from the first stage, zdj,
(d ¼ 1, 2, . . ., D). These D outputs then become part of the inputs to the second

stage, Another part of inputs are x2hj (h ¼ 1, 2, . . ., H). The outputs from the second

stage are yrj, (r ¼ 1, 2, . . ., s).
We next develop models based upon the approaches of Liang et al. (2008) to

analyze the performance of extended two-stage network structure as depicted in

Fig. 12.2.

yrj,r = 1…s

zdj,d = 1…D

xij, i = 1,…m Stage 1 Stage 2 Fig. 12.1 Two-stage

process of DMUj

Stage 1 Stage 2 xrj, i = 1,…m

zdj,d = 1…D

yrj,r = 1…s

x2
hj,h = 1,…H

Fig. 12.2 Two-stage

process with additional

inputs to the second stage
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12.2.1 Centralized Model

There are many cases that each sub-DMU works together to reach the optimal

performance of the overall DMU. For example, marketing and production depart-

ments would cooperate to maximize company’s profit. Liang et al. (2008) devel-

oped a centralized approach to analyze the performance of two-stage network

structure described in Fig. 12.1. In their model, overall efficiency of the two-stage

process is defined as the product of two stages’ efficiencies. In a similar manner,

based upon the ratio efficiency of the CCR model (Charnes et al. 1978), we can

establish have the following model for Fig. 12.2.

θcen ¼ maxθo1 � θ o
2 ¼ max

XD
d¼1

wdzdo

Xm
i¼1

vixio

�

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
2
ho

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:1Þ

Where θo1 and θo2 represent the ratio efficiencies for stages 1 and 2, respectively.

As in Liang et al. (2008), it is assumed that a same set of weights (wd) is applied to

the intermediate measures (zdj) for both stages. For example, the manufacturer and

retailer jointly determine the price, order quantity, etc. to achieve maximum profit

(Huang and Li 2001). Herein, as in Liang et al. (2008), we also assume that the

“worth” or value accorded to the intermediate variables is the same regardless of

whether they are being viewed as inputs or outputs.

Due to the additional inputs to the second stage
XH
h¼1

Qhx
2
ho

 !
, model (12.1)

cannot be converted into a linear program. We here introduce a heuristic method to

solve this problem.
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Consider the following model

θo
max

1 ¼ max

XD
d¼1

wdzdo

Xm
i¼1

vixio

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:2Þ

In model (12.2), the two sets of constraints are the same to the ones in model

(12.1), which ensure the efficiencies for the first and the second stage do not exceed

one, respectively. Therefore, model (12.2) can be used to estimate the best possible

efficiency for stage 1. Denote the optimal value to model (12.2) as θo
max

1 , then the

efficiency for the first stage θo1 must satisfy θ o
1∈ 0; θo

max

1

� �
.

Model (12.2) is a non-linear model, but can be converted into a linear program

through the Charnes-Cooper transformation as follows:

θo
max

1 ¼ max
XD
d¼1

wdzdo

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j
Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j
Xm
i¼1

vixio ¼ 1

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:3Þ

Therefore, the efficiency of the first stage θo1 can be treated as a variable

θ o
1∈ 0; θo

max

1

� �
and the overall efficiency denoted as θcen,1,* can be considered as a

function of θo1 as follows: (or model (12.1) can be written as)
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θcen, 1,� ¼ maxθ o
1 �

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
2
ho

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

XD
d¼1

wdzdo

Xm
i¼1

vixio

¼ θ o
1

θ o
1∈ 0; θo

max

1

� �
vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:4Þ

Model (12.4) now can be transformed via the Charnes-Cooper transformation as

follows:

θcen, 1,� ¼ maxθ o
1 �
Xs
r¼1

uryro

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j

Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j

XH
h¼1

Qhx
2
ho þ

XD
d¼1

wdzdo ¼ 1

XD
d¼1

wdzdo � θ o
1

Xm
i¼1

vixio ¼ 0

θ o
1∈ 0; θo

max

1

� �
vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:5Þ
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Let θ o
1 ¼ θo

max

1 � kΔε, Here Δε is a step size,1 k ¼ 0, 1, 2 . . . [kmax] + 1, where

[kmax] is the maximal integer which is smaller than or equal to θo
max

1 =Δε. Now, given
each θo1, model (12.5) can be solved as a linear program.

In solving model (12.5), we set the initial k value as the lower bound, k ¼ 0.

Then we increase k at each step. We solve each linear program of model (12.5)

corresponding to each k and denote the optimal value to model (12.5) as θcen,1(k).
Therefore, the global optimal efficiency of the system under evaluation can be

estimated as θ̂ cen, 1,� ¼ maxk θ
cen, 1 kð Þ.

Note, when the efficiency of the entire two-stage system under evaluation is

θ̂ cen, 1,�, the maximal efficiency for its first stage is θ̂ oþ
1 ¼ θ o

1 k�ð Þ, where

k� ¼ min k θ̂ cen, 1,� ¼ θcen, 1 kð Þ��� �
. Therefore, the minimal efficiency for its second

stage is θ̂ o�
2 ¼ θ̂ cen,1,�

θ̂ oþ
1

.

Similarly, we can also treat stage 2 as a variable. The optimal efficiency of the

second stage θo
max

2 can be calculated using a model similar to model (12.2). Then,

according to the above-mentioned algorithm, we can get the global efficiency

θ̂ cen, 2,� and its corresponding maximal efficiency for the second stage θ̂ oþ
2 ,

respectively. And then the minimal efficiency for the first stage is θ̂ o�
1 ¼ θ̂ cen,2,�

θ̂ oþ
2

.

The best possible efficiency for stage 2 can be obtained via the following model

θo
max

2 ¼

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
2
ho

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

vi,wd ,Qh, ur � 0, 8i, d, h, r

ð12:6Þ

Denote the optimal value to model (12.6) as θo
max

2 , then the efficiency for the

second stage θo2 must satisfy θ o
2∈ 0; θo

max

2

� �
.

1 The smaller the Δε value we select, the more precise results we obtain.
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Model (12.6) is a non-linear model, and can be converted into a linear program

through the Charnes-Cooper transformation as follows:

θo
max

2 ¼ max
Xs
r¼1

uryrj0

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j

Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j

XH
h¼1

Qhx
2
ho þ

XD
d¼1

wdzdo ¼ 1

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:7Þ

The efficiency of the second stage θo2 can be treated as a variable θ o
2∈ 0; θo

max

2

� �
and the overall efficiency θcen,2,* can be considered as a function of θo2 as follows:
(or model (12.1) can be written as)

θcen, 2,� ¼ maxθ o
2 �

XD
d¼1

wdzdo

Xm
i¼1

vixio

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
2
ho

¼ θ o
2

θ o
2∈ 0; θo

max

2

� �
vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:8Þ
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Model (12.8) now can be transformed via the Charnes-Cooper transformation as

follows:

θcen, 2,� ¼ maxθ o
2 �
XD
d¼1

wdzdo

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j

Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j

Xm
i¼1

vixio ¼ 1

Xs
r¼1

uryro � θ o
2

XH
h¼1

Qhx
2
ho þ

XD
d¼1

wdzdo

 !
¼ 0

θ o
2∈ 0; θo

max

2

� �
vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:9Þ

Let θ o
2 ¼ θo

max

2 � ρΔε, ρ ¼ 0, 1, 2 . . . [ρmax] + 1, where [ρmax] is the maximal

integer which is smaller than or equal to θo
max

2 =Δε. Given each θo2, model (12.9) can

be solved as a linear program.

By solving model (12.9), the global optimal efficiency of the system under

evaluation can be estimated as θ̂ cen, 2,� ¼ max
ρ

θcen, 2 ρð Þ. Then, when the efficiency

of the entire two-stage system under evaluation is θ̂ cen, 2,�, themaximal efficiency for

its second stage is θ̂ oþ
2 ¼ θ o

2 ρ�ð Þ, where ρ� ¼ min ρ θ̂ cen, 2,� ¼ θcen, 2 ρð Þ��� �
. Finally,

the minimal efficiency for its first stage is θ̂ o�
1 ¼ θ̂ cen,2,�

θ̂ oþ
2

.

Note that, no matter which stage’s efficiency is assumed as a variable in deriving

the efficiency for the entire two-stage system, the same optimal global optimal

efficiency should be obtained, i.e., θcen,1,* ¼ θcen,2,*. And the efficiency decompo-

sition is unique if θoþ1 ¼ θo�1 and θoþ2 ¼ θo�2 .

12.2.2 Non-cooperative Model

The models presented in former section for analyzing the extended two-stage

network structure with additional inputs to the second stage are under centralized

decision-making environment. In this section, a non-cooperative approach is intro-

duced to analyze this network structure. We first treat stage 1 as the leader (this

sub-process is assumed to be more important) and stage 2 as the follower.
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The efficiency of the first stage (the leader) for a specific DMUo is calculated by

using the CCR model (Charnes et al. 1978) as follows:

eo�1 ¼ max
XD
d¼1

wdzdo

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j
Xm
i¼1

vixio ¼ 1

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:10Þ

Getting the efficiency of stage 1 eo�1 by model (12.10), the optimal weights

v�i , i ¼ 1 � � � m, w�
d, d ¼ 1 � � � D are also given. Since the two sub-processes are

connected with each other by intermediate measures, v�i , w
�
d need to be introduced

to the next model for calculating the efficiency of stage 2. However, the weights v�i ,
w�
d may not be unique. Doyle and Green (1994) develop second goal models to

solve a similar problem about cross-efficiency in DEA. Follow this idea, we

develop a model that maximize the efficiency of stage 2 as the objective function

while remain the efficiency of stage 1 as a constraint. The model is as follows:

eo�2 ¼ max

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
2
ho

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

XD
d¼1

wdzdo

Xm
i¼1

vixio

¼ eo�1

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:11Þ
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In model (12.11), the efficiency for the second stage of DMUo is optimized

based upon that the efficiency of the first stage eo�1 remains unchanged. Model

(12.11) can be transformed as:

eo�2 ¼ max
Xs
r¼1

uryrj0

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j

Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j

XH
h¼1

Qhx
2
ho þ

XD
d¼1

wdzdo ¼ 1

XD
d¼1

wdzdo � eo�1
Xm
i¼1

vixio ¼ 0

vi,wd ,Qh, ur � 0, 8i, d, h, r

ð12:12Þ

Denote the optimal value to model (12.12) as eo�2 , then the efficiency for the

entire two-stage system or DMUo is enon,1 ¼ eo�1 * eo�2 .

In a similar manner, if we assume the second stage is the leader, the regular CCR

efficiency πo�2 for that stage can be calculated via using the standard CCR model

with inputs (zdj and x
2
hj) and outputs (yrj). Then, the efficiency score (π

o�
1 ) for the first

stage (follower) can be obtained by solving a model with the restriction that the

second stage score πo�2 remains unchanged. The overall efficiency of the entire

system in this situation is πnon,2 ¼ πo�1 * πo�2 .

We first calculate the efficiency of the second stage (the leader) for a specific

DMUo by using the standard CCR model (Charnes et al. 1978) as follows:

πo�2 ¼ max
Xs
r¼1

uryrj0

s:t:
Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j

XH
h¼1

Qhx
2
ho þ

XD
d¼1

wdzdo ¼ 1

wd,Qh, ur � 0, 8d, h, r

ð12:13Þ
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The model for calculating the efficiency of follower (the first stage) is as follows:

πo�1 ¼ max

XD
d¼1

wdzdo

Xm
i¼1

vixio

s:t:

XD
d¼1

wdzdj

Xm
i¼1

vixij

� 1 8j

Xs
r¼1

uryrj

XD
d¼1

wdzdj þ
XH
h¼1

Qhx
2
hj

� 1 8j

Xs
r¼1

uryro

XD
d¼1

wdzdo þ
XH
h¼1

Qhx
2
ho

¼ πo�2

vi,wd ,Qh, ur � 0, 8i, d, h, r

ð12:14Þ

In model (12.14), the efficiency for the first stage of DMUo is optimized based

upon that the efficiency of the second stage πo�2 remains unchanged. Model (12.14)

can be transformed as:

πo�1 ¼ max
XD
d¼1

wdzdo

s:t:
XD
d¼1

wdzdj �
Xm
i¼1

vixij � 0 8j

Xs
r¼1

uryrj �
XH
h¼1

Qhx
2
hj �

XD
d¼1

wdzdj � 0 8j

Xm
i¼1

vixio ¼ 1

Xs
r¼1

uryro � πo�2
XH
h¼1

Qhx
2
ho þ

XD
d¼1

wdzdo

 !
¼ 0

vi,wd,Qh, ur � 0, 8i, d, h, r

ð12:15Þ

In model (12.15), denote πo�1 as the optimal efficiency for first stage. The overall

efficiency of the entire system in this situation is πnon,2 ¼ πo�1 * πo�2 .
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12.2.3 Relations Between the Two Models

This section gives three theorems to illustrate the relations between the centralized

model and the non-cooperative model.

Theorem 1 eo�1 � πo�1 , eo�2 � πo�2 , where eo�1 and eo�2 are the efficiencies for the first
stage and the second stage, respectively, when stage 1 is assumed as leader. πo�1 and
πo�2 are the efficiencies for the first stage and the second stage, respectively, when
stage 2 is assumed as leader.

Proof Denote an optimal solution to model (12.8) as (vnon;1;�i , wnon;1;�
d , Qnon;1;�

h ,

unon;1;�r , 8 i, d, h, r) and the optimal efficiency for the stage 2 as eo�2 .

Let ς ¼ (wnon;1;�
d , Qnon;1;�

h , unon;1;�r , 8 d, h, r), then, ς is also a feasible solution to
model (A.5). Note that, model (A.5) calculates the optimal efficiency for stage

2 when stage 2 is treated as leader. Therefore, its optimal efficiency is πo�2 . Thus, the

efficiency for stage 2 based upon ς is not bigger than πo�2 . So we have eo�2 � πo�2 .

Similarly, we can get the result eo�1 � πo�1 . Q.E.D.

Theorem 2 (1) To each DMU, θcen,1,* ¼ θcen,2,* where θcen,1,* and θcen,2,* are the
optimal efficiencies for the system based upon the centralized model when stage
1 and stage 2 are treated as variables, respectively; (2) θcen � enon,1,*, θcen �
π

non,2,*

, where θcen ¼ θcen,1,* ¼ θcen,2,*, and enon,1,* and πnon,2,* are the optimal
efficiencies for the system when stage 1 or stage 2 is assumed leader, respectively.

Proof

1. Either stage 1 or stage 2 is treated as a variable, the maximal efficiency for the

system is unique. So θcen,1,* ¼ θcen,2,*.

2. Denote an optimal solution to model (12.7) as (vnon;1;�i , wnon;1;�
d , Qnon;1;�

h , unon;1;�r ,

8 i, d, h, r), accordingly, the optimal efficiency for the system as

enon,1 ¼ eo�1 * eo�2 .

Let ξ ¼(wnon;1;�
d , Qnon;1;�

h , unon;1;�r , 8 d, h, r), then ξ is also a feasible solution to

model (12.1), therefore, the optimal efficiency based upon model (12.1) is bigger

than or equal to the efficiency based upon the feasible solution ξ. So we get:

θcen �

XD
d¼1

wnon, 1,�
d zdo

Xm
i¼1

vnon, 1,�i xio

�

Xs
r¼1

unon, 1,�r yro

XD
d¼1

wnon, 1,�
d zdoþ

XH
h¼1

Qnon, 1,�
h x2ho

¼ enon, 1,�.

Similarly, we can get θcen � πnon,2,*. Q.E.D.

Theorem 3 If there is only one intermediate measure, then, the optimal efficiency
for the system is unique either based upon the centralized model or based upon
non-cooperative model, such that θcen ¼ θcen,1,* ¼ θcen,2,* ¼ enon,1,* ¼ πnon,2,*.
And the efficiency decomposition is also unique such that eo�1 ¼ πo�1 ¼ θCCR1 , eo�2
¼ πo�2 ¼ θCCR2 , where θCCR1 and θCCR2 are the efficiencies for the first and second
stage as applying the standard CCR model.
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Proof Liang et al. (2008) has proven that eo�1 ¼ πo�1 ¼ θCCR1 and eo�2 ¼ πo�2 ¼
θCCR2 . Based upon Theorem 2, we have θcen � enon,1,*. Thus θcen ¼ θcen,1,* �
θCCR1 ∗ θCCR2 . On the other hand, the efficiency of the entire two-stage system

based upon the centralized model is not bigger than the product of two efficiencies

of the first and second stages using the standard CCR models. Therefore, θCCR1 ∗
θCCR2 � θ

cen

. Thus, θcen ¼ θCCR1 ∗ θCCR2 ¼ θcen,1,* ¼ enon,1,*.

Similarly, we can have θcen ¼ θCCR1 ∗ θCCR2 ¼ θcen,2,* ¼ πnon,2,*. Q.E.D.

12.3 An Illustrative Application

This section presents a real example about regional R&D process of 30 Provincial

Level Regions in Mainland of China. Figure 12.3 shows a regional R&D process

which contains two sub-processes, one is technology development and the other is

economic application.

In the technology development process, the inputs are: R&D expenditure

(R&DE), R&D personnel (R&DP) and the proportion of regional science and

technology funds in regional total financial expenditure (S&TF/TFE), the outputs

are: patents and papers. Among them, R&DE and R&DP are two core indexes in

science and technology activities (see Zhong et al. 2011), S&TF/TFE is a important

index for reflecting government’s support. The outputs of the first stage are the

number of patents and papers which are also inputs to the second stage, namely,

these are intermediate measures. The second stage also has an input of contract

value (CV) in technology market. Economic application process transforms tech-

nology development into economic benefits. CV presents the function of interme-

diary services institution which provides services in this process. The final outputs

are complex economic indexes which embody the regional economic performance

affected by R&D: GDP represents the macro-economy performance, total exports

(TE) is important to depict international competency, urban per capita disposable

annual income (UPCDAI) depicts people’s living level and gross output of high-

tech industry (GOHI) is directly to depict the condition of high-tech industry.

Table 12.1 provides the data for the above R&D system of for the 30 Provincial

Level Regions in Mainland of China. The data for Tibet Autonomous Region are

S & TF /TFE

R & DP

R & DE

GOHI

UPCDAI

TE

GDP

CV

Stage 1 Stage 2 

#Paper
#Patent

Fig. 12.3 A two-stage regional R&D system
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incomplete and are not included in the current study. The data are derived from

“China statistical yearbook, 2009” and “China science and technology statistical

yearbook, 2009”.

We now illustrate the proposed computation procedure in estimating the global

optimal efficiency for each Provincial Level Region. Consider Zhejiang Province

(DMU 26). The maximal score for its first stage is θo
max

1 ¼ 0.9111 based upon

model (12.3). Now, let θo1 ¼ 0.9111 � kΔε, k ¼ 0, 1, 2 . . . [kmax] + 1, and set the

step size as Δε ¼ 0.01. Therefore, [kmax] ¼[ θo
max

1 =Δε ] ¼ [0.9111/0.01] ¼ 91,

i.e., k ¼ 0, 1, 2...92. Table 12.2 shows the results from model (12.5) for Zhejiang

Province (DMU 26) corresponding to each k from 0 to 92. For example, when we

set k ¼ 10 and k ¼ 41, the optimal efficiency for the Zhejiang Province (DMU 26)

is 0.6231 and 0.3922, respectively.

Figure 12.4 shows the change of the optimal value to model (12.5) as k increases
from 1 to 92. It can be seen that its efficiency increases until k ¼ 19. When

k exceeds 19, the optimal efficiency for Zhejiang province (DMU 26) starts to

decrease. Thus, the global optimal efficiency for Zhejiang Province (DMU 26) is

θ̂ cen, 1,� ¼ 0:6688 when k ¼ 19.

Table 12.3 reports the results based upon the proposed approaches in This chapter.

The results based upon centralized models (Δε ¼ 0.01) are shown in columns 4–9,

where columns 4, 5, 6 are the efficiencies when stage 1 is assumed as a variable and

columns 7, 8, 9 present the efficiencies when stage 2 is assumed as a variable. The

results based upon non-cooperative models are shown in the last six columns, in

which columns 10, 11, 12 shows the results when stage 1 is assumed as the leader, and

the last three columns gives the efficiencies when stage 2 is assumed as the leader.

First, the results in Table 12.3 verify our Theorem 1. For example, to each

Provincial Level Region, its efficiency for the first stage in column 10 is always

bigger than or equal to the one in column 13. Similarly, the efficiency for the second

stage in column 11 is always less than or equal to the one in column 14. So the

Theorem 1 can be verified such that eo�1 � πo�1 , eo�2 � πo�2 .

Table 12.2 Efficiency for Zhejiang Province (DMU26) corresponding to each k based upon the

centralized model

k θ o
1 kð Þ ¼ θo

max

1 � k � 0:01 θcen,1,*(k)

0–10 0.9111–0.8111 0.4712–0.6231

11–18 0.8011–0.7311 06339–0.6682

19 0.7211 0.6688 (Global optimal efficiency)

20–30 0.7111–0.6111 0.6685–0.5926

31–40 0.6011–0.5111 0.5830–0.4971

41–50 0.5011–0.4111 0.4876–0.4017

51–60 0.4011–0.3111 0.3922–0.3063

61–70 0.3011–0.2111 0.2968–0.2109

71–80 0.2011–0.1111 0.2014–0.1155

81–90 0.1011–0.0111 0.1060–0.0201

91–92 0.0011–0.0000 0.0106–0.0000
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However, some results in Table 12.3 are not consistent with our Theorem 2.

First, for some Provincial Level Regions, their efficiencies are not equal based

upon the centralized model when stage 1 and 2 are treated as variables, respectively.

For example, for Shanxi Province (DMU 22), θ̂ cen, 1,� ¼ 0.2943, but θ̂ cen, 2,� ¼
0.2942. Therefore, the result does not support the first part of Theorem 2 such that

θcen,1,* ¼ θcen,2,*. The similar situation occurs to Shanghai (DMU 3), Gansu (DMU

7), Heilongjiang (DMU 12), Henan (DMU 13), Hubei (DMU 14), Hunan (DMU

15), Jiangxi (DMU 17), Jilin (DMU 18), Liaoning (DMU 19), Shandong (DMU 21),

Shanxi (DMU 22), Sichuan (DMU 24) and Yunnan Province (DMU 25). The

results for the other 16 Provincial Level Regions satisfy the first part of Theorem 2.

Furthermore, some results in Table 12.3 are not consistent with the second part

of our Theorem 2. For example, for Jilin Province (DMU 18) θ̂ cen, 2,� ¼ 0.3518,

while enon,1,* ¼ 0.3533. So the result is inconsistent with the second part of our

Theorem 2 such that θcen � enon,1,*, θcen � πnon,2,*. The similar situation occurs to

Heilongjiang (DMU 12), Gansu (DMU 7), Henan (DMU 13), Hubei (DMU 14),

Hunan (DMU 15), Shandong (DMU 21), Shanxi (DMU 22), Sichuan (DMU 24)

and Yunnan Province (DMU 25). The results for the other 20 Provincial Level

Regions satisfy the second part of Theorem 2.

The reason for the above inconsistency is due to the fact that the step size Δε we
use is not small enough. If the Δε is adequately small, we can get the results in

consistent with the theorems.

Table 12.4 reports the results based upon centralized model with Δε ¼ 0.0001

and Δε ¼ 0.00001, respectively. It shows there are only three Provincial Level

Fig. 12.4 The efficiency changes of Zhejiang Province (DMU 26) corresponding to each k
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Regions (Shandong (DMU 21), Hunan (DMU 15) and Shanxi (DMU 22)) whose

two efficiencies are not equal which is inconsistent with Theorem 2 when

Δε ¼ 0.0001. When Δε ¼ 0.00001, the results for all the 30 Provincial Level

Regions verify Theorem 2. This indicates that the choice of Δε is important and

we should always use a very small Δε in order to reach the global optimal solution.

The results in the last six columns of Table 12.4 with Δε ¼0.00001 shows that

the efficiency decomposition is unique for all Provincial Level Regions. For

example, for Zhejiang Province (DMU 26), θ̂ oþ
1 ¼ θ̂ o�

1 ¼ 0.7293 and θ̂ oþ
2 ¼

θ̂ o�
2 ¼ 0.9171.

Finally, note also that the two efficiencies based upon the centralized model and

the non-cooperative model with stage 1 as leader are the same for the majority of

Provincial Level Regions. This may indicate that the first stage or the technology

development stage is more important.

12.4 Conclusions

The current chapter extends the approach of Liang et al. (2008) to analyze the

efficiency of two-stage network structures where the second stage has its own

inputs in addition to the outputs from the first stage. In the current chapter, a

centralized model and a non-cooperative model are proposed to evaluate the

efficiency of such a two-stage process and to further decompose the overall

efficiency as a product of efficiency scores of the two individual stages as in Kao

and Hwang (2008).

Unlike the models in Liang et al. (2008) or Kao and Hwang (2008), the

centralized model cannot be transformed to a linear program due to the existence

of additional inputs to the second stage. The current chapter proposes a heuristic

method to estimate the global optimal efficiency. The proposed approaches are

illustrated with a data set for measuring the R&D performance of 30 Provincial

Level Regions in Mainland of China. As demonstrated in the application, the

developed relations between the centralized and non-cooperative approaches can

help test for whether a global optimal solution is found.

Although the current chapter assumes that all the outputs from the first stage

become inputs to the second stage, similar development can be made for cases when

only portion of the outputs from the first stage become inputs to the second stage.

That is, we can provide similar models for a more general two-stage network

structure where each stage has its own inputs and outputs.

Finally, our models can only give solutions for general two-stage network

structure, it is desirable to improve these approaches to decompose efficiency for

complex network structure (not restrict to two-stage) in future research. And, the

current models are under the assumption of CRS (constant return to scale), how to

modify these models to decompose efficiency for general network structure by VRS

(variable return to scale) model is also a direction for future research.
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Chapter 13

An Efficiency Measurement Framework

for Multi-stage Production Systems

Boaz Golany, Steven T. Hackman, and Ury Passy

Abstract We develop an efficiency measurement framework for systems

composed of two subsystems arranged in series that simultaneously computes the

efficiency of the aggregate system and each subsystem. Our approach expands

the technology sets of each subsystem by allowing each to acquire resources from

the other in exchange for delivery of the appropriate (intermediate or final) product,

and to form composites from both subsystems. Managers of each subsystem will

not agree to “vertical integration” initiatives unless each subsystem will be more

efficient than what each can achieve by separately applying conventional efficiency

analysis. A Pareto Efficient frontier characterizes the acceptable set of efficiencies

of each subsystem from which the managers will negotiate to select the final

outcome. Three proposals for the choice for the Pareto efficient point are discussed:

the one that achieves the largest equiproportionate reduction in the classical effi-

ciencies; the one that achieves the largest equal reduction in efficiency; and the one

that maximizes the radial contraction in the aggregate consumption of resources

originally employed before integration. We show how each choice for the Pareto

efficient point determines a derived measure of aggregate efficiency. An extensive

numerical example is used to illustrate exactly how the two subsystems can

significantly improve their operational efficiencies via integration beyond what

would be predicted by conventional analysis.
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13.1 Introduction

Data Envelopment Analysis (DEA) was developed to measure the relative efficiency

of operational units known in the literature as “Decision Making Units” — DMUs

(see Charnes et al. 1994). Given a pair of observed input-output vectors (X0, Y0),
DEA assesses its efficiency by comparing it to other choices in the technology set

T ¼ fðX,YÞg, which characterizes the collection of all input vectors X that can

produce the output vector Y. For example, the classical DEA radial input measure of

efficiency (Charnes et al. 1978) is calculated as

Min θ : ðθX0,Y0Þ ∈ Tf g: ð13:1Þ

The technology set T is extrapolated from the observed data on input-output pairs

(Xj, Yj), j ¼ 1, 2, . . ., N, for N DMUs, and is typically defined via a set of linear

inequalities, which turns (13.1) into a linear program. The optimal input-output

pair (X∗, Y∗) of the linear program to which (X0, Y0) is compared is a linear combi-

nation of existingDMUs, and is commonly referred to as a “composite” unit or system.

A significant portion of DEA research to date has focused on defining the rules

for constructing T , and defining corresponding measures of efficiency. Regardless

of the definition of efficiency, most DEA models treat each DMU as a

non-separable entity without attempting to probe the internal mechanisms of how

each DMU converts its inputs into outputs. With today’s information systems it is

now much easier to collect data on how capital and labor are used to transform raw

materials through various stages to produce final products. The availability of such

data presents an opportunity to explore efficiency measurement of the stages within

complex, multi-stage DMUs.

In particular, we are interested in DMUs that consist of several stages arranged

in series where succeeding stages (or subsystems) are fed by a mixture of external

inputs and intermediate factors which are outputs of preceding stages. The focus of

the present paper is on how to assess the efficiency of each stage within the

aggregate system and how to explore possible tradeoffs of these efficiencies. As a

starting point, of course, one can treat each subsystem as a system in its own right.

In this manner, the technology for each subsystem is constructed using the relevant

input-output data from its own peers, and the technology of the aggregate system is

constructed on the basis of aggregated inputs and outputs and without regard to

intermediate input-output factors that link the various stages. As we subsequently

demonstrate, this approach exhibits the phenomena in which it is possible for the

aggregate system to be rated very inefficient, while each subsystem is rated

efficient, and for the aggregate system to be rated near efficient, while each

subsystem is rated highly inefficient.

In this paper, we propose an expansion of the ordinary technology sets which

were used till now in DEA and develop a corresponding efficiency measurement

framework that simultaneously computes the efficiency of each subsystem and

the aggregate system. The measurement framework has the following properties.
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First, if each subsystem is rated efficient, then so must the aggregate system.

Second, each subsystem’s efficiency and the aggregate efficiency cannot exceed

the efficiency obtained using the classical DEA approach, and may be expected to

be far lower. Third, the methodology described herein provides the recipe on how

to obtain the operational improvements at all levels of the hierarchy, as it explicitly
integrates the computation of the various efficiencies.

With the assumptions of our expanded technology set, we show how it may be

possible to obtain significant improvements in operations when the subsystems

agree to “vertically integrate”. The key to our approach is that we allow each

subsystem to construct composite units from both subsystems as in the classical

approach, and we allow each subsystem to acquire resources from the other stage in

return for delivering that stage’s output. We insist that acquisitions by one

subsystem from another have to make economic sense in that both parties have to

benefit and consent. A Pareto Efficient frontier of acceptable efficiencies for each

subsystem will be introduced. While in principle any choice along the Pareto

Efficient frontier could be selected, depending on which subsystem has the greater

market power, we discuss several reasonable choices. We show how each choice

for the Pareto efficient point by the subsystems determines a derived measure of

aggregate efficiency. Our choice for the measure of aggregate efficiency corre-

sponds to the Pareto efficient point that achieves the largest radial contraction in the

aggregate amount of capital and labor used before integration.

To achieve the benefits listed above, we limit our application to two stages in

series, and we make the following simplifying assumptions:

1. Technology. Each subsystem 1 uses capital and labor to produce an intermediate

product used by subsystem 2 to produce final product. Subsystem 2 also requires

capital and labor, which are assumed to be completely transferrable resources

between stages. All technologies described herein exhibit constant returns-to-scale.

2. Market. Each subsystem 2 has a unique supplier given by its subsystem

1. There is a market for the intermediate product, and the transfer price

subsystem 1 charges subsystem 2 is the prevailing market price. Competitive

markets exist so that either subsystem is a price-taker in the input and output

markets. That is, it may expand or contract its output without affecting its price

or cost of inputs.

3. Organization. Monitoring and information costs may make it difficult (and

perhaps unwise) for senior management to dictate sweeping changes to the

allocation of capital and labor between stages. Organizationally, each subsystem

is viewed as a profit center, and each manager is given decision-making author-

ity. Although we do not explicitly model the incentive scheme for the managers,

which is beyond the scope of this paper, we assume each manager is highly

motivated to improve his own system’s efficiency. For our purposes, efficiency

may be thought of as the proxy for performance, which is why each manager will

not consent to an acquisition of resources unless he directly benefits from

it. From an organizational perspective, we view our modeling approach

described herein as a natural starting point for efficiency improvement.
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Attempts to model DMUs that exhibit known internal structures started in the

mid-1980s. Färe and Primont (1984) constructed multi-plant efficiency measures

and illustrated their models by analyzing utility firms each of whom operated

several electric generation plants. Their structure may be characterized as horizon-
tal integration since the plants they model operate in parallel and there is no flow of

intermediate inputs or outputs between them. Färe et al. (1992) further expand this

modeling approach to describe firm and industry performance where, in some cases,

reallocation of resources among firms is allowed to improve the industry perfor-

mance. Cook et al. (1998) define various hierarchies and groupings of DMUs in

DEA, and apply DEA formulations for the different groupings.

Another research thrust explored vertical integration structures in which a series
of stages is connected through intermediate input-output factors. Charnes

et al. (1986a, see also Charnes et al. 1994, p. 432) developed a two-stage model

in the context of the US Army Recruiting Command. The first stage used advertis-

ing to generate awareness and propensity to enlist. The two outputs generated by the

first stage were joined by other external inputs (e.g. recruiters) to produce the

second stage outputs, which were the actual recruitment contracts. Färe and Whit-

taker (1995) developed a linear programming model that focused on the role played

by the intermediate factors and demonstrated its potential through an application to

dairy farms. Hoopes et al. (2000) developed a goal-programming DEA formulation

that models serial manufacturing processes and applied it to data on circuit board

manufacturing. Chen and Zhu (2004) explored two-stage systems in the banking

industry (where the first stage produces deposits which are then used to produce

loans) and developed a model that identifies the efficiency frontier that character-

izes such systems.

Färe and Grosskopf (1996, 2000) deserve special mention, as they pioneered a

line of research, coined network DEA, aimed at developing a general multi-stage

model with intermediate inputs-outputs. Their representation of the flow of product

is consistent with the industrial engineering and operations research literature on

multi-stage systems (e.g., Graves et al. 1993; Hackman and Leachman 1989; John-

son and Montgomery 1974; Troutt et al. 2001). Each internal stage’s technology is

modeled using a single-stage DEA model. The conventional radial-based measure

of aggregate efficiency would still be determined as in (13.1) using their more

extensive description of technology. For an application of the Färe and Grosskopf

framework, see Löthgren and Tambour (1999), who applied their modeling

approach to evaluate the performance of Swedish pharmacies.

It is important to point out here that our two-stage model of the flow of material
is a special case of Färe and Grosskopf’s multi-stage framework; however, our

proposed aggregate efficiency measure is fundamentally different. In particular, in

cases when our proposed aggregate efficiency is higher, it necessarily follows that it

would not be possible to disaggregate the Fare-Grosskopf aggregate efficiency

measure into separate efficiency measures for which each submanager would

consent. If there is an aggregate manager who may unilaterally reallocate resources

without consent of the submanagers, then assessing aggregate efficiency using the

Färe-Grosskopf framework may lead to superior results for the whole system.
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However, as we have noted, due to the linkage of inputs and outputs between the

stages, in such a context one subsystem’s efficiency may be vastly improved at the

expense of potential improvement in the other subsystem, which may render

meaningless the assessment of subsystem efficiency.

The outline of the paper is as follows. Section 13.2 introduces the specific

network structure and data used throughout the paper, and discusses a motivating

example to illustrate how it is possible to achieve significant improvements in

efficiency via acquisition. Section 13.3 presents the formal descriptions of the

newly expanded models of technology that are used to assess the efficiencies of

each stage, and discusses their application to our dataset. Section 13.4 introduces

the aforementioned Pareto Efficient frontier. Section 13.5 develops the aggregate

measure of efficiency and compares the numerical results obtained from the dataset

to both the classical approach and the Färe and Grosskopf approach. Section 13.6

presents the concept of “consistent pricing” which characterizes both our proposed

models and that of Färe and Grosskopf. Section 13.7 discusses extensions to the

basic modeling approach and analyzes, as well as suggestions for further research.

Section 13.8 closes this paper with a few concluding remarks.

13.2 Preliminaries

13.2.1 A Representative Multi-stage System

To ease notational burdens and to make concrete the conceptual discussions to

follow, we shall analyze multi-stage systems such as the one depicted in Fig. 13.1.

Each DMUj ( j ¼ 1,. . .,N) consists of two subsystems in series. Subsystem 1j
(hereafter abbreviated S1j) uses capital K1j and labor L1j to produce intermediate

product Ij. Subsystem 2j (hereafter abbreviated by S2j) uses capital K2j and labor

L2j together with Ij to produce final output Fj. Constant returns-to-scale (CRS) will

be assumed throughout.

DMUj

S1j

K1j
K2j

L1j L2j

Ij
S2j

Kj

Lj

Fj

Fig. 13.1 Aggregate DMU with two stages in tandem
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The models we develop will be illustrated with a 10 DMU numerical example

constructed as follows. We modeled each subsystem’s technology via a

Cobb-Douglas production function so that the observed output for S1j was

Kα
1jL

1�α
1j � 10 μ1, and the observed output for S2j was Kβ

2jL
γ
2jI

1�β�γ � 10 μ2.

The capital and labor inputs were randomly generated in the range [1,100], and

we set the other parameters as α ¼ 0. 4, β ¼ 0. 25, γ ¼ 0. 45 and μ1, μ2 �
Uniform[0,1]. The resulting data on inputs and outputs for S1j, (K1j, L1j, Ij), and
S2j, (K2j, L2j, Ij, Fj), are given in Table 13.1.

13.2.2 Classical Models of Technology

Following Shephard (1970), Charnes et al. (1978), Banker et al. (1984), and Färe

and Grosskopf (1996), a model of technology T ∈ Rn
þ � Rm

þ characterizes the

collection of all input vectors X ∈ R+
n that can be used to produce the output vector

Y ∈ R+
m. For a given dataset of input-output pairs (Xj, Yj), j ¼ 1, 2, . . ., N, the

classical DEA approach models the technology as

T � ðX,YÞ :
X
j

λjXj � X,
X
j

λjYj � Y

( )
, ð13:2Þ

where we now and hereafter suppress the nonnegativity constraints imposed on the

intensity variables (the λj’s). Given the technology T and using the subscript “0” to

denote a DMU in our dataset which is to be analyzed (i.e., ðX0,Y0Þ ∈ T ), the

classical (CL) radial measure of input efficiency is defined as

θCL0 � Min θ0 : θ0X0,Y0ð g ∈ Tf g: ð13:3Þ
(In principle, any measure of input efficiency would suffice for the developments to

follow, since our focus is to expand the classical model of technology when detailed

information about its structure is available.) For the multi-stage systems depicted in

Fig. 13.1, the classical descriptions of technology for each subsystem are

Table 13.1 Data for

the numerical example
DMU K1 K2 K L1 L2 L I F

1 32 81 113 67 83 150 46.928 64.941

2 96 28 124 40 81 121 47.431 46.492

3 79 51 130 89 79 168 79.694 67.388

4 41 80 121 35 26 61 32.978 31.124

5 99 8 107 33 74 107 45.921 35.018

6 72 29 101 15 36 51 24.861 29.146

7 21 88 109 64 23 87 32.250 34.049

8 60 39 99 71 49 120 64.659 45.176

9 7 86 93 80 16 96 21.531 21.062

10 10 40 50 33 11 44 12.519 10.189
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T 1 � ððK,LÞ, IÞ :
X
j

λ1jK1j � K,
X
j

λ1jL1j � L,
X
j

λ1jIj � I

( )
, ð13:4Þ

T 2 � ððK, L, IÞ,FÞ:
X
j

λ2jK2j � K,
X
j

λ2jL2j � L,
X
j

λ2jIj � I,
X
j

λ2jFj � F

( )
:

ð13:5Þ

For each DMU0 in our dataset the classical measures of input efficiency for each

stage are computed as follows:

θCL10 � Min θ10 : ððθ10K10, θ10L10Þ, I0Þ ∈ T 1f g, ð13:6Þ

θCL20 � Min θ20 : ððθ20K20, θ20L20, θ2I0Þ, F0Þ ∈ T 2f g: ð13:7Þ

Computational results are reported in Table 13.2.

13.2.3 An Expanded Model of Technology:
A Motivating Example

A numerical example using one of the DMUs in our dataset will be used to explain

how to expand the technology to provide better opportunities for each subsystem to

improve its efficiency. The model used to generate this example is formally

described in the next section. In what follows, we have made the following

assumptions: (1) Each stage is managed as a profit center; (2) S1j may sell its

intermediate product on the open market for the same price it charges S2j; and
(3) Both S1j and S2j may sell any amount of their respective outputs on the open

market without affecting input cost or price.

The observed S25 of DMU5 uses 8 units of capital, 74 units of labor and 45.92

units of intermediate product to produce 35.02 units of final product. The manager

Table 13.2 Classical

efficiency evaluation

for S1j and Sj2

S1j S2j

DMUj θ1j
CL Benchmarks θ2j

CL Benchmarks

1 1.00 1 1.00 1

2 0.943 5,8 1.00 2

3 0.973 5,8 1.00 3

4 0.958 5,8 0.904 3,6

5 1.00 5 1.00 5

6 1.00 6 1.00 6

7 0.941 1,9 1.00 7

8 1.00 8 1.00 8

9 1.00 9 0.918 1,7

10 0.748 1,9 0.735 1,7
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of S25 (hereafter named ‘M25’), while always looking to improve efficiency, is

content for now as his system is rated efficient by classical efficiency analysis. Now

suppose the manager of S15 (hereafter named ‘M15’) comes to M25 with the

following proposal: “I can show you how to increase your output by 6.3 %, while

simultaneously reducing your cost of inputs by 11.75 %. Interested?” That is,M15 is

proposing a way for M25 to use (K, L, I) ¼ (7.06, 65.29, 40.52) to produce

F ¼ 37.23 instead of M25’s current production plan that uses (K, L, I ) ¼ (8, 74,

45.92) to produce F ¼ 35.02. To expand his output by 6.3 %,M25 would normally

expect (under CRS) to have to increase his inputs by 6.3 %, and so, in effect, M15

is offering M25 to consume only 100ð1� 0:1175Þ=1:063 ¼ 83 % of his input to

achieve the same output level. WhileM25 is obviously intrigued byM15’s proposal,

M25 demands an explanation as to how M15 proposes to accomplish this seemingly

impossible task, as M25 knows that both S15 and S25 were rated input efficient by

classical analysis. M15 obliges with the following explanation.

Using classical descriptions of technology for each subsystem, M15 found a

composite subsystem 1 process that uses (34.48, 40.80) units of capital and labor

to produce 37.16 units of intermediate product, and a composite subsystem 2 pro-

cess that uses (37.04, 45.98, 31.76) units of capital, labor and intermediate product

to produce the 37.23 units of final product, which M15 promised to deliver to M25.

The total amounts of capital and labor required by these two composite processes

are 71.52 and 86.78, respectively. With the 7.06 units of capital and 65.29 units of

labor acquired from M25, M15 still needs 64.46 units of capital and 21.49 units of

labor, which he possesses as these totals represent only 65.1 % of his current

capacity of (99, 33) units of capital and labor. With respect to the intermediate

product,M25 notes that while he is now purchasing 45:92� 40:52 ¼ 5:40 less units
of intermediate product from M15, the difference between what the subsystem

2 composite requires and what the subsystem 1 composite currently produces of

intermediate product is also 5:40 ¼ 37:16� 31:76 units, which M15 will sell on the

open market to compensate him for the loss in revenue from M25. M25 is satisfied

that M15’s proposal is conceptually sound.

M25 now understands whyM15 is so eager to offer this proposal toM25: under the

proposal, M15 will be able to free up 34.9 % of his inputs, a considerable savings,
while still producing his same level of output. Since M15 cannot achieve this

savings without M25’s consent, M25 realizes he must understand exactly how M15

was able to devise this seemingly ingenious plan, so that he will be in position to

negotiate with M15 a better deal for himself.

13.3 The Expanded Technology Sets for S1j and S2j

For every DMUj, the manager of S1j now realizes that the classical efficiency

analysis constructed the efficient frontier using only subsystem 1 processes.

It does not consider the possibility that M1j may have the options of adopting an

alternative subsystem 2 production process and acquiring resources from M2j
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(as long as M2j would agree). With these options, the technology set for S1j, which
defines the collection of input pairs (K, L ) that can produce at least Ij, has been
expanded.

Under the CRS assumption,M10 knows that ω20ððK20,L20, I0Þ, F0Þ ∈ T 2 for all

ω20 � 0. In order to enticeM20 to agree,M10 selects a value θ20 < 1, and offersM20

the opportunity to achieve the input-output point ofω20((θ20K20, θ20L20, θ20I0), F0).

In order forM10 to meet his obligation toM20 and his objective, namely to produce I0
with resources (K, L), he must find two composite processes ððK̂1, L̂1Þ, Î1Þ ∈ T 1

and ððK̂2, L̂2, Î2Þ, F̂ Þ ∈ T 2 for which the following four inventory balance equa-
tions must hold:

[E1] Capital.The “supply” of capital fromM10 andM20,K +ω20(θ20K20), must be no

smaller than the “demand” for capital by both composite subsystems, K̂1 þ K̂2;

[E2] Labor. The “supply” of labor from M10 and M20, L + ω20(θ20L20), must be no

smaller than the “demand” for labor by both composite subsystems, L̂1 þ L̂2;

[E3] Intermediate Product. The “supply” of intermediate product fromM20 and the

composite Stage 1 process, Î1 + ω20(θ20I0), must be no smaller than the

“demand” for intermediate product byM10 and the composite Stage 2 process,

I0 + Î2; and
[E4] FinalProduct.The“supply”offinal product from the composite Stage2process,

F̂, must be no smaller than the “demand” for final product byM20, ω20F0.

Let T E
1 ðθ20Þ denote the collection of input-output pairs ((K, L ), I0) that satisfy

the inventory balance equations [E1–E4] listed above for DMU0. Given θ20, it
would make sense forM10 to find the least amount of capital and labor to satisfy his

own output requirement of I0. Accordingly, he should solve the following linear

programming model, which we shall denote as the Acquisition (AQ) model:

θAQ10 ðθ20Þ � minθ10 ð13:8ÞX
j

λ1jK1j þ
X
j

λ2jK2j � θ10K10 þ ω20½θ20K20�
X
j

λ1jL1j þ
X
j

λ2jL2j � θ10L10 þ ω20½θ20L20�
X

λ1jIj þ ω20½θ20I0� � I0 þ
X

λ2jIjX
λ2jFj � ω20F0

In the proposal of M15 to M25 that was described in Sect. 13.2.3, M15 selected

θ25 ¼ 0.83, and solved the AQ model, whose solution was ω25 ¼ 1.063 with

θAQ15 (θ25) ¼ 0.651.

Now that M20 understands how M10 was able to achieve his objective, M20

realizes he can play the same game. Let T E
2 ðθ10Þ denote the collection of

input-output pairs ((K, L, I), F0) that satisfy analogous four inventory balance
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requirements as described above. Given θ10 it would make sense forM20 to find the

least amount of capital and labor to satisfy his own output requirement of F0.

Accordingly, he would solve his own Acquisition (AQ) model, namely, the follow-

ing linear programming model:

θAQ20 ðθ10Þ � min θ20 ð13:9ÞX
j

λ1jK1j þ
X
j

λ2jK2j � θ20K20 þ ω10½θ10K10�
X
j

λ1jL1j þ
X
j

λ2jL2j � θ20L20 þ ω10½θ10L10�
X

λ1jIj þ θ20I0 �
X

λ2jIj þ ω10I0X
λ2jFj � F0

For example, suppose M25 selects θ15 ¼ 0.9. Solution of his AQ model gives

ω15 ¼ 0.686 and θAQ25 (θ15) ¼ 0.697. Note how much better off M25 is and worse

off M15 is as compared to M15’s original proposal. Both managers will agree that

either proposal will outperform the classical analysis.

We close this section by emphasizing the following point about describing the

subsystem technologies. Since we allow the possibility of one subsystem manager

to acquire resources from the other, as long as they can agree, the potential

acquisition of resources consistent with the “θ10–θ20” agreement must now

be embedded in the respective descriptions of technology given by T E
1 ðθ20Þ and

T E
2 ðθ10Þ to reflect the set of all production possibilities.

13.4 Pareto Efficient Frontiers

It should be intuitively clear that for the serial system we discuss here a gain by one

manager is a loss by the other manager. Regardless of the final choice for how the

two subsystems shall vertically integrate, the agreed-upon choice for θ10 and θ20
should minimally result in a Pareto efficient outcome; that is, (θ10, θ20) ¼
(θ10

AQ(θ20), θ20
AQ(θ10)). Otherwise, neither manager, M10 nor M20, would agree to

the vertical integration.

The efficient frontier corresponding to DMU5 in our example is depicted in

Fig. 13.2. This frontier was constructed using a recently developed algorithm by

Hackman and Passy (2002). When θ15 is set to 1.00, θ25 is at its lowest value 0.66.
On the other hand, when θ25 is set to 1.00, θ15 is assigned its lowest value 0.43.

We remark that the frontier does not always span an interval as depicted in

Fig. 13.2. In extreme cases the frontier may consist of a single point. Such cases

are similar, in a sense, to the class of “weakly efficient” DMUs that were discussed

in Charnes et al. (1986b).
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Two remarks concerning the Acquisition Models (13.8) and (13.9) that deter-

mine the Pareto Efficient frontier are in order. First, it is not necessary to solve both

Acquisition Models, as there is a one-to-one correspondence between the solutions

for each Acquisition Model: the solution to Model (13.9) may be obtained from

the solution to Model (13.8) by dividing λ1j
∗ and λ2j

∗ by ω20
∗, and setting

ω∗
10 ¼ ðω∗

20Þ�1
. Second, the solutions to either Model (13.8) or Model (13.9) must

necessarily lie below their respective classical efficiency counterparts: the linear

program to compute θ10
CL is a special case of Model (13.8) in which ω20 ¼ 0 and

λ2j ¼ 0, and the linear program to compute θ20
CL is a special case of Model (13.9) in

which ω10 ¼ 0 and λ1j ¼ 0. From an economic perspective,M20 would never agree

to a proposal from M10 if the proposed θ20 exceeds what he could achieve on his

own, and M10 would never offer a proposal to M20 in which he receives an

efficiency θ10 that exceeds what he could achieve on his own, too.

In principle, any point on the Pareto efficient frontier is a candidate. One natural

choice is to select the point that achieves the largest equiproportionate reduction

in the respective classical single-stage efficiencies θ10
CL and θ20

CL. For example, the 45∘

line in Fig. 13.2 intersects the frontier at the equiproportional point

θ15 ¼ θ25 ¼ 0:762, a point which might be considered as “fair” for both subsystems.

A second choice is to select the point that achieves the largest equal reduction in

efficiency. (When θCL10 ¼ θCL20 ¼ 1, as is the case for DMU5, these two choices will

obviously coincide.) A third choice is to select the point that achieves for the

vertically integrated unit the largest radial contraction in the aggregate amounts of

capital and labor originally employed, whichwemore fully discuss in the next section.

Fig. 13.2 Efficient frontier for DMU5, θ15 vs. θ25
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13.5 Aggregate Efficiency

13.5.1 Measures of Aggregate Input Efficiency

From the perspective of an aggregate DMU, the classical model of technology is

given by

T A ¼ ððK,LÞ, FÞ :
X
j

λjðK1j þ K2jÞ � K,

(

X
j

λjðL1j þ L2jÞ � L,
X
j

λjFj � F

)
:

ð13:10Þ

For the aggregate DMU0 (denoted hereafter as A0) the classical model ignores the

intermediate product I0 as it represents internal production. The corresponding

classical input efficiency measure would be computed as:

θCLA0 ¼ Min θA0 : ððθA0ðK10 þ K20Þ, θA0ðL10 þ L20ÞÞ, F0Þ ∈ T Af g: ð13:11Þ

Färe and Grosskopf (1996) provide an in-depth development of models of

technology for general multi-stage systems. One of their basic models (Färe and

Grosskopf 1996, pp. 20–23) allows complete transferability (CT) of capital and

labor flows between the stages. Applied to the two-stage systems we analyze in this

paper, their model is formulated as:

T CT
A ¼ ððK,LÞ, FÞ :

X
j

λ1jK1j þ
X
j

λ2jK2j � K,

(
ð13:12Þ

X
j

λ1jL1j þ
X
j

λ2jL2j � L, ð13:13ÞX
j

λ1jIj �
X
j

λ2jIj � 0 ð13:14Þ

X
j

λ2jFj � F

)
: ð13:15Þ

The third constraint above represents inventory balance of intermediate product to

ensure that the supply of I produced by the composite S1 will be sufficient to satisfy
the demand for I by the composite S2. Assuming complete transferability of

resources, the Färe-Grosskopf measure of input efficiency would be computed as:

θCTA0 ¼ Min θA0 : ððθA0ðK10 þ K20Þ, θA0ðL10 þ L20ÞÞ, F0Þ ∈ T CT
A

� �
: ð13:16Þ
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13.5.2 A Derived Measure of Aggregate Efficiency

For each Pareto efficient point (θ10, θ20), let K(θ10, θ20) and L(θ10, θ20) denote,
respectively, the aggregate amounts of capital and labor which the vertically

integrated unit would use to produce both F0 and I0. A natural choice for a derived

measure of aggregate input efficiency is

θDA0ðθ10, θ20Þ � Max
Kðθ10, θ20Þ
K10 þ K20

,
Lðθ10, θ20Þ
L10 þ L20

� �
: ð13:17Þ

We now show how to compute K(θ10, θ20) using both Acquisition Models (13.8)

and (13.9). (The derivation for L(θ10, θ20) is analogous.) First suppose that ω20 � 1.

Examine the right-hand side of the first constraint in (13.8). In return for delivering

ω20F0 units of final product to S20 and meeting its own requirements of producing I0,
S10 uses ω20[θ20K20] units of capital it acquires from S20 and θ10K10 for its own

production needs. For the vertically integrated unit to produce a total of F0, S20
will have to produce the remaining amount (1�ω20)F0 by its own production

process and thereby consume (1�ω20)K20 units of capital. In this case

Kðθ10, θ20Þ ¼ θ10K10 þ ω20½θ20K20� þ ð1� ω20ÞK20. Now suppose ω20 � 1. Since

ω10 ¼ ω�1
20 � 1, we shall examine the right-hand side of the first constraint in (13.9).

Here, in return for delivering ω10I0 units of intermediate output to S10, S20 uses

ω10[θ10K10] of capital it acquires from S10, and θ20K20 units for its own production

needs. For S10 to produce a total of I0, it will need (1 � ω10)K10 units of capital

to produce the remaining amount (1 � ω10)I0 using its current production process.

In this case Kðθ10, θ20Þ ¼ ω10½θ10K10� þ θ20K20 þ ð1� ω10ÞK10. To summarize,

we have

Kðθ10, θ20Þ � θ10K10 þ ω20½θ20K20� þ ð1� ω20ÞK20, ω20 � 1

ω10½θ10K10� þ θ20K20 þ ð1� ω10ÞK10, ω10 � 1

�
ð13:18Þ

Lðθ10, θ20Þ � θ10L10 þ ω20½θ20L20� þ ð1� ω20ÞL20, ω20 � 1

ω10½θ10L10� þ θ20L20 þ ð1� ω10ÞL10, ω10 � 1

�
ð13:19Þ

A numerical example will help explain our proposed derived measure of aggre-

gate efficiency. We solved Model (13.8) for DMU3 with θ23 ¼ 0.9. The result is

θ13 ¼ 0.9667 and ω23 ¼ 0.1439. The two composite subsystems constructed by the

linear program are, respectively, ððK̂1, L̂1Þ, Î Þ1 ¼ ðð70:88, 83:87Þ, 76:38Þ and

ððK̂2, L̂2, Î2Þ, F̂2Þ ¼ ðð12:09, 12:39, 7:01Þ, 9:696Þ. Now consider the four inventory

balance equations [E1–E4] associated with this Pareto efficient point (θ13 ¼ 0:9667
, θ23 ¼ 0:9):

70:88þ 12:09 � ð0:9667Þ½79� þ 0:1439½0:90 	 51� ¼ 82:97 ð13:20Þ

83:87þ 12:39 � ð0:9667Þ½89� þ 0:1439½0:90 	 79� ¼ 96:26 ð13:21Þ
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76:38þ 0:1439½0:90 	 79:694� � ½79:694� þ 7:01 ð13:22Þ

9:696 � 0:1439ð67:39Þ ð13:23Þ

Note how S13 is only promising to deliver 14.39 % of final output; the remaining

85.61 % must be produced by S23 using its own production process. The

derived capital in this case is ð0:9667Þ½79� þ 0:1439½0:90 	 51� þ ð1� 0:1439Þ	
51 ¼ 126:63, and the derived labor is ð0:9667Þ½89� þ 0:1439½0:90 	 79�þ
ð1� 0:1439Þ 	 79 ¼ 163:89. When (126. 63, 163. 89) is compared to the original

values of (130, 168), we obtain θA3
D ¼ 0. 9755.

The derived aggregate measure of efficiency is measured along the Pareto

efficient frontier corresponding to Models (13.8) and (13.9). It can never be larger

than 1.0. Conceptually, any point on the Pareto efficient frontier could be used to

define the aggregate efficiency. As discussed at the end of the last section there are

two obvious choices: the equiproportional solution, ðθ10 ¼ ρθCL10 , θ20 ¼ ρθCL20 Þ,
where ρ � 1, and the equal contraction solution in which θ10 ¼ θ20. We propose

a third alternative: Minimize θA0
D on the Pareto efficient frontier, which we shall

denote by θA0
P . To compute θA0

P , a bi-level programming problem, we iteratively

solve Model (13.9) (resp. Model (13.8)) for different θ10 (resp. θ20) values.

13.5.3 Computational Results

Table 13.3 reports the computational results for each measure of aggregate effi-

ciency. First, we compare θAj
CT to θAj

CL for j ¼ 1, . . ., 10. In stark contrast to the

relative efficiency nature of DEA, when additional flexibility of transferring

resources between stages is available, the CT model is able to use this flexibility

to identify potential improvement opportunities for all DMUs. Indeed, the relevant

Table 13.3 Aggregate efficiency measures

DMUj

Classical efficiency Complete transferability Expanded technology

θCLAj Benchmarks θCTAj Benchmarks θPAj Benchmarks

1 1.00 1 0.983 [1,8], [6] 0.988 [8], [6]

2 0.829 1,6 0.777 [5,8] [1] 0.842 [8] [1]

3 0.922 1,6 0.899 [1,8], [6] 0.953 [1], [6]

4 0.893 6 0.853 [5], [1,7] 0.922 [5], [1]

5 0.710 1,6 0.666 [5,8], [1] 0.781 [8], [6]

6 1.00 6 0.956 [5], [1,7] 0.981 [5], [7]

7 0.799 1,6 0.751 [5,8], [1] 0.867 [8], [6]

8 0.854 1,6 0.816 [8], [1,6] 0.868 [–], [6]

9 0.480 1,6 0.449 [5,8], [1] 0.621 [8], [6]

10 0.486 1,6 0.456 [5,8], [1] 0.712 [8], [6]
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benchmarks, which report the reference sets for each of the evaluated DMUs,

contain both S1j and S2j stages (first and second rectangular brackets, respectively,

in column 5 of Table 13.3). Of course, from a measurement perspective it will

always be the case that θAj
CT � θAj

CL.

When comparing θAj
CT to θAj

P in Table 13.3, we see that θAj
P > θAj

CT always

holds. (We have been unable to establish any definitive relationship between θAj
CL

and θAj
P .) Thus, for our numerical example, the CT model indeed finds the maximal

possible contraction from the point of view of the aggregate DMU. From an

organizational perspective, it may not be possible to implement this solution.

We know it is impossible to achieve a better result than θAj
P along the Pareto

Efficient frontier. Consequently, to implement the solution proposed by θAj
CT when

it is smaller than θAj
P will require either M1j or M2j to consent to a restructuring

that would make him worse off than he can achieve by negotiating directly with

the manager of the other subsystem. When consent is required, it would make

more sense for an aggregate manager to select a Pareto efficient point that

both managers will accept. Table 13.4 records the Pareto efficient points for the

two stages and their corresponding θAj
D values. For every DMUj, the minimal value

for the derived aggregate efficiency (θAj
P ) is given in a box and the equiproportional

choice is highlighted in boldface. Observe the wide disparity in efficiencies for each

stage corresponding to the Pareto aggregate efficiency. Since the equiproportionate

choice seems to sacrifice little in the way of aggregate efficiency, it may be a

practical alternative that is easier for the managers to agree on.

13.6 The Consistent Pricing Principle

The dual linear fractional program (known in the DEA literature as the multiplier
formulation) to each manager’s Acquisition Model provides an alternative means to

understand the tradeoff inherent in the Pareto Efficient frontier for managers M10

and M20. For M10 we have

θAQ10 ¼ max
πII0

πKK10 þ πLL10
ð13:24Þ

πIIj
πKK1j þ πLL1j

� 1

πFFj

πKK2j þ πLL2j þ πIIj
� 1

9>>>=
>>>;
j ¼ 1, 	 	 	 , n

πFF0

πKK20 þ πLL20 þ πII0
� θ20,
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and for M20 we have

θAQ20 ¼ max
πFF0

πKK20 þ πLL20 þ πII0
ð13:25Þ

πIIj
πKK1j þ πLL1j

� 1

πFFj

πKK2j þ πLL2j þ πIIj
� 1

9>>>=
>>>;
j ¼ 1, 	 	 	 , n

πII0
πKK10 þ πLL10

� θ10:

Table 13.4 Derived aggregate efficiency along the Pareto frontier of the two stages

DMU Measures Efficiency values

θ11 1.000 0.9999 0.9865 0.9703 0.9272

1 θ21 0.9837 0.9837 0.9865 0.9900 1.000

θA1
D 0.991 0.990 0.989 0:988 0.990

θ12 0.9428 0.9409 0.9344 0.8358 0.8037 0.7638 0.7427 0.7014 0.5196

2 θ22 0.7970 0.7980 0.800 0.8358 0.8500 0.8600 0.8800 0.9000 1.000

θA2
D 0.924 0.923 0.919 0.861 0.845 0:842 0.844 0.867 0.892

θ13 0.9731 0.9718 0.9667 0.9288 0.8408 0.766 0.5266

3 θ23 0.8753 0.8800 0.9000 0.9288 0.9500 0.9600 1.000

θA3
D 0.986 0.981 0.976 0:953 0.958 0.961 0.965

θ14 0.9580 0.9436 0.9292 0.8936 0.5912

4 θ24 0.8600 0.8700 0.8800 0.8936 0.900

θA4
D 0.986 0.947 0:922 0.952 0.952

θ15 1.000 0.8924 0.7608 0.6922 0.6511 0.5547 0.4318

5 θ25 0.6600 0.7000 0.7608 0.8000 0.8300 0.9000 1.000

θA5
D 1.000 0.908 0.819 0.781 0:781 0.843 0.892

θ16 1.000 0.9827 0.9612 0.9523 0.7469 0.6419

6 θ26 0.9000 0.9300 0.9612 0.9750 0.9900 1.000

θA6
D 1.000 0.981 0.981 0:981 0.982 0.988

θ17 0.9416 0.8728 0.7666 0.7367 0.6962 0.5793

7 θ27 0.4917 0.6250 0.7666 0.800 0.85 1.000

θA7
D 0.988 0.930 0:867 0.879 0.888 0.985

θ18 0.9976 0.9055 0.8401 0.6560 0.4822 0.1625

8 θ28 0.8170 0.8300 0.8401 0.8740 0.9155 1.000

θA8
D 0.927 0.919 0.913 0.892 0:868 0.907

θ19 1.000 0.8086 0.6005 0.5424 0.4719 0.3966 0.1618

9 θ29 0.3402 0.400 0.500 0.5424 0.600 0.700 0.9065

θA9
D 0.825 0.771 0.687 0:621 0.723 0.813 0.913

θ1,10 0.7476 0.7000 0.5589 0.5226 0.4896 0.4386

10 θ2,10 0.3351 0.4000 0.5589 0.65 0.6670 0.6967

θA,10
D 0.949 0.821 0:712 0.726 0.763 0.809
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The last constraint in each model ensures a lower bound on the efficiency of the

counterpart subsystem. As the lower bound parameter varies it changes the effi-

ciency in the obvious way: for example, raising θ20 lowers S10’s efficiency in

(13.24), and raising θ10 lowers S20’s efficiency in (13.25).

Observe that there is a single multiplier πK for both K1 and K2, a single multiplier

πL for both L1 and L2, and a single multiplier πI that is used to weigh the

intermediate factor both when it is an output (of the first stage) and when it is an

input (to the second stage). Since the capital, labor and intermediate product are

freely transferable between stages, their respective weights in the multiplier for-

mulation should be the same. We shall call this the Consistent Pricing Principle.
Consistent pricing holds for the Färe-Grosskopf model as well. There, the linear

fractional programming dual is given by:

θCT20 ¼ max
πFF0

πKðK10 þ K20Þ þ πLðL10 þ L20Þ þ πII0
ð13:26Þ

πIIj
πKK1j þ πLL1j

� 1

πFFj

πKK2j þ πLL2j þ πIIj
� 1

9>>>=
>>>;
j ¼ 1, 	 	 	 , n

In an ordinary application of DEA, M10 would prefer a larger value of the

multiplier πI, whereas M20 would prefer a smaller value of πI. When both output-

input ratios appear in the same optimization, necessarily there will be a tradeoff

between the measurement of efficiency of both stages. The consistent pricing

principle leads to a natural conflict between the efficiency measures of the two

stages. A weighting scheme that might make M10 efficient might very well make

M20 look inefficient, and vice-versa. Thus, there will be a need to coordinate the

choice for this multiplier. Regardless of the weighting scheme ultimately agreed

upon, it should not be possible to select an alternative set of weights that would

make both stages at least as efficient while making one of them more efficient. That

is, it should minimally result in a Pareto efficient outcome; otherwise, neither

manager M10 nor M20 would agree to the vertical integration.

13.7 Extensions and Directions for Further Research

Our aim in this paper was to present a novel approach that opens new ways to

evaluate the efficiency of DMUs that are composed of subsystems arranged in

series. Due to the complexity of the various relationships we model, we left many

possible extensions to the basic model and to the analyzes for further research.

These extensions are outlined below.
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13.7.1 Extensions to the Basic Model

Technology: Our basic model is based on the CCR model that generates the

standard radial measure of efficiency. It may be easily extended to the BCC

model (Banker et al. 1984) or, more generally, to other technologies used to

generate “Russell-type” measures of efficiency that eliminate the slacks in resource

use (Russell 1985).

Structure: Our basic model contains just two stages. An obvious extension is to

increase the number of serial stages in the model. Such an extension is possible as

the notion of Pareto efficient frontier and the definition of Pareto aggregate effi-

ciency easily generalize. The main (and significant) difficulty here would be the

time it would take to compute the various measures.

Choice of variables: The model may also be extended to allow more flexibility in

the definition of the inputs and outputs. First, it is straightforward to incorporate

additional input and output factors. Second, the model can be extended to allow the

presence of inputs and outputs that are not completely transferrable in some sub-

systems. For example, some inputs may be specific to a particular subsystem and

can not be shared. Then, for the purpose of modeling and computing a subsystem’s

efficiency, it may be easier to work with the multiplier formulation using the

consistent pricing principle.

Transaction costs: The basic model assumes no transaction costs when resources

are moved between the two stages. In real-world cases, such movements are often

accompanied by some transaction costs. Formulating these costs can be done either

by adding some terms to the balance equation of the capital or by applying a certain

“depreciation” term on each amount that is transferred.

13.7.2 Extensions to the Analysis

Principal-agent issues: We have assumed that subsystem managers have full

decision-making power on how to reallocate capital and labor to improve their

respective operations. An agreed-upon Pareto efficient point of subsystem efficien-

cies may or may not lead to the best improvement in aggregate efficiency, which

can only be achieved if there is a single “aggregate” manager who has the full

authority to unilaterally make decisions. A potentially important and fruitful line of

research would be to explicitly define the relationship between the aggregate and

subsystem managers using a principal-agent framework (see Jehle and Reny (2001)

for a discussion). That is, do compensation schemes exist that will provide the

necessary incentives to subsystem managers to choose the Pareto efficient point

desired by the aggregate manager? Typically, such investigations also assume that

the principle (the aggregate manager) does not observe all of the actions taken by

the agent (the subsystem managers).
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Cost analysis: When market prices are known, one can extend the analysis to

explore the cost (or profit) efficiency of the various subsystems using models

such as those proposed by Färe et al. (1994). Such an analysis may reveal interest-

ing situations where the market prices of the input and output commodities may

differ from the shadow prices obtained from the optimal solution of the models we

propose here.

Reallocation: We have shown how it is possible for two subsystems to significantly

improve their operational efficiencies via reallocation beyond what would be

predicted by conventional analysis. However, such improvements may not be

realized for certain DMU’s, and it may be fruitful to obtain an understanding of

when the reallocations proposed herein do not improve operational efficiencies.

Inter-DMUs trading: Our framework allows the manager of a subsystem (say,M11)

to trade resources only with the relevant counterpart in the same DMU (here, M21).

It might be useful to explore what would happen if resources may be traded

among different DMUs. (For example, M11 acquires resources from M24 in return

for delivering the amount of intermediate factor (I4) to which the latter is committed).

This might be a prelude to considering mergers or cooperation among independent

entities in certain settings.

13.8 Concluding Remarks

DEA is a methodology aimed at evaluating the relative efficiency of DMUs. The

construction of composite units that serve as benchmarks against which the perfor-

mance of observed units are compared lies at the core of DEA. Each DEA model is

characterized by a set of assumptions that are translated into a specific mathemat-

ical formulation that defines the possible configurations for the composite units,

namely, the technology.

We have presented an approach to simultaneously measure the efficiency of

aggregate DMUs with two subsystems in series, which goes beyond simply apply-

ing standard DEA analysis to each subsystem separately. The main novelty in our

proposed approach lies in the more flexible manner in which we model the

technology sets for each subsystem by allowing each subsystem to acquire

resources from the other and to construct composites from both subsystems.

Our approach is potentially useful in various settings, both at the manufacturing

and the service industries. In manufacturing, it can be implemented in the petro-

chemical or refinery industries which are characterized by sequential processes

where the output of a given stage (e.g., oil refined to a certain Octan level) enters the

next stage as an input. Similar processes can be found in food manufacturing plants

and other sequential industries. Another area of implementation that bridges the

manufacturing and service industries is the warehouse and distribution industry.

In many cases, a warehouse may be modelled as a two-stage system in which the

first stage uses labor, equipment and space to unload and store inventory, while the
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second stage uses labor, equipment, space and the inventory to prepare the packages

shipped to end-users (see Hackman et al. 2001). An example of a possible imple-

mentation in the service industry was pointed out by Chen and Zhu (2004) in the

banking context where the first stage uses labor, capital and space to generate

deposits and the second stage uses labor, capital and deposits to generate loans.

Recently, there were some attempts to link DEA with current issues in the field

of Supply Chain Management (SCM) (see Zhu 2002). We believe that our approach

may further contribute in this context. For example, the implicit competition

between S1j and S2j on the weight of the intermediate factor Ij that we describe in
Sect. 13.6 resembles the double marginalization effect that is described in Chap. 5

of Tayur et al. (1999) where the competition revolves around the pricing of

intermediate products. When the chain is owned and operated by a single party

(i.e., when vertical integration has been affected) the proposed models could

become useful in evaluating the performance of nodes in the chain and making

appropriate managerial decisions. For example, the strongest could be allocated

additional resources while the activities performed by the weakest nodes could be

outsourced.
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Chapter 14

Network DEA II

Rolf Färe, Shawna Grosskopf, and Gerald Whittaker

Abstract The original DEA model by Charnes et al. (Eur. J. Oper. Res. 2:429–444,

1978) is set to analyze production as a black box, i.e., there is no information about

the processes inside. Network DEA was proposed for analysis of the contents of

the black box. This theory allows the researcher to model processes within the

black box by formulating sub-technology DEA models. The interaction of

sub-technology DEA models preserves the DEA structure, and the network model

can therefore be solved using linear programming. This chapter discusses network

DEA models, both static and dynamic. The discussion also explores various useful

objective functions that can be applied to the models to find the optimal allocation

of resources for processes within the black box that are normally invisible to DEA.
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Economics Unit and Department of Applied Economics, Oregon State University,

Corvallis, OR 97331, USA

S. Grosskopf

Department of Economics, Oregon State University, Corvallis, OR 97331, USA

CERE, Umea, Sweden

e-mail: shawna.grosskopf@orst.edu

G. Whittaker (*)

National Forage Seed Production Research Center, Agricultural Research Service,

USDA, Corvallis, OR 97331, USA

e-mail: Jerry.Whittaker@ars.usda.gov

W.D. Cook and J. Zhu (eds.), Data Envelopment Analysis,
International Series in Operations Research & Management Science 208,

DOI 10.1007/978-1-4899-8068-7_14, © Springer Science+Business Media New York 2014

307

mailto:shawna.grosskopf@orst.edu
mailto:Jerry.Whittaker@ars.usda.gov


14.1 Introduction

It is commonly observed that the DEA model proposed by Charnes et al. (1978) is a

“black box” that receives inputs and produces outputs, but the transformation

process by which this occurs is opaque to the analyst. As Tone and Tsutsui (2014)

remark, “One of the drawbacks of these models is the omission of the internal

structure of the DMUs.” Färe et al. (2007a) built on Shephard and Färe (1975)

with a sequence of models where the interior (“black box”) of the CCR model could

be analyzed. The primary device for achieving this was the use of a network. The

insight they had was that whenmultiple DEAmodels are connected in a network, the

network itself is a DEA model, and can be calculated using linear programming.

In this chapter we extend and update our paper (Färe et al. 2007a) with additional

discussion of DEA sub-technologies, objective functions, and static and dynamic

DEA models. We start with a discussion of the CCR model from an axiomatic

perspective. Then we turn to objective functions, which can be either price depen-

dent or not. In the case where objective functions are price independent, we discuss

both distance functions and slack-based functions. The static network model is

introduced next, starting with a generic model and extending it to three common

cases. We end the chapter with dynamic DEA. The models discussed in this chapter

are relatively simple, but provide the tools for construction of models describing

arbitrarily complex processes.

14.2 The Black Box and Sub-technologies

Production models are frequently modeled as a black box, where inputs x ¼
(x1, . . .,xN) ∈ ℝN

þ are transformed into outputs y ¼ (y1, . . .,yM) ∈ ℝM
þ (Fig. 14.1).

In this chapter we go inside the black box and define sub-technologies as its

smallest building blocks. First, we establish an axiomatic structure for the models,

then discuss the connection of sub-technologies through a directed network.

A technology or sub-technology may modeled as

T ¼ x; yð Þ : x can produce yf g

Fig. 14.1 The black box
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or by its output sets,

P xð Þ ¼ y : x; yð Þ∈Tf g x ∈ ℝN
þ

or by its input sets,

L yð Þ ¼ x : x; yð Þ ∈ Tf g,

and it holds that

y ∈ P xð Þ , x; yð Þ ∈ T , x ∈ L yð Þ:

Suppose that we have k ¼ k, . . ., K observations of inputs and good outputs

(xk,yk), then we can formulate the activity analysis or data envelopment analysis

model as

T ¼ x; yð Þ :
XK
k¼1

zkxkn � xn, n ¼ 1, . . . ,N,

(

XK
k¼1

znykn � ym, m ¼ 1, . . . ,M,

zk � 0, k ¼ 1, . . . ,K

)

or equivalently,

P xð Þ ¼ y :
XK
k¼1

znxkn � xn, n ¼ 1, . . . ,N,

(

XK
k¼1

zmykm � ym, m ¼ 1, . . . ,M,

zk � 0, k ¼ 1, . . . ,K

)

i.e.,

L yð Þ ¼ x :
XK
k¼1

zkxkn � xn, n ¼ 1, . . . ,N,

(

XK
k¼1

zkykm � ym, m ¼ 1, . . . ,M,

zk � 0, k ¼ 1, . . . ,K

)
:
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If the data meet the Kemeny et al. (1956) conditions, then the technology

satisfies the following conditions;

ið Þ P 0ð Þ ¼ 0f g; no free lunch,

iið Þ P xð Þ is bounded for each x; scarcity,

iiið Þ T is closed:

Additional properties, from the definitions are;

ivð Þ T is convex ) L yð Þ and P xð Þ are convexð Þ,
vð Þ x0 � x ∈ L yð Þ ) x0 ∈ L yð Þ; free disposability of inputs,

við Þ y0 � y ∈ P xð Þ ) y0 ∈ P xð Þ; free disposability of outputs,

viið Þ T is a cone; constant returns to scale CRSð Þ:

The last condition holds, since the intensity variables zi are only non-negative. If,

in addition to non-negativity,
XK

k¼1
zk ¼ 1, variable returns to scale are modeled.

Conditions (v) and (vi) follow from the inequalities of the inputs and outputs

expressions.

að Þ
XK
k¼1

ykm > 0 m ¼ 1, . . . ,M

bð Þ
XM
m¼1

ykm > 0 k ¼ 1, . . . ,K

cð Þ
XK
k¼1

xkn > 0 n ¼ 1, . . . ,N

dð Þ
XN
n¼1

xkn > 0 k ¼ 1, . . . ,K

Output condition (a) states that each output is produced by some k (DMU), and

(b) requires that each activity produce some output. The input conditions (c) and

(d) say that each input is used by some k and that each k uses at least one input.

If zk � 0, k ¼ 1, . . ., K and
XK

k¼1
zk � 1, the technology exhibits non-increasing

returns to scale.

Before we link technologies (and/or sub-technologies) together to model pro-

cesses within the black box, we study optimization problems on a technology.

These problems include profit and revenue maximization, cost minimization and

distance function measures.
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14.3 Objective Functions

Network models are frequently applied in performance measurement, including

optimal resource allocations. An objective function that specifies the evaluation of

measurement or allocation is required for optimization. Two types of objective

functions are used; (i) those that require prices, and (ii) those that require only

measures of inputs and outputs (quantity functions). These quantity functions can

be either slack based or distance functions.

The distance functions have their duals among the objective functions involving

prices. The most common are; the profit function dual to the directional technology

function, the revenue function dual to Shephard’s output distance function, and the

cost function dual to Shephard’s input distance function. The slack based objective

functions do not have natural duals (Färe et al. 2007b).

Let g ¼ (gx,gy) ∈ ℝNþM
þ be a directional vector for inputs (gx) and outputs (gy).

This vector provides the direction in which a given input/output observation is

projected onto the frontier of T. The optimization problem that defines the direc-

tional technology distance function is

~DT x; y; gð Þ ¼ max β : x� βgx, yþ βgy

� �
∈ T

n o

Inputs are contracted while outputs are expanded.1 Under “g-disposability” this

function characterizes T, i.e.,

~DT x; y; gð Þ � 0 , x; yð Þ ∈ T,

and it can be used as a measure of technical efficiency.

If we choose the directional vector to equal g ¼ (0,gy), then we have a direc-

tional output distance function

~D0 x; y; gy

� �
¼ max β : yþ βgy

� �
∈ P xð Þ

n o
,

which may also be a measure of technical efficiency, now output based.

It is interesting to note how ~D0ðx, y; gyÞ is related to Shephard’s output distance

function. The latter is defined as

Di x; yð Þ ¼ min λ : y=λ ∈ P xð Þf g:

Shephard’s output distance function or its reciprocal is the Farrell output ori-

ented measure of technical efficiency.

1 This distance function was introduced by Luenberger as shortage function (see for example

Luenberger 1995).
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To relate the two output distance function to each other, choose gy ¼ y, then

~D0 x; y; yð Þ ¼ 1� 1=D0 x; yð Þ

Thus, we have shown how the directional output distance function generalizes

Shephard’s (radial) output distance function. Similarly, we may choose g ¼ (gx,0)
to obtain a directional input distance function

~Di x; y; gxð Þ ¼ max β : x� βgxð Þ ∈ L yð Þf g,

and relate it to Shephard’s input distance function defined as

Di y; xð Þ ¼ max λ : x=λ ∈ L yð Þf g:

Choose gx ¼ x and we have

~Di y; x; xð Þ ¼ �1þ 1=Di y; xð Þ:

Our derivations above show that the directional output distance function is the

origin of the other four distance functions. This can be illustrated as (Fig. 14.2).

Finally we have (Färe and Lovell 1978)

D0 x; yð Þ ¼ 1=Di y; xð Þ , CRS:

The above distance functions are associated with measurement of technical

efficiency. Each projects the observation in question onto a corresponding

isoquant.2

2 Note that an isoquant may contain the efficient subset as a proper subset and does not reflect

Pareto/Koopmans efficiency.

Fig. 14.2 Relation of

directional distance

functions
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Turning to the duals, assume input prices w ∈ ℝN
þ and output prices p ∈ ℝM

þ are

known. Then we can define the profit function as

Π p;wð Þ ¼ max py� wx : x; yð Þ ∈ Tf g
¼ max py� wx : ~DT x, y; gð Þ � 0

� �
The last inequality holds, since the directional technology distance function

characterizes T. From this it follows that (Färe and Grosskopf 2004)

Π p;wð Þ � py� wxð Þ
pgy þ wgx

� ~DT x, y; gð Þ

where the LHS is the Nerlovian profit indicator, which is the normalized difference

between maximal profit Π( p,w) and observed profit (py � wx). This indicator is

larger than the corresponding directional distance function (a measure of technical

efficiency). By adding a measure of allocative efficiency, the inequality becomes an

equality, and the Nerlovian indicator is decomposed into technical and allocative

efficiency (Chambers et al. 1998).

In order to derive results similar to the Nerlovian indicator, we first define the

revenue and cost functions

R x; pð Þ ¼ max py : y ∈ P xð Þf g
¼ max py : ~D0 x, y; gy

� �
� 0

n o

and

C y;wð Þ ¼ min wx : x ∈ L yð Þf g
¼ min wx : ~Di x, y; gxð Þ � 0

� �
:

From these expressions we get

R x; pð Þ � py

pgy
� ~D0 x, y; gy

� �

and

wx� C y;wð Þ
wgx

� ~Di x, y; gxð Þ

respectively.

Each of these inequalities can be closed by adding, as above, an allocative

inefficiency component. Hence arriving at a revenue and a cost indicator with

their corresponding decompositions.
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Prior to a discussion of the radial distance function (Shephard 1953, 1970), we

provide activity analysis/DEA models for calculating profit and the directional

technology distance function. Since, under constant returns to scale, profit is zero,

we choose the variable returns to scale formulation allowing for losses and profit.

Maximal profit is then estimated as

Π p;wð Þ ¼ max x;y;zð Þ py� wxð Þ

s:t:
XK
k¼1

zkxkn � xn, n ¼ 1, . . . ,N

XK
k¼1

zkykm � ym, m ¼ 1, . . . ,M

XK
k¼1

zk ¼ 1, zk � 0, k ¼ 1, . . . ,K

One may, of course, allow the price vectors p and w to vary with the observation.

To estimate the technology distance function, the researcher may choose the

directional vectors or endogenize them.3 Here we consider the case of g ¼ (gx, gy)
without any specific choice. Thus, for observation k0, we have

~DT xk
0
; yk

0
; gx; gy

� �
¼ maxβ

s:t:
XK
k¼1

zkxkn � xk0n � βgxn , n ¼ 1, . . . ,N

XK
k¼1

zkykm � yk0m þ βgym , m ¼ 1, . . . ,M

XK
k¼1

zk ¼ 1, zk � 0, k ¼ 1, . . . ,K:

From our two calculations and the data on xk
0
; yk

0� �
, p;wð Þ we may calculate the

Nerlovian profit indicator. Similar problems can be formulated for the revenue and

cost indicators.4

In the discussion above, profit, revenue and cost indicators took an additive

structure. The traditional Farrell (1957) decomposition of cost and revenue effi-

ciency is multiplicative, not additive, and is based on Shephard’s (1953, 1970)

distance function.

3 For endogenous directions, see (Färe et al. 2013)
4 For an example of aggregation of these indicators, see (Färe and Grosskopf 2004).
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To derive the revenue measure, note that

R x; pð Þ ¼ max py : y ∈ P xð Þf g
¼ max py : D0 x; yð Þ � 1f g,

where the last equality holds because

D0 x; yð Þ � 1 , y ∈ P xð Þ:

From this definition of revenue, it follows (Färe and Grosskopf 2004) that

R x; pð Þ
py

� 1=D0 x; yð Þ,

i.e., the ratio of maximal revenue to observed revenue is larger than the reciprocal

of the output distance function.5 By multiplying the RHS with an allocative

efficiency component, the Farrell decomposition of revenue efficiency is obtained.

It is the product, not sum, of technical and allocative efficiencies.6

To set the stage for the slack-based measure of technical efficiency consider the

Leontief production function

y ¼ min x1; x2f g

The isoquant for y ¼ 1, is

x1; x2ð Þ : min x1; x2f g ¼ 1f g

and the Koopmans efficient input set is

x1; x2f g ¼ 1; 1f g

Thus the isoquant and the efficient subset do not coincide. The following figure

illustrates the relation between the isoquant and efficient subset (Fig. 14.3).

The isoquant consists of the points along II while E is the only efficient point.

The input distance functions introduced above have the property that they

project an input vector onto the isoquant, and not necessarily onto the efficient

point(s). Measures that project an input vector onto efficient points are the multi-

plicative Russell measure (Färe and Lovell 1978) and the additive slack-based

measures (Färe and Grosskopf 2010; Tone 2001).

5 This expression is referred to as the Mahler inequality.
6 For the decomposition of Farrell’s cost efficiency measure, see (Färe and Grosskopf 2004).
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The input oriented Russell measure (RM) has the following DEA formulation

RMi x
k0 ; yk

0� � ¼ 1

N
min

XN
n¼1

λn

s:t:
XK
k¼1

zkxkn � λnxk0n, n ¼ 1, . . . ,N

XK
k¼1

zmykm � yk0m, m ¼ 1, . . . ,M

zk � 0, k ¼ 1, . . . ,K :

If an input xk0n is zero, we modify the measure and set λn ¼ 1. This measure is

one if and only if xk
0
belongs to the efficient subset of L yk

0� �
, where

Eff L yð Þ ¼ x : x ∈ L yð Þ, x0 � x ) x0=2 L yð Þf g
The input oriented slack-based measure (SB) by Färe and Grosskopf (2010) is

based on the input oriented directional distance function, and has the following

DEA formulation

SBi x
k0 ; yk

0� � ¼ max
XN
n¼1

βn

XK
k¼1

znykn � xk0n � βn � 1n, n ¼ 1, . . . ,N

XK
k¼1

zmykm � yk0m, m ¼ 1, . . . ,M

zk � 0, k ¼ 1, . . . ,K:

Fig. 14.3 Leontief

isoquant (I,I) and efficient

set (E)
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This measure is zero if and only if xk
0
belongs to the efficient subset of L yk

0� �
.7

Note that βn is independent of the unit of measurement, since the direction gn ¼ 1n
is in the same units as xn, thus βni8i can be added.

14.4 Static Network Models

In this section we go inside the black box and model it as a network of

sub-technologies. This approach has its origin in Shephard and Färe (1975), who

wrote that “many production systems (technologies) may be conceptualized as the

joint interaction of a finite number of production sub-technologies called activi-

ties.” The static model is useful for analyzing the allocation of intermediate

products and also provides the basic structure of dynamic DEA models.

We restrict our presentation to three sub-technologies P1, P2, and P3. These three

sub-technologies are connected by the directed network shown in Fig. 14.4.

To complete a network of these three sub-technologies, we add a distribution

process and a sink, or collection of final outputs.8 Inputs are denoted by

x ¼ x1, . . . , xNð Þ ∈ ℜN
þ , the network exogenous vector, i.e., total availability is

attached to the three sub-technologies, i
0x, i ¼ 1, 2, 3 . . . where 0 denotes source

and i denotes use (Fig. 14.5). For example, 10x is the input vector from source 0 used

7We note that the input oriented Tone (2001) measure requires all inputs to be positive. See Färe

and Grosskopf (2010) for a discussion inputs to this measure.
8 This model is adopted from Färe and Grosskopf (1996a).

Fig. 14.4 Representation

of sub-technologies
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in activity 1. The total amounts used in the three activities cannot exceed the total

amount available, i.e.,

x �
X3
i¼1

i
0x :

In Fig. 14.5 activity P1 uses 1
0x as an exogenous input and produces

3
1y þ 4

1y

as outputs. The 3
1y is an input into activity 3, while 4

1y is the final output from P1.

Activity P3 uses 3
0x as an exogenous input and 3

1y,
3
2y as intermediate inputs. The

final product from activity P3 is output vector 4
3y. The total network output is the

sum of the final output of the three activities,

4
1y þ 4

2y þ 4
3y :

Note that even if an activity does not produce one of the listed outputs, that

output is set at zero and the network structure remains the same. It is also notewor-

thy that some outputs may be both final and intermediate outputs, e.g. spare parts.

Based on the description above, a generic network model takes the form

P xð Þ ¼ 4
1y þ 4

2y þ 4
3y

� ��
:

4
1y þ 3

1y
� �

∈ P1 1
0x
� �

4
2y þ 3

2y
� �

∈ P2 2
0x
� �

4
3y ∈ P3 3

0x ,
3
1y þ 3

2y
� �

1
0x þ 2

0x þ 3
0x � x

�
,

where Pi(•) i ¼ 1, 2, 3 are output sets, i.e., P(x) ¼ {y : x can produce y}. Thus the
network model P(x) is formed by the individual sub-technologies.

Fig. 14.5 A network

technology
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Next we formulate the network technology as a DEA model, i.e.,

P xð Þ ¼ y ¼ 4
1y þ 4

2y þ 4
3y

� ��
:

að Þ 4
3ym �

XK
k¼1

z3k
4
3ykm , m ¼ 1, . . . ,M,

bð Þ
XK
k¼1

z3k
3
0xkn � 3

0xn, n ¼ 1, . . . ,N,

cð Þ
XK
k¼1

z3k
3
1ykm � 3

1ym,m ¼ 1, . . . ,M,

dð Þ
XK
k¼1

z3k
3
2ykm � 3

2ym,m ¼ 1, . . . ,M,

eð Þ z3k � 0, k ¼ 1, . . . ,K,

fð Þ 3
1ym þ 4

1ym
� � � XK

k¼1

z1k
3
1ykm þ 4

1ykm
� �

,m ¼ 1, . . . ,M,

gð Þ
XK
k¼1

z1k
1
0xkn � 1

0xn, n ¼ 1, . . . ,N,

hð Þ z1k � 0, k ¼ 1, . . . ,K,

ið Þ 3
2ym þ 4

2ym
� � � XK

k¼1

z2k
3
2ykm þ 4

2ykm
� �

,m ¼ 1, . . . ,M,

jð Þ
XK
k¼1

z2k
2
0xkn � 2

0xn, n ¼ 1, . . . ,N,

kð Þ z2k � 0, k ¼ 1, . . . ,K,
lð Þ 1

0xn þ 2
0xn þ 3

0xn � xn, n ¼ 1, . . . ,Ng:

where i
0ykm and i

0xkn, k ¼ 1, . . ., K, m ¼ 1, . . ., M and n ¼ 1, . . ., N are observed

data. In the network DEA model the first sub-technology is specified by (f)–(h), the

second by (i)–(k) and the third by (a)–(e). Note that each sub-technology has a

vector of intensity variables (e), (h) and (k). Here they all satisfy constant returns

to scale.

Färe and Grosskopf (1996b) have shown that if each sub-technology satisfies

standard axioms such as free disposability of inputs and outputs, compactness of the

output set and other axioms, then the network technology has the same properties as

the sub-technologies from which it is constructed.

If we wish to compute, for example, output efficiency of the network DEA

model, we may use the standard Farrell (1957) output measure using linear

programming;

F0 xk
0
; yk

0� �
¼ max θ : θyh

0
∈ P xk

0� �n o
,
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where P xk
0� �
is the network for observation k0. Note that in this model the ratio of

outputs from P1 and P2 to observed output may vary. If this effect is not appropriate,

we may modify the LHS of (f) and (i) to read

f0ð Þ θ 3
1yk0m þ 4

1yk0m
� � �

and

i0ð Þ μ 3
2yk0m þ 4

2yk0m
� � �

where k0 is the observed data and θ, μ are non-negative scalars. When F0 xk
0
; yk

0� �
is

computed under these more restrictive conditions, the optimal θ and μ are the

sub-vector Farrell efficiency scores.

From standard DEA modeling practice (Cooper et al. 2004), one knows that

the primal envelopment model has a dual multiplier formulation. Hence, when we

use the “fixed” mix formulation, i.e., when ( f0) and (i0) are used, we may write

the network in its dual form, as in Kao (2009). To see how the network model may

be specified as a traditional neoclassic production model, suppose for simplicity

that 4
1y ¼ 4

2y ¼ 0 and that 3
1y,

3
2y, and

4
3y ∈ ℝ+, so that each sub-technology pro-

duces a single output and no final products are produced by P1 and P2. If we define a

production function by

F xð Þ ¼ max y : y ∈ P xð Þf g,

then the network model can be written as follows9;

4
1y ¼ F3 x30,F

1 1
0x
� �

,F2 2
0x
� �� �

¼ F3 x� 1
0x � 2

0x ,F
1 1

0x
� �

,F2 2
0x
� �� �

,

i.e., as function of functions. This example illustrates the creation of “parametric”

neoclassical models of network technologies.

Next, we formulate three commonly used network models; (i) the Johansen

(1972) model, (ii) the two stage model and (iii) the externality model. These

three models are set up here generically, and like the network models above can

be extended to any finite set of sub-technologies. We start with the Johansen model

as formulated by Färe et al. (1992). Here we express it and the other models by

means of diagrams (Fig. 14.6).

We have two technologies P1 and P2 producing two vectors of outputs y1 and y2.

They use fixed inputs (non-allocable) x1f and x
2
f respectively, and variable allocable

9 For this to exist P(x) must be nonempty and compact.
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inputs x1v and x2v . The sum of these input vectors cannot exceed a given vector xv.
Thus the total can be allocated between the two technologies P1 and P2. Such an

allocation can be implemented by choosing one of the objective functions discussed

in Sect. 14.2. For example, if output prices are known, one may maximize total

revenue for the network, viz,

max p1y1 þ p2y2

s:t: y1 ∈ P1, y2 ∈ P2

where p1 and p2 are two output price vectors. The solution to this problem yields the

optimal output vector for each technology and the optimal allocation of the variable

inputs.10 This model may be used in the discussion of merger and coalition

formation (Bogetoft and Wang 2005; Färe et al. 2011).

While the Johansen model organizes the technologies in parallel, our second

model organizes the technologies in a sequence (Chen et al. 2009) (Fig. 14.7).11

Again we have two technologies P1 and P2, now ordered sequentially with the

output from P1 being an intermediate input into P2 to produce the final output y2.
Each technology has its own input x1, x2. It is not hard to adapt the concept of

allocation from the Johansen model to introduce savings and borrowing into the

model (Färe and Grosskopf 1996a).

Suppose the externality model consists of one polluter and one receptor, with the

technologies P1 and P2, respectively. Each technology uses an input, x1 or x2, to
produce desirable outputs y1 and y2, and the polluter also produces an undesirable

output u. The undesirable output u is an input into the receptor technology, as

illustrated below (Fig. 14.8).

Fig. 14.6 The Johansen

model

10 One may, of course, solve this problem using DEA.
11 For a review see (Cook et al. 2010)
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The upstream firm (technology P1) may be, for example, a paper mill, and the

downstream firm P2 a fishery. The upstream firm produces y1 and u jointly and in

the terminology of Shephard and Färe (1974) we say that y1 is nulljoint with u if

y1; u
� �

∈ P1 x1
� �

and u ¼ 0 ) y1 ¼ 0,

i.e., if no undesirable outputs are produced, no desirable outputs can be produced.

The downstream technology takes u as an additional input with negative implica-

tions, i.e.,

u1 � u ) P2 x2; u1
� � � P2 x2; u

� �
:

This means that more desirable input does not increase production, but

may decrease it. This type of network models have also been applied in the

studies of property rights (see Färe and Grosskopf 2004, for a DEA formulation

of such a problem).

Fig. 14.7 A two stage

model of production

Fig. 14.8 The network

model with externalities
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14.5 Dynamic Network Models12

“Late in 1974, Dr Thomas Varley, Office of Naval Research, asked whether I could

formulate a production function for shipbuilding. In thinking about this matter it became

apparent that the usualsteady state (static) production function could at best provide a faint

model of this production technology. Imagine that you visit a shipyard. Day by day a

tremendous amount of production activity of great variety is carried on, yet no ships are

turned out. This goes on for a long time. Eventually a ship emerges. What was being

produced day by day all during this time? It is clear that the daily, weekly, monthly outputs

of the system were intermediate products. The shipbuilding production system, like con-

struction, is a dynamically evolving process.”(Shephard and Färe 1980, page V)

With this description of a production process as a motivation for the dynamics, let

us start by formulating a dynamic model as a network. Assume there are three time

periods t–1, t, t+1, and that each has its production technology Pτ, τ ¼ t�1, t, t+1.
A dynamic model has the property that a decision in one time period impacts on

later time periods. For example, if I save now, then my possible consumption may

increase later. Therefore we introduce intermediate products, i.e., those products

that are held over between time periods, τþ1
τ y ∈ ℜM

þ . If τ ¼ 1, then tþ1
t y is the

intermediate vector of outputs produced at time t and entering the production

process at t+1, i.e., an input at Pt+1. Figure 14.9 illustrates this setup.

Each of the production sub-technologies Pτ uses exogenous inputs xτ to produce

the final output ττ�1y and intermediate inputs i
τ�1y. To complete the network model

(see the figure below) we add initial conditions (distribution process in the static

model) and transversality conditions (sink in the static model).

The initial condition is given by iy and may be thought of as the stocks of

“capital” initially available. The transversality condition could include the number

of periods, say t+1 ¼ T, the state of the system atT, itþ1y, and the final output vector

Fig. 14.9 Dynamic

sub-technologies

12 This section is to a large extent adapted from Färe, Grosskopf and Whittaker (2007) For a recent

survey of nonparametric dynamic efficiency see (Fallah-Fini et al. 2013).
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from the last period,
f
tþ1y. The chosen conditions are specific to the research

problem to be analyzed.

Thus far we have not introduced discounting. However, if outputs are given in

value terms, a discount factor of δτ, 0 � δτ � 1, may be introduced to account for

the lesser of future income compared to present income. For example, δtft y are the
discounted values of the final output in period t (Fig. 14.10).

The dynamic network DEA model consists of the interaction of a finite number

of static models. Therefore let us start by studying the sub-technology Pt from

above. This technology uses inputs xt and intermediate inputs i
t�1y to produce

outputs
f
t y + i

ty, where
f
t y is the final output and i

ty is the intermediate output that

is used as an input in the next period. Thus we may write

Pt xt; t
t�1y

� � ¼ f
t y þ i

ty
� �n

:

f
t ym þ i

tym

� �
�
XKt

k¼1

z tk
f
t ykm þ i

tykm

� �
m ¼ 1, . . . ,M,

XKt

k¼1

z tk
t�1

i ykm � t�1
i yk0m , m ¼ 1, . . . ,M,

XKt

k¼1

z tkx
t
km � x t

k0n, n ¼ 1, . . . ,N,

z tk � 0, k ¼ 1, . . . ,Kt
o

,

where
f
t ykm,

i
tykm,

i
t�1ykm , and xkn are observed inputs and outputs. We allow

the number of observations to differ between periods, hence the notation Kt. The

output vector (
f
t y + i

ty) is specified so that one can includeM
t for all t, i.e.,M ¼ Mt�1

+ Mt + . . . by including appropriate zeroes.

Recall from the static model, that if the sub-technologies have the properties

(i)–(vii), then the whole network model also has those properties. This observation

also applies to the dynamic model below:

Fig. 14.10 A dynamic

network model
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Pt xt�1; xt; xtþ1; iy
� � ¼ f

t�1y
f
t y;

f
tþ1y þ i

tþ1y
� �� �n

:

f
t�1ym þ i

t�1ym

� �
�
XKt�1

k¼1

zt�1
k

f
t�1ykm þ i

t�1ykm

� �
m ¼ 1, . . . ,M,

XKt�1

k¼1

zt�1
k

iykm � iykm, m ¼ 1, . . . ,M,

XKt�1

k¼1

zt�1
k xt�1

kn � xt�1
n , n ¼ 1, . . . ,N,

zt�1
k � 0, k ¼ 1, . . . ,Kt�1,

f
t ym þ i

tym

� �
�
XKt

k¼1

z tk
f
t ykm þ i

tykm

� �
m ¼ 1, . . . ,M,

XKt

k¼1

z tk
i

t�1ykm � i
t�1ym, m ¼ 1, . . . ,M,

XKt

k¼1

z tkx
t
kn � x tn, n ¼ 1, . . . ,N,

z tk � 0, k ¼ 1, . . . ,Kt,

f
tþ1 ym þ i

tþ1ym

� �
�
XKtþ1

k¼1

ztþ1
k

f
tþ1ykm þ i

tþ1ykm

� �
m ¼ 1, . . . ,M,

XKtþ1

k¼1

ztþ1
k

i
tykm � i

tykm, m ¼ 1, . . . ,M,

XKtþ1

k¼1

ztþ1
k xtþ1

kn � xtþ1
n , n ¼ 1, . . . ,N,

ztþ1
k � 0, k ¼ 1, . . . ,Ktþ1

�
,

Note that each sub-technology has its own intensity vector zτ, τ ¼ t � 1,

t, t + 1, and that the interaction between time periods comes through the interme-

diate outputs.

Färe and Grosskopf (1997) use this model to study the inefficiency of APEC

countries due to dynamic misallocation of resources. They used the sum of

Shephard (1970) sub-technology distance functions as their optimization criterion.

Nemota and Goto (2003) applied the dynamic network model to study Japanese

electricity production over time. They used cost minimization for the optimization

criterion. Jaenicke (2000) applied the dynamic model in the analysis of the yield

effects of crop rotation. Nemota and Goto (1999) applied the dual linear program-

ming problem formulation to the cost minimization and derived the fundamental
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equation (Hamilton-Jacobi-Bellman) of dynamic programming. We also refer the

reader to the work of J.K. Sengupta. A search for “J.K. Sengupta dynamic models”

using any one of the major internet search engines produces a large number of

dynamic non-parametric models that he has analyzed.
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Färe, R., & Lovell, C. A. K. (1978). Measuring the technical efficiency of production. Journal of

Economic Theory, 19(1), 150.
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Shephard, R. W., & Färe, R. (1980). Dynamic theory of production correspondences. Königstein:
Verlag Anton Hain.

Tone, K. (2001). Slacks-based measure of efficiency in data envelopment analysis. European
Journal of Operational Research, 130(3), 498–509.

Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure

approach. Omega, 42(1), 124–131.

14 Network DEA II 327



Chapter 15

Network, Shared Flow and Multi-level

DEA Models: A Critical Review

Lorenzo Castelli and Raffaele Pesenti

Abstract In the last two decades, complex and detailed DEA models that consider

the internal structure of DMUs have been proposed by several authors. This chapter

describes the mathematical formulations, along with their main variants, extensions

and applications, of three large and popular model families: network (with special

emphasis on multi-stage), shared flow (also known as multi-component or multi-

activity), and multi-level models. Each family is a different generalization of the

same elementary internal structure. This review extends and updates the classifica-

tion presented in Castelli et al. (Ann Oper Res 173(1):207–235, 2010).

Keywords Data envelopment analysis • Network-DEA • Shared-flows • Multi-

level • Multi-stage • Multi-component • Survey

15.1 Introduction

Data Envelopment Analysis (DEA) has been a standard tool for evaluating the

relative efficiencies of Decision Making Units (DMUs) since the paper of Charnes

et al. (1978) based on the seminal work of Farrell (1957). Some underlying assump-

tions are common to standard DEA models. The efficiency of a DMU is defined

as the weighted ratio of the outputs (products or outcomes) yielded by the DMUover

the inputs (resources used or consumed). DMUs are homogeneous, i.e., they all have
the same types of inputs and outputs, and independent, i.e., no constraint binds input
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and output levels of a DMU with the inputs and outputs of other DMUs. Further-

more, DMUs are seen as black boxes, i.e., their internal structures are not considered.
As a consequence, generally, there is no clear evidence of the transformations to

which the inputs are subject to within the DMUs.

In the last two decades, several authors have explored the possibility of

abandoning the black box perspective and of considering the internal structures

of the DMUs (see, e.g., Sect. 3 of the paper by Cook and Seiford (2009) devoted to

the major research thrusts over 30 years since the work of Charnes et al. (1978), or

the dedicated chapter in the book by Cook et al. (2007) or, finally, the specific

subsections in the citation-based DEA literature survey by Liu et al. (2013b)). These

authors justify their approach by observing that, in some particular contexts, the

knowledge of the internal structure of DMUs can give further insights for the DMU

performance evaluation.

The aim of this chapter is to survey the models that consider internal structures

of DMUs. The main rationale of the classification is driven by identifying three

families of models as different generalizations of the same elementary formulation.

In particular, we analyze a specific model by comparing a set of homogeneous

and independent DMUs, each composed of a set of Decision Making SubUnits

(DMSUs). In the literature, subunit, component, activity, division, (sub)structure

and (sub)process are synonyms of DMSU and are reported as such in this review.

Each subunit is allowed to perform a unique function or activity. Only to keep the

notation simple, we also assume that all the DMUs under comparison have the same

internal structure.

All the models that we consider can be derived from an elementary one that

assumes that each DMU internal structure complies with the following

assumptions:

Assumptions

1. No intermediate flows among DMSUs exist. In other words, the output of a

DMSU cannot be the input of another DMSU (and also cannot re-enter the

same DMSU).

2. All the subunits of the DMU do not have shared inputs and shared outputs,

i.e., the DMU does not have the opportunity to decide how to allocate its inputs

or outputs among its subunits in order to maximize its efficiency (Cook

et al. 2000).

3. Any input (output) of the DMU is also an input (output) of one of its subunits.

Here note that Assumption 2 implies that the components of an elementary

DMU do not compete for the same resource and do not synergically yield the same

product. It follows that the combined presence of Assumptions 1 and 2 makes all

the DMSUs of an elementary DMU independent (Fig. 15.1).

By dropping one of the three above assumptions at a time, we obtain different

families of DEA models. Specifically:

• We refer to network DEA models when Assumption 1 is neglected. Here DMUs

have at least one output of a DMSU which is an input of a different DMSU (see

Fig. 15.2). These models are of interest because they also allow to describe
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systems where the DMUs are organized in networks so that the outputs of some

of them become inputs for other ones. This framework may encompass

manufacturing production systems, and in general supply chains, in which

some DMUs yield intermediate products that feed other DMUs. The same

framework may also include the dynamic DEA models in which some outputs

of the DMUs at period t become their inputs in the next period, t + 1 (Färe and

Grosskopf 2000). Finally, this framework may also possibly cover a further line

of research (not discussed in this chapter) that is in fact not specifically devoted

to just assessing the efficiency of DMUs but to considering DMUs as compo-

nents of a greater structure which is interested in maximizing its future efficiency

by either re–allocating resources or fixing targets to DMUs (see, e.g., Sect. 5 of

the previous version of this survey (Castelli et al. 2010)).

• We refer to shared flow (or multi-activity or multi-component) DEA models

when Assumption 2 no longer holds (see Fig. 15.4). As an example, this situation

may occur when DMUs are divided into different components that require
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DMSU B

DMSU C

DMSU D
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xC

xD

xA yA
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yD

Fig. 15.1 Elementary

DMU
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Intermediate
flows

DMSU A
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DMSU D

DMU

Fig. 15.2 Network DMU
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common resources (e.g., money) or produce goods or services obtained through

the synergy and collaboration among them (e.g., the quality of service provided

to customers). Then, a DMU may maximize its efficiency also by choosing the

most appropriate allocation of the common flows among the subunits and not

only by optimizing the weight associated to each flow as it happens in

standard DEA.

• We refer to multi-level DEA models when Assumption 3 is dropped, i.e., when

DMU inputs (outputs) are not necessarily inputs (outputs) of its subunits (see

Fig. 15.8).

In the following sections, we first describe the formulation to maximize the

relative efficiency of an elementary DMU (Sect. 15.2). Then we introduce the basic

reference models (typically with constant returns to scale) for network (Sect. 15.3),

shared flow (Sect. 15.5), and multi-level (Sect. 15.6) DEA models. Section 15.4 is

specifically devoted to the evaluation of multi-stage processes, a special class

of network DEA models. We provide interpretations and applications proposed

by different authors, and specify the possible variations from the basic model.

In Sect. 15.7 conclusions are drawn. Throughout the paper we assume that the

reader is familiar with at least the seminal works on DEA (see, e.g., Banker

et al. 1984; Charnes et al. 1978), as we will not define or justify basic concepts

such as, e.g., positive non-Archimedean value ε, slack variables, production set,

virtual inputs and outputs, Constant or Variable Returns to Scale (CRS or VRS,

respectively), allocative and technical efficiencies.

15.2 Elementary Model

In this section, we introduce a DEA model for assessing the efficiency of elemen-

tary DMUs (i.e., whose internal structure follows Assumptions 1–3). To this end,

for each elementary DMU k, let us define

• i, j, r: the indexes of the generic input, output, and DMSU, respectively,

• Xr
k ¼ {xrik}: the vector of the inputs of DMSU r,

• Yrk ¼ {yrjk}: the vector of the outputs of DMSU r,

• νr ¼ {νi
r}: the vector of weights of the inputs of DMSU r

• μr ¼ {μj
r}: the vector of weights of the outputs of DMSU r.

For an elementary DMU 0 belonging to a set of N homogeneous and independent

DMUs with the same internal structure, the CRS input-oriented version of the

envelopment-based DEA model can be written as:

θ∗0 ¼ min θ0 � ε
X
r

X
i

sr�i þ
X
j

srþj

 ! !
ð15:1aÞ
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X
k

λrkx
r
ik ¼ θ0xri0 � sr�i 8i, r ð15:1bÞX

k

λrky
r
jk ¼ yrj0 þ srþj 8j, r ð15:1cÞ

λrk, s
r�
i , srþj � 0 8i, j, k, r ð15:1dÞ

where λrk is the multiplier of DMSU r belonging to DMU k, and sr�i , srþj are the slack

variables.

The dual formulation of (15.1) is the following multiplier-based DEA model:

e∗0 ¼ max
X
j, r

μrj y
r
j0 ð15:2aÞX

i, r
νri x

r
i0 ¼ 1 ð15:2bÞX

j

μrj y
r
jk �

X
i

νri x
r
ik 8k, r ð15:2cÞ

νri , μ
r
j � ε 8i, j, r: ð15:2dÞ

In Model (15.2) the maximum relative efficiency e∗0 is assessed by comparing

DMU 0 with all the existing subunits. Then, as shown in Yang et al. (2000), Castelli

et al. (2004), and Kao (2009b), e∗0 is equal to the maximum relative efficiency of its

subunits, and DMU 0 is:

• Weakly efficient if and only if there exists at least one of its subunits which is

weakly efficient relative to the corresponding subunits of other DMUs;

• CRS-efficient if and only if each of its subunits is CRS-efficient relative to the

corresponding subunits of other DMUs.

A multiple input and single output elementary configuration is also proposed by

Färe and Primont (1984). Specifically, the authors, relying on the Farrell (1957)

output-based efficiency measure, construct a reference technology for DMUs using

their subunit data. Next, they compare this efficient technology against the refer-

ence frontier of the subunits, i.e., as if the subunits were independent DMUs and not

part of a larger DMU. Kao (2000) generalizes this model for cases of multiple

outputs and multiple inputs.

15.3 Network DEA Models

In this section, we describe DEA models for DMUs that present intermediate flows

between subunits. In this case, the subunits are neither independent nor homoge-

neous. They are interdependent in the sense that part of the output produced by

some of them may be used as an input by other ones. In addition, their
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interdependency leads to their non-homogeneity as they may present different

inputs and/or different outputs.

The basic network DEA models have been introduced by Färe (1991), Färe and

Whittaker (1995) and Färe and Grosskopf (1996b). These models represent DMUs

composed of two consecutive subunits with one intermediate flow: the output from

the first subunit is used as input in the second one. Then, Färe and Grosskopf (2000)

extend these models to consider DMUs made of more subunits (see also the book

by Färe et al. 2007).

Since the above seminal papers, many different models, both envelopment- and

multiplier-based, have appeared in the literature. Here, as an illustrative example,

we provide a CRS envelopment-based (input oriented) model under the assumption

that all DMUs have exactly the same internal structure in terms of DMSUs.

Specifically, we assess the relative efficiency θ∗0 of the whole DMU 0 using the

following notation: for each DMU k, r indicates a generic DMSU of k, then xrik is the
amount of the i-th external input of the DMU entering subunit r, yrjk is the amount of

the j-th final output of the DMU produced by subunit r, and zrtlk is the l-th interme-

diate flow of DMU produced by subunit r and used by subunit t (Fig. 15.2); pred(r)
represents the set of predecessors of subunit r, i.e., the set of subunits which have at
least one output used as input by subunit r, similarly, succ(r) is the set of successors
of subunit r; finally srk are slack variables.

θ∗0 ¼ minθ0 � ε
X
r

X
i

sr�i ð15:3aÞ
X
k

λrkx
r
ik ¼ θ0xri0 � sr�i 8i, r ð15:3bÞ

X
k

λrk
X

t∈predðrÞ
ztrlk ¼

X
t∈predðrÞ

ztrl0 � sr�l 8l, r ð15:3cÞ

X
k

λrk
X

t∈succðrÞ
zrtlk ¼

X
t∈succðrÞ

zrtl0 þ srþl 8l, r ð15:3dÞ

X
k

λrky
r
jk ¼ yrj0 þ srþj 8j, r ð15:3eÞ

sr�i , sr�l , srþl , srþj , λrk � 0 8k, i, j, l, r: ð15:3fÞ

As for standard envelopment-based DEA formulations, model (15.3) considers a

radial measure of efficiency (as ε is a positive non-Archimedean parameter) and is

based upon the definition of the Production Possibility Set (PPS) of DMU 0. Indeed,

provided that θ0 ¼ 1, constraints (15.3b)–(15.3f) describe the PPS of DMU 0 in the

following terms. For each subunit r, constraints (15.3b) and (15.3c) indicate that the
value of each external input flow i or intermediate input flow l cannot be less than
the conic combination of the values of the corresponding input flows of the
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analogous DMSUs r from all the observed DMUs. Similarly, constraints (15.3d)

and (15.3e) indicate that the value of each final output flow j or intermediate output

flow l cannot exceed a conic combination of the values of the corresponding

output flows of the analogous DMSUs r from all the observed DMUs. Model (15.3)

describes a closed (network) process since each subunit either receives only exter-

nal input flows or only intermediate flows and, analogously, it either produces only

final output flows or only intermediate flows. Model (15.3) trivially generalizes the

model proposed by Färe and Whittaker (1995), where the slack variables are

omitted, and implies that the observed DMUs and their DMSUs exhibit constant

returns to scale (CRS) and strong disposability of inputs and outputs (see Färe and

Grosskopf 1996b).

In the rest of the paper, for both CRS and VRS situations we will introduce

envelopment- and multiplier-based DEA models. Differently from the standard

DEA models, the multiplier- and envelopment-based network DEA models are

not, in general, dual of each others (Chen et al. 2010a, 2013b). They represent two

different approaches that may produce different efficiency results. For this reason,

Chen et al. (2010a, 2013b) suggest that envelopment-based network DEA models

should be used for determining the frontier projection for inefficient DMUs.

Differently, multiplier-based network DEA models should be used for determining

the DMSU (called division by the authors) efficiency. In addition, the authors also

point out that, contrary to what it is sometimes suggested, it is not sufficient to add

convexity constraints to an envelopment-based network DEA model or free vari-

ables to a multiplier-based network DEA model to make these models capable of

describing VRS network processes.

15.3.1 Non-radial Measures of Efficiency

Leaving aside the radial measure of efficiency considered in model (15.3), some

authors propose different non-radial measures of efficiency for network DEA

models.

Tone and Tsutsui (2009) introduce a VRS Slack-Based Measure (SBM) of effi-

ciency. Following Pastor et al. (1999) for standard DEA models, this efficiency

measure is a function of the slack variables and is appropriate when we employ

flows, such as labor, materials and capital, that are substitutional and do not change

proportionally. Specifically, Tone andTsutsui (2009) substitute objective (15.3a)with

θ∗0 ¼ min
λ, s

X
r

wr 1� 1

mr

Xmr

i¼1

sr�i
xri0

 !
, ð15:4Þ

where, for each subunit r, wr is a constant parameter that weighs the relative

importance of the subunit and mr is the number of its inputs. Even though

objective (15.4) is adequate only for an input oriented model, Tone and
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Tsutsui (2009) propose analogous measures of efficiencies for output oriented and

non-oriented models. They also introduce a discretionary formulation that is

applied when the DMU 0 under assessment may decide the values of its interme-

diate flows in the light of other DMUs’ intermediate flow values.

In practice, the discretionary formulation requires the substitution of the two sets

of constraints (15.3c) and (15.3d) with constraintsX
k

λrk
X

t∈predðrÞ
ztrlk ¼

X
k

λrk
X

t∈succðrÞ
zrtlk 8l, r: ð15:5Þ

Tone and Tsutsui (2009) finally claim that their approach has the further advantage

that it can be trivially modified to also model CRS processes.

Fukuyama and Weber (2010) introduce the network directional slack-based
measures. In these measures, the values of the slack variables are normalized on

the basis of user defined coefficients. For example, the coefficients xi0
r in objec-

tive (15.4) would be substituted by generic positive coefficients gi
r, being the vector

gx ¼ {gi
r} the desired direction of input contraction. These efficiency measures are

then extended to account also for possible undesirable (or bad) outputs.
In a paper addressing sensitivity analysis in network DEA models, Avkiran

and McCrystal (2012) introduce a Range Adjusted Measure (RAM) of efficiency.

This measure builds upon the one by Cooper et al. (1999) for standard DEAmodels

and, again, it is a function of the values of the slack variables. Then, the authors

compare the results obtained with the application of sensitivity analysis to

envelopment-based RAM network DEA models and to corresponding SBM net-

work DEA models.

15.3.2 Simultaneous Evaluation of DMU and DMSU
Efficiencies

Some authors specifically focus their work on developing models aiming at

evaluating subunit efficiencies and at studying the influence of such values to the

efficiency of the DMU the subunits belong to.

Their research is justified by the following facts. The knowledge of the internal

structure of the observed DMUs allows to determine whether better performances

could be obtained by a DMU that merged the technologies of the most efficient

substructures of the observed DMUs. In addition, the assessment of the efficiency of

each subunit might prevent that in a DMU the inefficiency of some of its DMSUs

may be compensated by the efficiency of others.

Castelli et al. (2001) introduce a DEA-like model to compare non-homogenous

and interdependent subunits belonging to the same DMU. A given subunit rmay be

evaluated according to three different sets: (a) all the subunits homogeneous to it,

(b) all the subunits of the DMU, and (c) with respect to a given output, all the

subunits yielding that output. In this last case, the rationale is that these subunits,
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although not necessarily homogeneous, have a certain degree of commonality

because they can be considered as potential substitutes for each other, as far as

the production of that output is concerned. Thus the interest in comparing them. As

a possible limitation, Lewis and Sexton (2004) point out that this approach may lead

to small reference sets. Castelli et al. (2001) also link the subunits’ and DMU

efficiencies by defining an efficiency value W obtained by maximizing the product

of the efficiency of the subunit under evaluation and the efficiency of the DMU it

belongs to. In this way, subunits not only maximize their own efficiency, but also

positively contribute to the efficiency of the whole system they are part of. Indeed,

the authors prove that a subunit seeking to optimize itsW efficiency behaves with a

benevolent attitude, i.e., being equal to other conditions, it also maximizes a

combination of the efficiencies of the other subunits. In addition, the authors

show that the whole DMU is efficient if and only if all its subunits are W efficient.

Sexton and Lewis (2003) and Lewis and Sexton (2004) explicitly compute the

efficiencies of the subunits using both input and output oriented formulations. Their

basic models can be seen as an adaptation of model (15.3), where the efficiency of

subunit r belonging to DMU 0 is optimized and constraints (15.3b)–(15.3e) are

adequately rewritten. In a simple case of DMUs composed of two subunits S1 and
S2 in series, the authors show that DMU 0 is efficient when its output values are equal

to the output values produced in the case that S2 is efficient and uses the intermediate

product levels that it would have received, had S1 been efficient. Lewis and

Sexton (2004) describe the internal structure of each DMU as an acyclic direct

graph. This graph has a node for each subunit plus one origin and one destination

node. In this case, the authors show that a necessary (but not sufficient) condition for a

whole DMU to be efficient is the existence of a path from origin to destination along

with every subunit is efficient. As a consequence, it is possible that, when considering

the internal structure, all DMUs under evaluation are inefficient. Lewis et al. (2009)

use the model presented in Lewis and Sexton (2004) to assess simultaneously

organizational capability, efficiency, and effectiveness in Major League Baseball.

Kao (2009a) proposes a relational approach (see also Kao and Hwang 2008,

Sect. 15.4.2.1), whose underlying concept is that some relationship exists between

the measure of the overall DMU efficiency and the measure of its DMSUs’ efficien-

cies, for example, a simplemultiplication, as inKao andHwang (2008), or a weighted

average, as in Chen et al. (2009a). The authors’ assumptions imply that the relational

network DEA models, when formulated with a multiplier-based measure of effi-

ciency, are also characterized by the fact that the same flows have associated the same

weights no matter which subunits these flows belong to. In other words, an interme-

diate flow presents the same weight both when is considered as an output flow of a

DMSU and when is considered as an input flow of a different DMSU. In the same

context, Lozano (2011) introduces an envelopment-based relational network

DEA model to asses the technical, scale, cost and allocative efficiency scores of the

DMUs. To this end, he proposes an axiomatic approach to define the PPS of a

DMU through the composition of the PPS of each of the DMUs’ subunits. Then,

Lozano et al. (2013) generalize the previous model to take into account processes

with undesirable outputs and apply this new model to assess airport performances.
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Relying on work by Chen et al. (2010a), Fukuyama and Mirdehghan (2012)

propose a two-phase slacks-based network model to assess the efficiency of a set of

DMUs and their DMSUs. To this aim, the authors first consider an additive

envelopment-based network DEA model that optimizes the slacks of exogenous

inputs and final outputs. Then, they use a linear programming model to assess the

efficiency status of each DMSU.

Most recently, Kao and Chan (2013) have introduced a multi-objective program-

ming method that computes both the overall efficiencies of the DMUs and the

divisional efficiencies of the DMSUs of network DEA models.

15.3.3 DMSU Ownership

Some authors have considered the consequences of having DMSUs of the same

DMU controlled by different agents that may have different agendas (see also the

game theory approach discussed in Sect. 15.4.2.5).

Chang et al. (2011) discuss the importance of taking into account the ownership

of the different DMSUs composing the DMU under assessment. The authors argue

that an agent interested in assessing the efficiency of a DMU cannot include in her

DEA model the external inputs and final outputs of the DMSUs that she does not

own. In fact, these flows are usually unknown to her. Differently, she can assume

the knowledge of the internal flows if they are regulated by contracts between the

different DMSUs. Accordingly, the authors introduce three ownership-specified

(centralized, distributed and hybrid) network DEA models which take into account

the different possibility of ownership of the DMSUs. Similar problems are also

considered by Chen and Yan (2011). These latter authors are motivated by the

necessity of assessing the efficiency of DMUs representing supply chains. As main

result, they prove that a supply chain is weakly efficient only if there exists a path

from the external inputs to the final outputs along which all DMSUs are weakly

efficient. They also show that it is never appropriate to ignore the internal structure

of the supply chain. In fact, standard DEA models may lead to overrate the

efficiency of a supply chain not only when different agents pursuing their own

agenda own the different DMSUs, but also when all the DMSUs are owned by a

single agent and the DMSUs are then centralized controlled.

15.3.4 Applications

Not surprisingly, many network DEA models have been proposed to evaluate the

performances of different processes, applied in particular to the top-five industries

(transportation, banking, agriculture and farm, healthcare, and education) addressed

by the standard DEA literature (Liu et al. 2013a).
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15.3.4.1 Hospitality and Transportation Industries

Hsieh and Lin (2010) apply a relational network model to the tourist hotels in

Taiwan and present a survey on the efficiency assessment in the hospitality indus-

try. In the same context, Zhang and Ma (2011) apply a network DEA model to

assess the business efficiency of Chinese hotel and tourism firms.

Yu (2008a) compares the results obtained through standard DEA and network

DEA models for assessing the performances of 40 global railways in terms of

technical efficiency, service effectiveness, and technical effectiveness. The author

suggests to include the environmental factors as non-discretionary inputs and

underlines how the network DEA model provides deeper insight regarding the

sources of inefficiency. The importance of environmental factors is discussed also

in Yu (2010) where a network DEA model is proposed to deal with both production

and service efficiency in airports.

Sheth et al. (2007) apply network DEA models to the assessment of bus routes

by expanding the Färe and Grosskopf (2000) approach to account for the different

perspectives of operators and users, and for multiple goals. Hahn et al. (2011)

propose a network DEA model to assess the efficiency of Seoul arterial bus routes.

Zhao et al. (2011) assess the efficiency of a transportation system by considering the

perspectives of the different stakeholders, such as transportation service providers,

users, and the community. The authors propose a model that includes undesirable

outputs and where the different perspectives are inter-related through intermediate

flows. Finally, Li (2012) uses a network DEA model to assess the China’s railway

transport industry.

15.3.4.2 Production of Goods or Services

Färe and Whittaker (1995) apply a model similar to model (15.3) to a diary

production problem and compare the result obtained with the ones obtained with

a standard DEA model. The former model turns out to have greater discrimination

power: only 23 % of the DMUs are on the efficiency frontier compared to 65 %

when intermediate flows are not explicitly taken into account.

Liu et al. (2012) introduce a network DEA model to assess non-profit farmers

associations in Taiwan. Lin and Chiu (2013) and Matthews (2013) propose SBM

network DEA models (see Sect. 15.3.1) to improve Taiwan bank performance

evaluation and assess Chinese bank income efficiency, respectively. Mat-

thews (2013) uses metrics of risk management practice and risk management

organization as intermediate inputs. Vaz et al. (2010) exploit a network DEA

model to assess the performances of retail stores, and Lee and Johnson (2012) use

a relational network model (see Sect. 15.3.2) to decompose the efficiency of

profitability for a general production system.

Löthgren and Tambour (1999) estimate efficiency and productivity for a sample of

Swedish pharmacies taking also into account customer satisfaction. The pharmacy

technology is represented by a production and a consumption node. The production
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node yields (final) outputs (e.g., outpatient prescriptions) and also produces

nonmarketable characteristics and attributes (e.g., the service level) that are consid-

ered as intermediate inputs of the consumption node. Together with external inputs

(e.g., customer-service labor hours) the consumption node provides customer quality

assessments on pharmacy service.

Chilingerian and Sherman (2004) study network DEA applications to health care

systems.

15.3.4.3 Governmental Entities

Prieto and Zofio (2007) employ the network DEA model introduced by Färe and

Grosskopf (2000) to assess the economies of a set of countries belonging to the

Organisation for Economic Co-operation and Development with the aim of identi-

fying best practices. Each national economy is described in terms of a network

where different nodes use primary inputs to produce intermediate input and outputs,

and satisfy final demand. Each node represents a basic economic sector, such as

agriculture, manufacturing, construction, and services.

Guan and Chen (2010, 2012) and Chen and Guan (2012) apply network DEA to

measure the efficiency of China’s regional innovation systems, whereas Amatatsu

et al. (2012) assess efficiency and returns-to-scale of Japanese local governments.

15.4 Multi-stage Network DEA Models

In this section, we introduce a particular type of network DEAmodels that thanks to

their simple structure and wide applicability have been extensively studied in the

past years. Specifically, we consider the two-stage, or in general multi-stage,

network DEA models. Such models assume that each DMU is composed of two,

or in general more, consecutive stages, each one being a single DMSU or a set of

parallel DMSUs (Fig. 15.3). For example, the very first network DEA models by

Inputs

DMSU A

Outputs

Intermediate
flows

DMSU B

DMSU C

DMSU D

DMU

Stage 1 Stage 2

Fig. 15.3 Two-stage DMU

340 L. Castelli and R. Pesenti



Färe (1991), Färe and Whittaker (1995) and Färe and Grosskopf (1996b) introduced

in Sect. 15.3 are two-stage models. Multi-stage models are obviously used for the

efficiency evaluation of multi-stage processes but they are also studied because they

can model the evolution of processes over time. In this latter case the multi-stage

models are referred to as dynamic network models and each stage represents the

same DMU at different times (see Sect. 15.4.4).

Seiford and Zhu (1999) are among the first authors to deal with multi-stage

processes. They consider each stage and the whole DMU as independent and

evaluate the efficiencies of these structures using conventional DEA models.

Differently, most of the papers that we analyze in this section take into account

some form of interaction between consecutive stages, as it is usually done in

network DEA models. In this context, Cook et al. (2010a) and Agrell and

Hatami-Marbini (2013) propose two interesting surveys on the multi-stage network

literature, respectively considering a game theoretic and a supply chain manage-

ment perspective. Some alternative DEA models for two-stage process are also

surveyed in Wang and Chin (2010).

As an illustrative example, we provide a general model for a two-stage process

where each stage is made in turn of parallel DMSUs (see Fig. 15.3). To this aim, we

extend the notation used in model (15.3). For each DMU k, x f
ik is the amount of

the i-th input of the DMU entering subunit f in the first stage; ysjk is the amount of the

j-th output of the DMU produced by subunit s in the second stage; zflk is the amount

of the l-th intermediate flow of the DMU output of the subunit f of the first stage;

whereas z flk is the amount of the same flow input of the subunit s of the

second stage; finally, z fslk is the amount of flow l of subunit f that feeds subunit s,

with ∑sz
fs
lk ¼ z fhk.

We define the efficiency of DMU 0 as

e∗0 ¼

X
j

X
s

μjsy
s
j0X

i

X
f

νif x
f
i0

: ð15:6Þ

Then a possible multiplier-based two-stage (input oriented) DEA model that

assesses the relative efficiency of DMU 0 is

e∗0 ¼ max
X
j

X
s

μjsy
s
j0 ð15:7aÞX

i

X
f

νif x
f
i0 ¼ 1 ð15:7bÞ

X
l

υlf z
f
lk �

X
i

νif x
f
ik 8k, f ð15:7cÞ
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X
j

μjsy
s
jk �

X
l

ηhlz
s
lk 8k, s ð15:7dÞ

Gðυlf , z flk, ηls, zslkÞ � 0 8k, l, f , s ð15:7eÞ

μjs, νif , υlf , ηls � ε 8i, j, l, f , s ð15:7fÞ

where conditions (15.7e) represent a set of constraints that link the output flows of

the subunits of the first stage with the input flows of the subunits of the second stage.

Note that the above formulation, as well as formulation (15.3) for general network

structured DMUs, applies to closed processes.

15.4.1 Balancing Intermediate Flows

Castelli et al. (2004) consider two-stage processes where each second stage DMSU

receives as input only intermediate flows and discuss two different kinds of

constraints (15.7e): virtual weights balancing constraints and flow balancing
constraints.

In the former case, the overall perceived values of the intermediate flows are

balanced, i.e., virtual weights of the input flows of the second stage are equal to

virtual weights of the feeding flows:

ηlsz
s
lk ¼

X
f

υlf z
fs
lk 8k, l, s:

Under this assumption, the authors prove that the relative efficiency of the DMU

under evaluation is equal to the product of the maximum relative efficiency of each

single stage calculated according to model (15.2).

In the latter case, not only the perceived values but also the flows themselves are

balanced:

ηls ¼ υlf 8k, l, f , s and zslk ¼
X
f

zfslk 8k, l, s:

Under this second assumption, the authors prove that the relative efficiency of a

DMU is assessed by comparing it with each observed DMUs together with all

DMUs that could be obtained by composing their two stages with any possible

combination of the subunits of the observed DMUs. Castelli et al. (2004) finally

point out that the flow balancing constraints model can also be derived as dual of

model (15.3) when specialized to a two-stage process, and claim that their results

could be generalized to second stage DMSUs with multiple inputs.
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15.4.2 Extensions

15.4.2.1 Relational Models

Kao and Hwang (2008) customize model (15.7) to multi-stage processes such that

each stage includes a single DMSU, and each DMSU may have multiple inputs.

In particular, in Kao and Hwang (2008) the relational approach (see Sect. 15.3.2) is

introduced for the first time in the context of two-stage network DEA. In their

paper, the authors also discuss possible solutions for dealing with multiple optimal

weights. For instance, the authors suggest to choose as optimal the weights that

maximize the efficiency of the first stage while maintaining the overall efficiency

score of the DMU. Subsequently, Kao (2009a) extends the relational model in Kao

and Hwang (2008) to series-parallel networks by utilizing dummy DMSUs such

that a DMU structured as a network of DMSUs can be represented by a multi-stage

structure where each stage can be composed of a set of parallel DMSUs. Here again,

the flow balancing constraints are imposed and the same flow has the same weight

all over the network, no matter if it is used as an input or as an output. Kao and

Hwang (2010) apply the relational network model to assess information technology

on firm performance in a banking industry.

Differently from Kao and Hwang (2008), which assess DMU and DMSU

efficiencies of a two-stage DEA model in two separate and consecutive steps,

Liu (2011) explains, in a short note, how to assess such efficiencies simulta-

neously. Liu and Lu (2012) introduce a network-based method for ranking of

efficient units in two-stage DEA models. Specifically, each DMU is a node in a

network and is linked with its peers. Links are weighted on the basis of the peer

importance. Efficient DMUs are then ranked on the basis of their centrality in such

a network.

Chen and Zhu (2004) propose a DEA framework that considers a two-stage

process as efficient when each stage is efficient. Chen et al. (2009b) prove the

equivalence between the CRS version of the Chen and Zhu (2004) model and

the Kao and Hwang (2008) model. In this context, the interested reader is also

referred to the survey by Agrell and Hatami-Marbini (2013). This paper consider

the different two-stage models presented in the literature and points out which of

them provides the equivalent results.

15.4.2.2 Variable Returns to Scale and Additive Measures of Efficiency

Chen et al. (2009a) observe that the multi-stage model by Kao and Hwang (2008)

is applicable to CRS only. Indeed, it assesses the efficiency of the overall

process as the product of the efficiencies of the different stages (i.e., the

geometric mean of stage efficiencies). As an example, in the specific case of a

two-stage process composed of a single DMSU f in the first stage and a single
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DMSU s in the second stage, holding flow balancing constraints, the DMU

efficiency (15.6) is:

e∗0 ¼

X
j

μjsy
s
j0X

i

νif x
f
i0

¼

X
j

μjsy
s
j0X

l

υlszsl0
�

X
l

υlszsl0X
i

νif x
f
i0

: ð15:8Þ

To extend the two-stage models to VRS, Chen et al. (2009a), within the same

relational model framework, measure the efficiency of the overall process as a

weighted sum of the efficiencies of the two stages:

e∗0 ¼ ws

X
j

μjsy
s
j0þωs

X
l

υlszsl0
þ wf

X
l

υlszsl0þω f

X
i

νif x
f
i0

, ð15:9Þ

where ws and wf are user-specified weights such that ws þ wf ¼ 1 and the terms ω f

and ωs, free variables, express the scale efficiencies of the first and second stage,

respectively. As pointed out by Cook et al. (2010b), Eq. (15.9) evaluates the overall

performance of the network also in terms of the performances of the individual

DMSUs.

Chen et al. (2009a) also show that efficiency measure (15.9) cannot be linearized

in the same way efficiency measure (15.6) is turned into Eqs. (15.7a) and (15.7b),

unless weights ws and wf are chosen to be proportional to the “sizes” of each stage,

in terms of total resources devoted to each stage, that is,

ws ¼

X
l

υlszsl0X
i

νif x
f
i0 þ

X
l

υlszsl0
, wf ¼

X
i

νif x
f
i0X

i

νif x
f
i0 þ

X
l

υlszsl0
: ð15:10Þ

In a subsequent study, Chen et al. (2010a) point out that, differently from the

standard DEA models, the multiplier and envelopment-based two-stage DEA

models are not, in general, dual of each others, but represent two different

approaches that provide different information and may produce different efficiency

results (see also Chen et al. (2013b) in Sect. 15.3). Specifically, the authors show

how some two-stage models in the literature may fail to provide the complete

information on how to project inefficient DMUs on to the DEA frontier. Then, they

develop two-stage models capable of determining these DEA frontier projections

for inefficient DMUs at least in the CRS case. Finally, they indicate that further

study is then needed to develop models capable of determining the DEA frontier

projections for VRS inefficient DMUs since even their own previous model
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(Chen et al. 2009a), which assesses correctly both the overall DMU efficiency and

the efficiency of each stage, is not sufficient to yield these projections.

Chiou and Lan (2007) address two-stage VRS models, too. They propose an

additive measure of efficiency equal to the one proposed in (15.9) when

ws ¼ wf ¼ 1. They use this measure to asses both efficiency and effectiveness

of a transportation system. In Chiou et al. (2010), the same authors discuss in

detail the properties of their two-stage VRS model, that they call integrated DEA

model, and generalize their efficiency measure to obtain exactly (15.9), where ws

and wf are arbitrarily fixed. Differently form Chen et al. (2009a), these authors do

not linearize their model but claim the existence and the uniqueness of optimal

weights μjs, υls, νif, ω
f and ωs. Unfortunately, Lim and Zhu (2013) show that such

a conclusion is a false statement. They also show how the two-stage DEA model

proposed in Chiou and Lan (2007) can be transformed into a parametric linear

program.

Finally, Kao and Hwang (2011) propose a multiplier-based relational VRS

two-stage model. By solving both an output-oriented and input-oriented model,

the authors are able to separate the technical and the scale efficiencies of

the DMUs.

15.4.2.3 Open Multi-stage Processes

Cook et al. (2010b) introduce multi-stage DEA models for open serial processes,

i.e., where some outputs from a given stage may leave the system while new inputs

can enter at any stage. As in Chen et al. (2009a), the authors represent the overall

efficiency as an additive weighted average of the efficiencies of the DMSUs. These

results are also applied to general series-parallel network structures. Open multi-

stage processes are considered also by Golany et al. (2006). These latter authors

assume that each stage is governed by a different manager that will not agree to

“vertical integration” initiatives unless higher efficiency (with respect to separately

applying conventional DEA) is achieved. For this reason these authors propose a

measure that identifies a Pareto optimal point for the efficiency values of the

DMSUs that compose their system. As multiple Pareto optimal point may exist,

they discuss the properties of three different possible ways of choosing the Pareto

efficient point of interest.

15.4.2.4 Unoriented Models

Holod and Lewis (2011) present a two-stage DEA unoriented model, i.e., a DEA

model that seeks to simultaneously decrease input levels and increase output

levels (the interested reader is referred to Färe et al. (2002) for standard hyper-

bolic/unoriented DEA models). The authors use this model to assess bank effi-

ciency and address what they call the DEA literature “deposit dilemma”, that is,
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the lack of agreement on whether deposits should be considered as an input or an

output. The authors solve this dilemma by representing deposits as intermediate

flows in a two-stage unoriented DEAmodel. A similar model is also introduced by

Lewis et al. (2013), who show how to solve it through an iterative algorithm that

alternates between an input-oriented push backward step and an output-oriented

push forward step. The same authors are currently working on a general network

DEA unoriented model (Mallikarjun et al., 2014)

Yu and Chen (2011) use also a similar measure of efficiency to assess the air

routes performance of an airline in Taiwan. In their paper, the authors initially

present an interesting discussion on the definition of the performances of airlines

in term of production efficiency, service effectiveness and operational effective-

ness and a critical analysis of their own previous works. Then, they compare the

results obtained through their model with the ones yielded by a corresponding

multi-stage DEA model proposed by Chiou and Chen (2006), even though

Lin (2008) identifies in this last paper some methodological and terminological

inaccuracies.

15.4.2.5 Game Theoretic Perspective

The assessment of two-stage processes has been studied also relying on game

theory. In particular, Liang et al. (2006) compare a leader-follower and a cooper-

ative relationship between DMSUs of a supply chain. Liang et al. (2008) show that

in a cooperative contest, when different intermediate flows between the two stages

are present, then multiple efficiency values for the two stages may emerge. Differ-

ently, in a non-cooperative context a two-stage network DEA model just produces

the same results as applying a standard DEA model to the two stages consecutively.

Li et al. (2012) generalize the result proposed in Liang et al. (2008) by also allowing

external inputs to the second stage. Chen et al. (2006) propose a DEA game model

in a two-stage supply chain and prove the existence of numerous Nash equilibria

efficiency points for the DMSUs.

As already pointed out, recently Cook et al. (2010a) have published an interest-

ing survey that analyzes the DEA models used to assess the efficiency of two-stage

processes from a game theoretic perspective. The authors categorize this literature

using either Stackelberg (leader-follower) or cooperative game concepts. In this

framework, only the multi-stage processes referring to cooperative game or, equiv-

alently, to centralized control concepts have their overall efficiencies assessed

through network models like model (15.7) or its variations. Differently, the pro-

cesses referring to leader-follower concepts have the efficiency of their two stages

assessed through two separated non-network DEA models. In this work, Cook

et al. (2010a) also point out the equivalence of different two-stage DEA models

available in the literature.

Zha et al. (2008) propose a two-stage VRS DEA model where the measure of

the overall efficiency is given by the geometric mean of the efficiencies of the

two-stages. Specifically, the efficiency of the first stage is evaluated with the
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input-oriented VRS model and the second stage with the output-oriented VRS

model. Then, the overall efficiency is evaluated in a cooperative manner. In the

same context, Zha and Liang (2010) introduce a two-stage DEA model with shared

inputs to be allocated among the two stages (see also Sect. 15.5). Again, the

efficiency measure is in the product-form and the process overall efficiency is

assessed assuming that the two stages participate in a cooperative game. Also

Wu (2010) considers a two-stage DEA model where stages share some inputs.

Here the author assumes that there exists a Stackelberg-game relationship between

the two stages and proposes a bilevel programming DEA model, which is solved

using a branch and bound algorithm. Wu (2010) provides as case studies the

application of his model to a banking chain and a manufacturing supply chain.

15.4.2.6 Processes with Feedback

Liang et al. (2011) consider two-stage processes with feedback, that is, processes in

which some of the final outputs of the second stage become inputs of the first stage.

In this context, the authors propose two multiplier-based network DEAmodels. The

first (and simpler) one aims at maximizing the average efficiency of the two

individual stages. The second model instead ranks the two stages in accordance

with their relative importance and is formulated as a bilevel model. In both cases,

the authors assume that the weights applied to the intermediate and feedback flows

are the same for both stages. In addition, they assume that the weights of the

intermediate and feedback flows are fixed when they play the role of outputs of

the associated stage. This latter assumption is important in the second model, which

maximizes the efficiency of the first stage and let the efficiency of the second stage

depend on the first stage’s one. In fact, the efficiency of the first stage depends in

turn on the value of the weights of the feedback flows, which are fixed when the

efficiency of the second stage is assessed. Both models are nonlinear, but their

nonlinearity is only due to one or two variables, respectively. Hence, they can be

practically solved by iteratively and tentatively assigning values to such few

variables.

15.4.3 Applications

Besides some exceptions as in Wei and Chang (2011) who face the problem of

designing an efficient multi-stage process (the authors propose a DEA approach to

support the optimal design of DMU external input, intermediate flow and final

output portfolios), in most cases DEA models are used to assess the efficiency of

existing processes. This section illustrates several applications of two-stage DEA

models.
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15.4.3.1 Banking Sector

Avkiran (2009) employs a two-stages DEA model to assess United Arab Emirates

(UAE) banks using a slacks-based inefficiency measure. Similarly, Paradi

et al. (2011) introduce a SBM two-stage DEA model to study the performance of

banks when bad outputs are present. Bad outputs are also considered by Fukuyama

and Weber (2010) that introduce a two-stage model to study Japanese banks’

performances. This last model accounts for slacks in the input and output con-

straints defining the technology, and allows inefficiency to be measured with

non-radial contractions in inputs and expansions in outputs, even when slack does

not exist. This model is also applied by Fukuyama and Matousek (2011) to assess

the efficiency of Turkish bank system. Akther et al. (2013) introduce bad outputs

while assessing 19 Bangladesh banks and use a slacks-based inefficiency measure

within a two-stages DEA model. Huang et al. (2009) assess the efficiency of

Chinese banks with a relational two-stage model. Yang and Liu (2012) prove, by

integrating a two-stage DEA model and a fuzzy multiobjective model, that in

Taiwan mixed ownership banks are more efficient than the fully state-owned

ones. Grigoroudis et al. (2013) present a three-stage DEA model to assess banks

in terms of satisfaction, employee appraisal, and business performance. Their paper

is also a good introduction to the literature that links operating efficiency and

quality of service in the bank sector. Wu and Birge (2012) introduce what they

call a two-stage serial-chain merger DEA model to evaluate mortgage banking

operations. Premachandra et al. (2012) apply a two-stage model to assess the

performance of mutual funds.

15.4.3.2 Production Processes and Supply Chains

Liu and Wang (2009) use a two-stage relational DEA model to assess the efficiency

of printed circuit board industry in Taiwan. Lee and Johnson (2011) use a multi-

stage DEA model to represent the production processes in the semiconductor

manufacturing industry. Saranga and Moser (2010) apply what they call classical

two-stage Value Chain DEA models to assess the performances of purchasing and

supply management activities. Yang et al. (2011) propose a envelopment-based

multi-stage DEA model for assessing the performances of supply chains. These

authors state the novelty of their model affirming that, even though there is a rich

literature on DEA models for supply chains, the exact definition for supply chain

production possibility set is still unclear. For this reason, the authors propose two

possible types of supply chain production possibility sets that then they prove

equivalent. Mirhedayatian et al. (2013) propose a model for assessing “green”

supply chains. Chen et al. (2012a) use two-stage DEA model for evaluating

sustainable product design performances. They propose both centralized and

decentralized models as in Chen and Yan (2011) to analyze the simultaneous,

proactive, and reactive approaches adopted by firms for sustainable design.
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Bai-Chen et al. (2012) apply a two-stage model to assess both economic benefits

and carbon emissions of China’s power plants. The author call their model

“environmental” network DEAmodel as it takes into account environmental factors

as non-discretionary inputs.

Cao and Yang (2011) measure the performance of Internet companies, whereas

Asai (2011) employs a two-stages DEA model to assess Japanese broadcasters.

15.4.3.3 Transportation

Lu et al. (2012) use a two-stage additive DEA model based on the works of Chen

et al. (2009a) and of Cook et al. (2010b) to assess the production and marketing

efficiency of airline industry. The authors show that low-cost carriers, on average,

are more efficient than the full-services ones from a production perspective, but

they are less efficient marketers.

Chang and Yu (2012) also deal with low-cost carriers. Specifically, the authors

use a SBM two-stage DEA model to assess production and consumption efficien-

cies. Yu (2010) adopt a SBM efficiency measure to model an open process and

assess both production and service efficiency in airports. In this work, the author

points out that environmental factors have an important influence in the perfor-

mances of transportation systems and hence they must be taken into consideration

even if that are beyond managerial control. For these reasons, on one side he models

these factors as quasi-fixed/non-discretionary inputs; on the other side, he associ-

ates no slack variable to them and consequently he does not include them in the

SBM efficiency.

Zhu (2011) applies the centralized model by Liang et al. (2008) to asses the

efficiency of a set of airlines. Wanke (2013a) (respectively Wanke (2013b)) applies

an analogous model to assess the physical infrastructure and flight (respectively

shipment and consolidation) efficiency drivers in Brazilian airports (respectively

ports). Adler et al. (2013) use a two-stage DEA model for benchmarking airports

taking into account of both terminal and airside activities. These last authors point

out how previous benchmarking studies based on standard DEA models may arrive

to opposing conclusions, whereas a network DEA structure provide more mean-

ingful benchmarks with comparable peer units and target values that are achievable

in the medium term. To reach such results, the authors apply a dynamic clustering

approach (Golany and Thore 1997) that, for each DMU0, restricts the set of possible

peers to include only DMUs with similar mixes of flows. The rationale of this

choice is to set a target for an inefficient DMU0 which is accessible in the short to

medium term.

15.4.3.4 Sports

Moreno and Lozano (2012) introduce an interesting survey of DEA models to

analyze sport performances and then compare the results of a standard DEA
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model with a generalized two-stage one to assess the efficiency of NBA teams.

In both models they use SBM efficiency (Tone and Tsutsui 2009). The authors

finally conclude that the two-stage DEA model has more discriminating power and

provides more insight than the standard one.

15.4.4 Dynamic Networks

Dynamic networks DEA models are multi-stage models that describe the evolution

of processes over time. A recent survey of this network DEA literature sub-area can

be found in Fallah-Fini et al. (2013) which review all the literature (including non

DEA works) on non-parametric dynamic efficiency measurement.

In the basic version of these models, each stage represents the same DMU, as a

black box, at different times. Färe and Grosskopf (2000) consider the same pro-

duction process in two successive periods/DMSUs with period-specific inputs and

outputs. Some of the outputs produced in the first period, that is by the first DMSU,

are used as inputs in the second period, that is by the second DMSU (see also Färe

and Grosskopf 1996a). The authors model these time-intermediate products as

intermediate flows of a (dynamic) network DEA model and, hence, they may

evaluate the relative efficiency of the involved process using Model (15.3). An

illustration of this kind of dynamic network DEA models can be found in Bogetoft

et al. (2009). Another basic dynamic network DEA model is introduced by Troutt

et al. (2001) who, strangely enough, do not present appropriate bibliography except

for two seminal papers on standard DEA.

Nemoto and Goto (1999) use a dynamic network DEA model to describe the

intertemporal behavior of a firm. The authors identify the intertemporal efficient

cost frontier using an envelopment-based network DEA model. Their model

includes both discretionary and quasi-fixed inputs. Discretionary inputs are

period-specific, whereas quasi-fixed inputs are the only time-intermediate flows.

Both kinds of inputs are assumed variable (instead of, e.g., being considered

constant and possibly multiplied by variable scaling factors θ, as it is customary

in standard DEA input oriented models) and a linear combination of them is

minimized. In a subsequent work, Nemoto and Goto (2003) apply this model to

Japanese electric utilities to show how to evaluate the efficiencies of quasi-fixed

inputs and describe their adjustment processes. Sueyoshi and Sekitani (2005)

propose the VRS formulation of the this model. Later, also Von Geymueller (2009)

applies a variation of this model to assess the efficiency of electricity transmission

operations.

Tone and Tsutsui (2010) introduce the slacks-based version of the above net-

work dynamic model. In addition, the authors indicate how to deal with both

discretionary and non-discretionary intermediate flows, and point out that these

flows must be dealt with differently depending on their desirability. Earnings

carried forward are a possible example of desirable intermediate flows; on the

contrary, losses carried forward are a possible example of undesirable ones.

350 L. Castelli and R. Pesenti



Kao (2012) proposes a relational approach for dynamic multi-stage processes

and underlines that the previous methods described the literature for calculating the

efficiency of these processes may produce over-estimated scores if their dynamic

nature is disregarded.

In more complex dynamic models, each stage represents again the same DMU at

different times, but now this DMU in turn models a multi-stage process.

Chen (2009) introduces such a dynamic network DEA model to represent a

production network. Let DMSUk
r be the generic r-th DMSU of the k-th DMU.

The author defines a (dynamic) network, the nodes of which are the subunits

DMSUr
k at the different times t. Then, he assumes that, at each time t, only a

fraction of the intermediate output flow of DMSUk
r is received immediately as

intermediate input flow by the successive DMSUk
ðrþ1Þ. The complementary fraction

of the intermediate output flow is stored and received by DMSUk
ðrþ1Þ in successive

times, possibly with some losses if this intermediate flow consists of a perishable

material. Tone and Tsutsui (2014) extend these kind of dynamic network DEA

models to situations in which SBM efficiency is taken into consideration and the

DMUs observed over time model general network process.

Finally, other authors (see, e.g., Chen and van Dalen 2010; Emrouznejad and

Thanassoulis 2005; Sengupta 1995) consider dynamic DEA models in order to take

into account input flows received at a time period t, e.g., capital, that may have a

productive effect not only in the same time period t but also over future time

periods. These models, however, usually do not consider time-intermediate flows

between DMSUs. As an example, Chen and van Dalen (2010) propose an

envelopment-based dynamic DEA model assuming that the input received at a

time period tmay have a productive effect not only in the same time period but also

over a given time horizon of, say, length g. On the basis of this observation, for each
time period t, they assess the process performances using an efficiency measure

that considers the input flow xt and a value ~y t function of the output flows, for

r ¼ 0, . . ., g, produced between t and t + g.

15.5 Shared Flow DEA Models

In this section, we deal with DEAmodels for DMUs that include DMSUs that either

share some of their inputs or their outputs. These models assume that the total

amount of each input (or output) flow entering (or exiting) the whole DMU is

known and a-priori fixed, as it is customary in standard DEA models. However,

they also assume that the amount of shared flow allocated to each subunits may be

considered as a decision variable to be used to maximize the DMU efficiencies

(see Fig. 15.4). Even in this case, the subunits of the DMUs cannot be considered

independent since they compete for the allocation of the flows that they share.

Beasley (1995) introduces one of the first examples of a shared flow DEA model,

even if it was not originally referred to as such. The model is applied to departments
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of different universities devoted to the same disciplines. The departments are

homogeneous and independent DMUs. Within each of them, the teaching and

research activities clearly define two different separable functions. One of the

DMU inputs, research income, is specifically dedicated to the research function.

The other DMU inputs, general and equipment expenditure, are shared (joined)
between the two functions. DMU outputs are split, i.e., no shared outputs exist:

the number of undergraduates and of taught postgraduates are outputs of the

teaching function; the number of research postgraduates, research income, and

research rating are outputs of the research function. Kao and Lin (2012) extend

this application to the situation in which some input/output data are fuzzy numbers.

15.5.1 Formulation of Shared Flow DEA Models

Referring to r as the generic component of DMU k, now vectors Xk
r, Yk

r, νr, and μr

introduced in Sect. 15.2 are defined as the vectors of dedicated inputs, dedicated

outputs, weights of the dedicated inputs, and weights of dedicated outputs of

component r, respectively. In addition, we define

• Xk
S ¼ {xSik}: the vector of shared inputs,

• Yk
S ¼ {ySjk}: the vector of shared outputs,

• νS ¼ {νi
S}: the vector of weights of shared inputs,

Shared
input

DMSU A

DMU

Dedicated
inputs

Shared
output

Dedicated
outputs

DMSU B

DMSU C

DMSU D

xS

xB

xC

xD

αBxS

αAxS

αA + αB = 1; αA, αB unknown

βB + βC = 1; βB, βc unknown

yA

yS

yB

yD

βCyS

βByS

Fig. 15.4 A shared flow DMU: DMSUs A and B are not independent because they compete for

the same shared resource. Similarly DMSUs B and C are not independent because of the shared

output. DMSU D is independent of DMSUs A, B and C
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• μS ¼ {μj
S}: the vector of weights of shared outputs,

• αr ¼ {αi
r}: the vector of proportions of the shared inputs allocated to

component r,
• βr ¼ {βj

r}: the vector of proportions of the shared outputs attributed to

component r.

With a little abuse of notation we also define αrXk
S as the column vector whose

generic entry is αi
rxSik. In this context, αi

rxSik is the amount of shared input i allocated
to component r by DMU k to maximize its efficiency.When a shared input cannot be

clearly divided among functions (e.g., general expenditure), then αi
r can be seen as

the proportion of the (virtual) value of the input i allotted to component r. Similarly,

we define βrYSk as the column vector whose generic entry is βj
rySjk where βj

r is always

seen as the proportion of the (virtual) value of output j that can be attributed to

component r because it is assumed that no component can produce a shared output

by itself but needs synergy with other components. As an example, the quality of

service level provided by an organization to its customers depends on the degree of

collaboration and integration among its subdivisions, each of them sharing with

other subunits the responsibility for such output. When outputs common to different

components are produced without the need of synergy among them, the literature

refers to them as overlapping outputs (see Sect. 15.5.2.5 for details).

15.5.1.1 Primal Formulation

Consider, for the sake of simplicity, the case when shared outputs are not present.

The efficiency of DMU k is expressed as

ek ¼

X
r

μrYr
kX

r

νrXr
k þ

X
r

νSðαrXS
kÞ
,

the partial efficiency of the single component r is defined as

erk ¼
μrYr

k

νrXr
kþνSðαrXS

kÞ
,

and the aggregate efficiency êk ¼
X
r

qrke
r
k as the weighted combination of the

partial efficiencies of its components, where the weight qrk of each component r is

qrk ¼
νrXr

kþνSðαrXS
kÞX

p

νpXp
k þ

X
p

νSðαpXS
kÞ
:
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Hence qrk is the fraction of DMU k total weighted inputs that are consumed by

component r: ∑rqk
r ¼ 1 8k. Also Yang et al. (2000) introduced the concept of

partial efficiency measures but they applied it on an elementary model (see Sect.

15.2). The general model proposed by Beasley (1995) is

e∗0 ¼ maxe0 ð15:11aÞ
erk � 1 8k, r ð15:11bÞX
r

αri ¼ 1 8i ð15:11cÞ

νri , ν
S
i , α

r
i , μ

r
j � ε 8i, j, r: ð15:11dÞ

Condition (15.11b) imposes that the partial efficiency of each DMU component

cannot exceed 1. Beasley (1995) proves that when each DMU is free to allocate the

value of the shared inputs among its different components, the aggregate efficiency

êk and the efficiency ek are coincident when maximized.

As for the standard DEA formulations, model (15.11) can be rewritten as follows

e∗0 ¼ max
X
r

μrYr
0 ð15:12aÞ

X
r

νrXr
0 þ

X
r

νSðαrXS
0Þ ¼ 1 ð15:12bÞ

μrYr
k� νrXr

kþνSðαrXS
kÞ 8k, r ð15:12cÞX

r

αri ¼ 1 8i ð15:12dÞ

νri , ν
S
i , α

r
i , μ

r
j � ε 8i, j, r: ð15:12eÞ

Model (15.12) is not linear because of inequalities (15.12b) and (15.12c). When no

shared inputs exist, model (15.12) easily reduces to the elementary model (15.2) as

XS
k ¼ 0 8k. Hence the terms ∑rν

S(αrXS
0) in constraint (15.12b) and νS(αrXS

k) in

constraint (15.12c), and constraint (15.12d) are no longer necessary.

15.5.1.2 Dual Formulation

Mar Molinero (1996) and Mar Molinero and Tsai (1997) propose an approach dual

to model (15.11). In addition, the authors include shared outputs, i.e., outputs
yielded synergically by two or more components. Their output oriented model for

what they call a multi-activity process is

e∗0 ¼ max
X
r

qr0θ
r
0 þ ε

X
i

sS�i þ
X
r

sr�i

 !
þ
X
j

sSþj þ
X
r

srþj

 ! !
ð15:13aÞ
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X
k

λrkx
r
ik ¼ xri0 � sr�i 8i, r ð15:13bÞX

k

X
r

λrkðαri xSikÞ ¼ xSi0 � sS�i 8i ð15:13cÞX
k

λrky
r
jk ¼ θr0y

r
j0 þ srþj 8j, r ð15:13dÞ

X
k

X
r

λrkðβrj ySjkÞ ¼
X
r

θr0ðβrj ySj0Þ þ sSþj 8j ð15:13eÞ
X
r

αri ¼ 1 8i ð15:13fÞ
X
r

βrj ¼ 1 8j ð15:13gÞX
r

qr0 ¼ 1 ð15:13hÞ

λrk, q
r
0, α

r
i , β

r
j , s

r�
i , sS�i , srþj , sSþj � 0 8i, j, r, k: ð15:13iÞ

where qr0 are positive weights representing the relative importance of each

component r for DMU 0, and θr0 are measures of the inefficiencies of the compo-

nents of DMU 0. Actually, θr0 are the reciprocals of the distance functions defined
by Shephard (1970). Note that in the models proposed by Mar Molinero (1996) and

Mar Molinero and Tsai (1997) the slack variables sr�i , sS�i , srþj , sSþj are not present.

Here they are imposed for coherence with the standard DEA dual models (see,

e.g., Cooper et al. 2000).

When the values αi
r, βj

r, and qr0 are not decision variables but are fixed, still

satisfying conditions (15.13f), (15.13g) and (15.13i), the dual of model (15.13) is

e∗0 ¼ min
X
r

νrX
r

0
þ
X
r

νSðαrXS
0Þ ð15:14aÞ

μrYr
0þμSðβrYS

0Þ ¼ qr0 8r ð15:14bÞ

μrYr
kþμSðβrYS

kÞ� νrXr
kþνSðαrXS

kÞ 8k, r ð15:14cÞ

νri , ν
S
i , μ

r
j , μ

S
j � ε 8i, j, r: ð15:14dÞ

The above model parallels the output oriented version of model (15.12) when

shared outputs are considered. Besides model (15.14) being linear, the main

difference between the two models is the presence of the multiple constraints

(15.14b) instead of the single one
P
r
μrYr

0 þ
P
r
μSðβrYS

0Þ ¼ 1. This latter constraint

is a relaxation of the former ones because ∑rq
r
0 ¼ 1. Conditions (15.14b) state a
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precise relationship between the relative importance attributed to a component and

the optimal amount of outputs allocated to it (respectively, the optimal amount of

allocated inputs if an input oriented model is considered). Then, conditions (15.14b)

justify the choice in Beasley (1995) of expressing the weight qrk of the component

r in the aggregated efficiency as equal to the fraction of DMU k total weighted

inputs that are consumed by component r. Without conditions (15.14b), such a

choice might appear arbitrary, although reasonable.

15.5.2 Extensions

Many authors have extended models (15.12) and (15.13). Common features of the

different variants are that the aggregate efficiency of a DMU cannot exceed unity,

and that a DMU is efficient if and only if it is efficient in all its components. In this

section, we describe the peculiarity of each available modeling advance.

15.5.2.1 Weight Restrictions

Beasley (1995) himself does not present model (15.11), but he incorporates the

additional constraints

ðνS,νr,8rÞ∈Ωin ð15:15Þ
ðμr,8rÞ∈Ωout ð15:16Þ

where the sets Ωin and Ωout are assurance regions as defined in Thompson

et al. (1990). Constraints (15.15) and (15.16) involve value judgements concerning

the proportions αr and the weights μr, and νr of the different DMU components.

They are not strictly necessary for the definition of a shared flow DEA model, but

might prevent the model from yielding unreasonable results. In this context,

Beasley (1995) provides an example where, in the absence of constraints (15.15)

and (15.16), one research postgraduate was worth about 880,000 undergraduates for

a given department.

Assurance regions are also introduced by Yu (2012) to measure the performance

of two-division international tourist hotels in Taiwan, which exhibit both shared

inputs and shared outputs.

15.5.2.2 Variable Returns to Scale

Mar Molinero and Tsai (1997) prove that the feasible solutions of model (15.13)

define a convex set and the objective (15.13a) is a convex function. Tsai and

Mar Molinero (2002), considering the problem of assessing the performances of
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individual specialties of National Health Services Trusts in the UK, introduce and

discuss a variable returns to scale version of model (15.13). The efficiency of each

component r of DMU k is then defined as

erk ¼
μrYr

kþμSðβrYS
kÞ

νrXr
kþνSðαrXS

kÞ þ δrk
ð15:17Þ

where the variable δrk is unrestricted and its optimal value defines the component’s

returns to scale status. The aggregate efficiency of DMU k is

er ¼

P
r
μrYr

k þ
X
r

μSðβrYS
kÞP

p
νpXp

k þ
P
p
νSðαpXS

kÞ þ
X
p

δpk
: ð15:18Þ

Note that the optimal value of ∑pδ
p
k may be zero even if some or all elements in the

sum are different from zero. In this case, DMU kmay appear to be operating under

constant returns to scale and technically efficient when analyzed as a black box

but, when its individual components are analyzed, it may be found scale ineffi-

cient in each of its activities (Tsai and Mar Molinero 2002). It follows that a

DMU, that is efficient when considered as a black box, may be inefficient when

its different components are taken into account, independently of its returns to

scale status.

Variable returns to scale are also considered by Diez-Ticio andMancebon (2002)

to assess the efficiency of Spanish Police Service.

15.5.2.3 Different Weights on Shared Inputs

Cook et al. (2000) allow a same shared input i to be weighted differently by the

subunits of the same DMU. The rationale behind such a choice is that different

components may disagree on the importance of a same input. Consequently, the

shared flow model as in Cook et al. (2000) includes in constraints (15.12b) and

(15.12c) a set of vectors νSr, one for each component r, instead of a single one. Also,
a change of variables is proposed. In particular, let i ¼ 1, . . ., s be the index of the

shared inputs, then νSri ¼ νSri α
r
i for i ¼ 1, . . . , s� 1 and νSrs ¼ νSrs

�
1�

Xs�1

i¼1

αri

�
.

Because of these new variables, the authors obtain a linear model. The terms

νr
S(αrXk

S) in conditions (15.12b) and (15.12c) become νSrXS
k and νSr � ε in

constraint (15.12e) turns νSri � εαri . Unfortunately, non-linearity may arise again

when additional constraints concerning value judgements as constraints (15.15) and

(15.16) are necessary. If such judgements are expressed also in terms of νSr , the
variable substitution may not lead to a linear model.
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15.5.2.4 Additive Objective Function

Cook and Hababou (2001) and Cook and Zhu (2005, Chap. 6) present variables and

constraints as in Cook et al. (2000) but differ in the objective function. They

formulate an additive objective function representing an aggregate measure of the

efficiencies of all the DMU subunits. In the classical additive DEAmodels (Charnes

et al. 1985), a possible measure of the inefficiency of DMU k is given by the

difference between the weighted sum of the inputs minus the weighted outputs of

DMU k. Here Cook and Hababou (2001) suggest a multiobjective approach where

the partial inefficiencies of all components are considered. For each subunit, the

weighted sum of its inputs minus the weighted sum of its outputs is considered.

In particular, the authors minimize the maximum partial inefficiency in order to

give equal importance to each component, i.e., their objective function is

min maxfνrXr
kþνSrðαrXS

kÞ�μrYr
k : 8r subunit of DMU0g: ð15:19Þ

Finally, the authors linearize their model with the same variable changes proposed

in Cook et al. (2000).

15.5.2.5 Overlapping Outputs

Cook and Green (2004) deal with a manufacturing multi-plant company and point

out that some outputs of different components of the same DMU can partially

overlap, i.e., some outputs may be common to different components. In particular,

each DMSU can yield a given amount of overlapping output j, with no need of

synergy with the other components. Hence there is no possibility of attributing the

considered amount to the other subunits. From this point of view, the overlapping

outputs are different from the shared outputs considered in Mar Molinero and

Tsai (1997) and Mar Molinero (1996). In fact, Cook and Green (2004) cannot

approach what they call the overlap problem by introducing variables βr as in

model (15.13) to determine which proportions of shared outputs are attributed to

each component: the efficiency of a single subunit r remains erk ¼ μrYr
k

νrXr
kþνSrðαrXS

kÞ
and,

consequently, the aggregate efficiency of a whole DMU k is ek ¼
P
r

μrYr
kP

r

νrXr
kþ
P
r

νSrðαrXS
kÞ
.

However, the shared inputs are no longer allocated to the components because such

task could hardly be performed without introducing some ambiguities due to the

component overlapping. Shared inputs are allocated directly to the outputs. In

particular, consider model (15.11) and the extension proposed in Cook

et al. (2000). Cook and Green (2004) introduce a new set of variables αi
j as the

proportions of the shared inputs i allocated for outputs j. In addition, they replaced

condition (15.11c) with ∑jαi
j ¼ 1, for all i. Finally, they defined αi

r as αri ¼
X
i∈Or

αji,

where Or is the set outputs of subunit r. Note that now, in general, ∑rαi
r � 1.

358 L. Castelli and R. Pesenti

http://dx.doi.org/10.1007/978-1-4899-8068-7_6


The allocation of shared inputs directly to outputs was originally introduced in

Färe et al. (1997). Even though the concept of DMSU is not explicitly mentioned, it

can easily be inferred since one input can be allocated among various outputs.

15.5.2.6 Core Business Identification

Cook and Green (2004) and Cook and Zhu (2005, Chap. 11) address the problem

of determining in which areas a DMU would perform better. Such areas form the

core business of a DMU and should be privileged even at the cost of possibly

forcing the DMU to abandon the components with less satisfactory performances.

To this aim, Cook and Green (2004) modify the objective function of model (15.11)

and add assignment constraints (each DMU must have at least one component

assigned and each component must be assigned to at least one DMU).

To overcome the insufficiency associated with the black box approach that

generally makes DMU inner data not to be available, Bi et al. (2012) consider

DMUs with parallel structure and propose to divide the production activities within

a DMU into two subsets or units. The first unit is termed as the core business unit

(CBU), which includes the main production functions of DMU; the second unit is

referred to as the non-core business unit (NCBU). The authors introduce a solution

method that assumes that the information related to inner inputs/outputs is available

for the DMU under evaluation. For the other DMUs, however, these data are

generated by using the Pareto principle: as a rule of thumb, the CBU produces

80 % of total outputs of a DMU, while consumes only 20 % of total inputs. Accord-

ingly, NCBU produces 20 % of the total outputs, while consumes 80 % of all inputs.

15.5.2.7 Resource Allocation

Shared flow models have also been used to allocate input costs among different

subunits or activities. da Cruz et al. (2013) propose a model for estimating not only

the overall efficiency of water utilities, but also the cost efficiency of drinking water

and wastewater services. Using a shared input DEA methodology, the authors are

also able to report estimates for the cost shares that correspond to each service.

Similarly, Rogge and De Jaeger (2012) evaluate the cost efficiency of Flemish

municipalities in the collection and processing of municipal solid waste by consid-

ering only one input (“waste cost”) that is shared among different collection and

treatment activities. In Rogge and De Jaeger (2013) this shared input DEA-model is

further developed to make the partial and aggregate cost efficiency scores robust and

also corrected for the impact of influences related to the operating environment and

long-term policy variables. The same robust shared-input DEA approach has been

applied by Broekel et al. (2013) to evaluate for multiple years the innovation

efficiency of 150Germanmarket labor regions, using as unique input “R&D employ-

ment” figures. Input costs are jointly allocated also by Salerno (2006) to estimate

higher education institutions’ per-student education costs in The Netherlands.
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Barnum et al. (2011) introduce a DEA-based procedure for estimating the

overall efficiency of metropolitan public transportation agencies in the United

States. Specifically, the authors use a six-step shared flow model to allocate

operating expenses among the agencies’ organizational subunits that supply transit

service. In each of the main step the authors use DEA to asses either the efficiency

of the whole system or of each of the transportation modality. Finally, the sixth step,

which involves a non-DEA mathematical program, estimates how inputs should be

allocated among the target agency’s subunits in order to minimize total expenses,

while holding output constant.

15.5.2.8 Non-radial Measures of Efficiency

Chen et al. (2013a) describes an empirical study on Taiwan’s farmers’ cooperatives

to offer policy suggestions as to how fixed resources can be effectively reallocated

among different departments in a team production environment. The authors adopt

Luenberger (1992)’s directional distance function to scale inputs and outputs, but

not necessarily along the rays from the input and output origin (Fukuyama 2003). In

such a way, the optimal input/output adjustment and the optimal allocation of

shared inputs among different activities are taken into consideration simulta-

neously. Furthermore, the use of a directional distance function allows to easily

incorporate an undesirable/bad output as a byproduct of desirable/good production

activities. In fact, when we seek a reduction in the bad output and simultaneous

increases in the good output, then the directional distance function will be a

preferred method because it allows non-proportional adjustments of the good and

bad outputs.

Yu and Lee (2009) use instead a hyperbolic network DEA model to evaluate the

performances of hotels in Taiwan. Specifically, the authors extend the models

introduced in Färe and Grosskopf (2000) and Färe and Whittaker (1995) by

combining both the input and the output orientation in a non-linear fashion.

15.5.2.9 Two-Stage Networks

In the recent years, the integration between network and shared flow models has

been addressed by some authors. Chen et al. (2010b) propose a DEA model to

evaluate either the VRS or the CRS efficiency of a two-stage network process where

some inputs are directly associated with both stages or shared by the two stages

(Fig. 15.5). The DMU efficiency is computed as a convex combination of efficiency

scores of the first and second stage, thus ensuring that a DMU is overall efficient if

and only if each stage is efficient. In the case of an inefficient DMU, however, the

decomposition of the overall DMU efficiency between the two stages may not be

unique. Hence, following Kao and Hwang (2008), the authors propose, under both

VRS and CRS, an approach to find a set of multipliers that maximize either the first

or the second stage efficiency score while maintaining the overall efficiency score.
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Zha and Liang (2010) analyze the two-stage network process with shared inputs

as in Fig. 15.5. Differently from Chen et al. (2010b), the authors propose to

determine the overall DMU efficiency score as the product of the efficiency scores

of the two stages, thus optimizing the overall efficiency through cooperation of the

different stages, as suggested by Castelli et al. (2004).

To assess the efficiency of multimode bus transit systems, Yu and Fan (2006)

introduce a two-stage shared input DEA model that incorporates both desirable and

undesirable outputs, and also environmental (non-discretionary) inputs. Following

Yu and Fan (2006) and Yu (2008b), a two-stage network with shared inputs

between two parallel subunits of the first stage (see Fig. 15.6) has been proposed

by Yu and Fan (2009) to simultaneously estimate the production efficiency, service

effectiveness and operational effectiveness of Taiwan’s bus transit system.

Their network model, also called mixed structure network DEA model, extends

both the network DEA model introduced by Färe and Grosskopf (2000) (series

structure network) and the network DEA model developed by Mar Molinero (1996)

(parallel structure network).

Chen et al. (2010b) show that their approach can be easily extended to open

two-stage network processes where some inputs from the first stage do not become

inputs to the second stage, and the second stage has its own inputs (Fig. 15.7).

Amirteimoori (2013) addresses the same two-stage network process with shared

inputs as in Fig. 15.7 using the approach of Chen et al. (2010b), with the only

Dedicated
Inputs

Stage 1 OutputsStage 2

DMU

Shared
Inputs

Fig. 15.5 Shared inputs in

a two-stage network process

DMSU A

Outputs

DMSU B

DMSU C

DMU

Stage 1 Stage 2

Shared
Inputs

Dedicated
Inputs

Dedicated
Inputs

Fig. 15.6 Shared inputs in a open two-stage network process
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difference that the intermediate flows are to be considered as undesirable outputs

for the first stage. In the same two-stage setting, undesirable intermediate flows

were earlier addressed by Yang (2009) who moreover simultaneously considers

both DMU desirable and undesirable outputs to measure productive and environ-

mental efficiency in farrow-to-finish pig production in Taiwan. Similarly, also Chen

et al. (2012b) evaluate the relative performance of incineration plants in Taiwan by

including desirable and undesirable outputs. To allow inputs and outputs to change

non-proportionally the directional slacks-based inefficiency measure developed

by Fukuyama and Weber (2009) is incorporated into their model (see also

Sect. 15.5.2.8).

Two-Stage Network and Non-radial Measures of Efficiency

Sometimes the technology used to measure DMU efficiency has to deal with input

excesses and output shortfalls simultaneously. In this case, the graph-oriented DEA

model can be applied (Färe et al. 1985). In contrast to input-oriented and output-

oriented DEA models, both inputs and outputs are allowed to vary by the same

(or different) proportion, but inputs are proportionately decreased while outputs are

simultaneously increased by the same (or different) proportion. Graph efficiency

measurement has been used by Yu and Lin (2008) who present a multi-activity

network DEA model to simultaneously estimate passenger and freight technical

efficiency, service effectiveness, and technical effectiveness for 20 selected

railways for the year 2002. This model extends the work from Mar Molinero and

Tsai (1997). In particular, it generalizes model (15.13) for multi-stage processes

and uses an objective function that penalizes all the external input and final output

inefficiencies of all the components, with the exception of non-discretionary inputs

Dedicated
Inputs

Stage 1 OutputsStage 2

DMU

Shared
Inputs

Dedicated
Inputs

Outputs

Fig. 15.7 Shared inputs in a two-stage network process with parallel subunits
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(while the θr0 terms in model (15.13) penalize only the final outputs). For standard

DEA models similar measures were proposed in Pastor et al. (1999).

Similarly, a graph-oriented DEA model is proposed by Chao et al. (2010) who

apply the multi-activity DEAmodel to explore the relative efficiency of 12 financial

holding companies in Taiwan.

Two-Stage and Dynamic Networks

Chen (2012) proposes a dynamic shared input DEA model to assess the efficiency

of the swine production in Taiwan. The model is dynamic in the sense that a same

DMU, made of two parallel DMSUs with shared inputs, is observed over time.

Hence, some of the outputs of a period become some of the inputs of the following

period. Efficiency is not measured radially. Instead, as in Chen et al. (2012b, 2013a),

the directional Russell measure of slack-based inefficiency developed by Fukuyama

and Weber (2009) is introduced to allow inputs and outputs with non-proportional

changes.

15.6 Multi-level DEA Models

In this section, we deal with DEA models for DMUs exhibiting autonomous

activities that cannot be associated to any of their subunits. In other words, these

DMU present additional inputs/outputs not considered by their DMSUs. For exam-

ple, in Cook et al. (1998), DMSUs are highway maintenance patrols and DMUs are

the districts in which the maintenance patrols are grouped. The subunits have traffic

and road conditions as possible inputs, while DMUs may include additional inputs

that can be applied only to districts such as the extent of privatization and district

engineers’ experience. The same authors also introduced possible applications of

their model to power plants and hospitals. These models are defined as multi-level
models (Cook et al. 1998) where the top level, referred to as level n DMU, includes

independent and homogeneous subunits, referred to as level n � 1 DMUs. Recur-

sively, the level n � 1 DMUs include smaller independent and homogeneous

subunits, level n � 2 DMUs, and so on. Unlike shared flow models, the amount

of input and output of each subunit is fixed. In this work, we introduce only two–

level structures, and we simply refer to DMU for the level 2 DMU and to DMSU or

subunit for level 1 DMUs (see Fig. 15.8).

By denoting i; j; k as the indexes of the generic input, output, and DMU,

respectively, the following notation is introduced:

• Rk ¼ {rk}: the set of indexes rk of all DMSUs belonging to DMU k,
• Xr

k ¼ {xrik}: the vector of the inputs of DMSU rk,
• Xk ¼ {xik}: the vector of the additional inputs of DMU k,
• Yrk ¼ {yrjk}: the vector of the outputs of DMSU rk,
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• Yk ¼ {yjk}: the vector of the additional outputs of DMU k,

• ν1 ¼ {ν1i }: the vector of weights of the inputs common to both DMSUs and

DMUs,

• ν2 ¼ {ν2i }: the vector of weights of the additional inputs of DMUs,

• μ1 ¼ {μ1i }: the vector of weights of the outputs common to both DMSUs and

DMUs,

• μ2 ¼ {μ2i }: the vector of weights of the additional outputs of DMUs.

Accordingly, the efficiency of a DMSU rk is expressed as

erk ¼
μ1Yr

k

ν1Xr
k

ð15:20Þ

and the efficiency of a DMU k as

ek ¼
μ1
X
rk∈Rk

Yr
kþμ2Yk

ν1
X
rk∈Rk

Xr
kþν2Xk

: ð15:21Þ

Cook et al. (1998) present a unifying model for multi-level structures that assesses

the efficiency of DMUs of different levels. The authors argue that the efficiency of a

DMSU rk should be evaluated only relative to those other subunits operating under

the same conditions, in practice belonging to the same DMU k.
On the other hand, they also assert that the subunits in Rk should be taken into

account when evaluating the efficiency of a DMU k. On the basis of these assump-

tions, Cook et al. (1998) propose that the efficiency of a DMSU 00 in DMU 0 is

evaluated through the following model

e0∗0 ¼ max μ1Y0
0 ð15:22aÞ

Common DMSU
and DMU inputs

DMSU inputs DMSU outputs

DMSU

DMU
Additional
DMU inputs

Additional
DMU output

Common DMSU 
and DMU outputs

DMSU

Fig. 15.8 A multi-level DMU: the DMU includes two homogeneous and independent subunits
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ν1X0
0 ¼ 1 ð15:22bÞ

μ1Y r
0 � ν1Xr

0 8r0∈R0 ð15:22cÞ

ν1i , μ
1
j � ε 8i, j: ð15:22dÞ

This is a standard DEA model that evaluates DMSU 00 relative only to subunits

included in the same DMU 0. The efficiency of a DMU 0 is evaluated through the

following model:

e∗0 ¼ max μ1
X
r∈R0

Yr
0þμ2Y0 ð15:23aÞ

ν1
X
r∈R0

Xr
0þν2X0 ¼ 1 ð15:23bÞ

μ1
X
r∈Rk

Yr
kþμ2Yk � ν1

X
r∈Rk

Xr
kþν2Xk 8k ð15:23cÞ

μ1Yr
k � ν1Xr

k 8k,8r∈Rk ð15:23dÞ

ν2i , ν
1
i , μ

2
j , μ

1
j � ε 8i, j: ð15:23eÞ

This model compares DMU 0 with all other DMUs. It is different from the linear

programming model considering DMUs as black boxes due to the presence of

constraints (15.23d). These constraints take into account the DMU internal struc-

ture by imposing that their efficiency is related to the efficiencies of their subunits.

In particular, constraints (15.23d) force that the optimal values for weights ν1i , μ
1
j

are feasible for the DMSUs, i.e., the efficiency of each subunit should not exceed

unity. Cook et al. (1998) present a unifying model for multi-level structures that

includes both models (15.22) and (15.23). When the DMUs do not have additional

inputs/outputs, model (15.23) reduces to the elementary model (15.2). In such case,

constraints (15.23c) turn out to be redundant since they are implied by constraints

(15.23d). Cook and Green (2005) apply the hierarchical model described in Cook

et al. (1998) to the evaluation of power plants. These works are continued by

Azadeh et al. (2008, 2011) who use hierarchical models for optimal location of

solar plants and wind plants, respectively.

15.6.1 Comparing Subunits Belonging to Different DMUs

In model (15.22) any subunit is compared only against the other subunits belonging

to the same DMU. The rationale is that inputs received and decisions taken by each

DMU influence the efficiency of its subunits, then comparing subunits belonging to
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different DMUs would be questionable. In fact, DEA models assess the efficiency

of a DMU as a function of its distance from the production frontier defined by the

other observed DMUs. In a mathematical programming perspective, DEA models

determine the efficiency of a DMU with respect to the other DMUs. In an econo-

metric perspective, the observed DMUs are a sample of a larger population, and

DEA is a biased estimator of the efficiency of a DMU with respect to the unknown

real production set (Simar and Wilson 2000). In both situations, the larger the

sample is, the more likely the DMU under assessment is inefficient. Also, the

average efficiency of the DMUs of the sample decreases (Zhang and Bartles 1998).

This is why Staat (2001) invites to interpret very carefully possible differences in

the efficiencies of subunits belonging to different DMUs when the cardinalities of

sets Rk vary. Cook et al. (1998) propose a way of correcting the possible biases by

adjusting the efficiency of subunit rk taking into account the size of the DMU k, the
average efficiency of all the subunits in Rk, and the efficiency of DMU k. However,
Staat (2002) points out that such a procedure returns different corrections for

samples of equal size. He suggests to use bootstrap techniques (see, e.g., Simar

and Wilson 2000) to overcome such deficiencies.

In a later paper Cook and Zhu (2007), always dealing with power plants, propose

a different model to rectify the weaknesses in the one of Cook et al. (1998). In the

new model, the efficiency of each DMSU is now assessed against all the other

subunits even if they do not belong to the same DMU. Then, for each DMU, a

common set of multipliers applicable to all its DMSUs is determined. Specifically,

goal programming is used to identify the multipliers that minimize the maximum

discrepancy among the DMSUs’ efficiencies from their ideal levels computed in the

previous step.

15.6.2 Shared and Multi-level Models

Wu et al. (2008) evaluate the efficiency and performance of the healthcare system

in 23 counties and cities in Taiwan for the year 2003. In this paper, the authors

propose that each county or city has a budget to produce all the different outputs

that can be optimally distributed between such outputs. Hence they propose an

input-shared flow model with respect to the available budget. However, Wu

et al. (2008) also consider additional inputs (e.g., healthcare manpower and number

of facilities) that are not explicitly linked to the different outputs, as in Fig. 15.8.

It is then a multi-level model where the amount of input of each subunit is not fixed.

Let us conclude this section underlining that there exists an other DEA literature

sub-area called “multi-level”. The works in this sub-area deal with the presence of

too many input or output flows. Then, they aggregate them in different groups and

subgroups (see, e.g., Meng et al. 2008; Kao 2008; Eilat et al. 2008; Rezai and

Davoodi 2011). We do not survey these works as they do non assume that DMUs

present any internal structure.
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15.7 Conclusions

In this work we provide a classification of the main DEA models assessing the

efficiency of Decision Making Units when their internal structure is no longer

considered as a black box, but insight on their inner processes is available. The

interaction in each DMU among the input and output flows and its subunits

identifies three broad categories of models. In particular, network DEA models

are introduced when intermediate flows among the subunits are taken into account.

Shared flow DEA models apply when it is possible to partition a DMU as a

collection of components that contend their inputs and/or outputs to other compo-

nents of the same DMU. Multi-level DEA models are referred to when some of the

inputs (or outputs) of a DMU are also inputs (or outputs) of its subunits, and some

other inputs (or outputs) are not. We show that these formulations are different

generalizations of the same elementary model.

From a theoretical point of view, the knowledge of the internal structure of

DMUs should spot the sources of organizational inefficiency by, e.g., preventing

compensations among the subunits. In mathematical terms this translates into

linking a DMU and its subunits’ efficiencies. This relationship may vary across

the different models. But, as a general result, a DMU cannot be efficient if none of

its subunits are efficient. Furthermore, several applications show that the discrim-

ination power of a DEA model which considers the internal structure of the DMU

always increases with respect to the black box approach. As an extreme case, in

some situations all DMUs may turn out to be inefficient.

There is large scope of research in the area of this type of DEAmodels both from

a theoretical and application-oriented perspective. In the standard DEA literature,

besides the original DEA formulation (Charnes et al. 1978) representing DMUs

as black boxes in a CRS environment, many authors have proposed more sophis-

ticated or alternative approaches taking into account, e.g., nonradial measures of

efficiency, value judgments, economic measures of efficiency (see Fried et al. 2008,

Chap. 3, for a comprehensive survey of such DEA models).

In the recent years, different works have devoted attention to these extensions

even when DMUs have an internal structure. However, as pointed out by Chen

et al. (2013b), issues still remain and need to be addressed. The presence of an

internal structure in fact prevents from generlaizing some of the more obvious

properties of the standard DEA models, as an example, the duality relationship

between the multiplier-and envelopment-based DEA models. In the authors’ opin-

ion, other difficulties may also arise from the level of detail used to describe the

internal structure of DMUs. In fact, the greater the detail of the internal structure of

a DMU, the greater the discrimination power of a DEA model, but also usually the

more difficult to find a sufficient number of homogeneous DMUs to compare.

Another promising line of research considers the DEA models from a game

theoretic or, in any case, multi-agent perspective. Indeed, from an applicative

point of view, these DEA models may find application in the design of more

efficient complex processes. In this context, the role of asymmetric information
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between DMSUs and their DMU (see, e.g., Bogetoft 2000) can be extended to the

case when such asymmetry exists among DMSUs which make their decisions by

means of a negotiation process.
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Färe, R., Grosskopf, S., & Lovell, C. (1985). The measurement of efficiency of production.

Dordrecht: Kluwer-Nijhoff.
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Chapter 16

Multicomponent Efficiency Measurement

in Banking

Wade D. Cook, M. Hababou, and H. Tuenter

Abstract There is a growing need to view performance in organizations in a more

disaggregated sense, paying specific attention to different components of the

operation. In this chapter we present models for deriving aggregate measures of

bank-branch performance, with accompanying component measures that make up

that aggregate value. The technical difficulty surrounding the development of an

appropriate model is the presence of shared resources on the input side and

mechanisms for allocating such resources to the individual components. The

chapter presents both a conventional radial model as well as an additive model

for handling multiple components in an organization. The models are applied to

data for a set of bank branches.

Keywords Multi component • Bank branches • Shared resources • Efficiency

W.D. Cook (*)

Schulich School of Business, York University, 4700 Keele Street, M3J 1P3 Toronto,

ON, Canada

e-mail: wcook@schulich.yorku.ca

M. Hababou

Royal Bank of Scotland, New York, NY, USA

e-mail: Moez.hababou@rbsnb.com

H. Tuenter

Hydro One, 483 Bay Street North Tower, Toronto, Canada

e-mail: htuenter@gmail.com

This chapter is based upon Cook et al. 2000, with permission from Kluwer Academic Publishers,

and Cook and Hababou (2001), with permissions from Elsevier Science

W.D. Cook and J. Zhu (eds.), Data Envelopment Analysis,
International Series in Operations Research & Management Science 208,

DOI 10.1007/978-1-4899-8068-7_16, © Springer Science+Business Media New York 2014

377

mailto:wcook@schulich.yorku.ca
mailto:Moez.hababou@rbsnb.com
mailto:htuenter@gmail.com


16.1 Introduction

Banks have evolved over time from their traditional role as reactive monetary

intermediaries, and service providers, toward a more general and proactive function

as universal financial agents with a distinct sales culture. This new status has

resulted in the introduction of a broad range of financial products to the market

place. Under the Canadian Bank Act of 1991, it became legal for an institution to

engage in a broad range of financial activities. Technology has contributed as well

to the changes that banks are undergoing; a range of convenient customer access

points has emerged such as ATMs (Automatic Teller Machines), debit cards,

telephone- and PC banking, to name a few.

Banks generate profits from two main sources – (1) interest income, which

captures the spread realized on loans and traditional activities, and (2) non-interest

income from fees and financial services activities.While historically interest income

was the principal source of profits for the bank, the importance of non-interest

income has grown significantly over time. It is interesting to note that the profitabil-

ity ratio, that is the profit as a percentage of assets, has increased dramatically

since 1991. Specifically, for the period 1980–1990, the ratio ranged from 0.24 %

to 0.79 %, with an average of 0.43 %; the corresponding figures for the period

1991–1995 are 0.59–1.90 % with an average of 1.20 %. This dramatic change has

been due in part to the revised regulations in the Bank Act, and partially to improved

access to financial services, coupled with a more active sales orientation.

Performance measurement, using tools such as Data Envelopment Analysis

(DEA), as proposed by Charnes et al. (1978), has tended to concentrate on achiev-

ing a single measure for each member of a set of decision making units (DMUs). In

most applications, a single measure of production or profit efficiency provided by

the DEA methodology has been an adequate and useful means of comparing units

and identifying best performance. This has been particularly true in the case of

banks, where the primary candidates for DMUs are branches, and in their traditional

setting, product and prices have tended to be undifferentiated. Numerous studies of

bank-branch efficiency using DEA have been conducted over the past 15 years –

see, for instance, Charnes et al. (1990), Oral and Yolalan (1990), Schaffnit

et al. (1997), Sherman and Gold (1985), and Sherman and Ladino (1995).

There is now a desire to create value-added customer segments by identifying

their specific needs. The new challenge is to optimize resource allocation, with

most of the industry now allocating 60–80 % of its human capital to customers and

markets that represent less than 20 % of its customer base. There is a growing need

to view performance in a more dis-aggregated sense, paying specific attention to

different components of the operation. These components include different classes

of products or sales activities, such as mutual funds and mortgages, and different

elements of service. By measuring a branch’s performance on each of a set of such

components, particular areas of strength and weakness can be identified and

addressed, where necessary.

In this chapter we present models for deriving aggregate measures of bank-

branch performance, with accompanying component measures that make up that
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aggregate value. The technical difficulty surrounding the development of an

appropriate model has to do with the presence of shared resources on the input

side, and mechanisms for allocating such resources to the individual components.

The idea of measuring efficiency relative to certain subprocesses or components

of a DMU is not new. Färe and Grosskopf (1996), for example, look at a multistage

process wherein intermediate products or outputs at one stage, can be both final

products and inputs to later stages of production. Those authors are not explicitly

interested in obtaining measures of efficiency at each stage, but rather are

concerned with overall efficiency measurement, whereby the network structure of

the intermediate activity explicitly enters into the model description. Hence, they

are able to provide a better representation of the technology than would a ‘black

box’ input and final output model. Another example is due to Färe and Primont

(1984) and involves the evaluation of efficiency of a set of multiplant firms as

DMUs, while at the same time measuring the efficiency of plants within firms.

These applications of multicomponent efficiency measurement do not involve

shared resources as does the situation examined herein. The work of Beasley (1995)

on separating teaching and research, most closely compares to the present applica-

tion, although we show herein that our treatment of shared resources leads to a

linear rather than a nonlinear model. Section 16.2 modifies the conventional radial

projection DEA model for bank-branch performance by providing a methodology

for splitting shared inputs among the identified components. For development

purposes, we concentrate on two specific components, namely service-specific

and product-specific sales activities. The model structure used is based on the

original CRS model of Charnes et al. (1978). An application is examined in

Sect. 16.3. In Sect. 16.4 we present an additive form of the multi-component

model. Discussion and conclusions follow in Sect. 16.5.

16.2 A Multicomponent Performance Measurement Model

With the increased emphasis on sales and the differentiation of products and

customer segments, there is a need to provide a performance measurement tool

with component-based information as part of the aggregate efficiency score.

16.2.1 Multiple Functions and Shared Resources

While onemaywish tomeasure the performance of several components of the DMU,

we will, for purposes of development in this chapter, assume that transactions can be

separated into exactly two distinct classes: service and sales. It should be emphasized

that this split is not always transparent; the opening of a mortgage loan would

generally be classified as a “sales” transaction, although there are “service” activities

that must be performed from time to time pertaining to that loan, such as
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loan renewal. Thus, a particular transaction may contain both sales and service

components. Care should, therefore, be exercised in clearly delineating those activ-

ities that belong to each function. Furthermore, one would generally need to separate

those sales activities that are volume related (and pertain to specific products), from

those that involve the “selling” part of the sales activities. The latter would include

reviewing customer portfolios, answering customer requests on various products, and

so on. The former would involve the transaction tasks performed after the customer

has chosen a particular product. In summary, the selling aspect of sales does not relate

to specific sales products while the transaction part of sales is product-specific. In this

section we consider only those sales activities that are product or volume specific.

We take up the non-volume related activities in a later section.

For notational purposes, let (Y1j ,Y
2
j ) denote the sets of service and sales trans-

actions, respectively, i.e. the two sets of outputs are

Y1
j ¼ y1j1 . . . , y

1
jJ1

� �
and Y2

j ¼ y2j1 . . . , y
2
jJ2

� �
:

On the input side, this split is more complex. Some resources can be designated

as dedicated service inputs, some as dedicated to sales, and still others are shared by
the two functions. If, for example, branch staff are classified as Sales, Service, and

Support, we can, for illustrative purposes, assume that Support staff are shared by

the two functions while the other two classes are dedicated. In some branches this

distinction may be less clear than in others. Technology resources may as well be

classified as shared.

A schematic of the production process for a particular DMU is given in

Fig. 16.1.

Here, X1
j , X

2
j and X

s
j denote I1, I2 and Is -dimensional vectors of service dedicated-,

sales dedicated-, and shared inputs, respectively. Some portion αi (0 � αi � 1) of the

shared resource xsij is allocated to the service function of DMU j, with the remainder

(1 � αi) being allocated to sales. In the model to be developed herein, αi is a decision
variable to be set by the DMU. At least two difficulties arise in attempting to capture

a measure of performance of the DMU on both service and sales functions within

Xj
s

Xj
1

Xj
2

Branch j

Xj
1

Xj
s

Xj
2

Xj
s

Service

Sales

Yj
1

Yj
2

Fig. 16.1 Production process for a DMUj with Shared Resources
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some overall efficiency measure. First, if one attempts to derive an overall

measure of performance that somehow incorporates sales and service components,

the importance of the components of Xs relative to one another, and relative to the

dedicated resources X1 and X2 (as reflected in the v -vectors v1, v2 and vs), may

be different when considering the impact of Xs on Y1 as compared to its impact on

Y2. For example, consider the simple case of one staff type for each dedicated class

(X1 ¼ no. service staff, X2 ¼ no. sales staff), and two resources, support staff and

available technology, as shared inputs. One may argue that in evaluating service

efficiency, technology is more important than support staff. As an example, a con-

straint such as vs2 � 2vs1 might be imposed. On the other hand, if technology such as

ATMs play a minor role in sales, then a constraint such as vs2 � 0.3vs1 may be an

accurate reflection of the importance of the two shared resources relative to one

another. Clearly, these constraints are infeasible if imposed simultaneously. More-

over, even if this issue could be resolved, therewould be no clear way of separating the

resulting aggregate measure into separate sales and service indicators.

A second difficulty arises if instead of developing an aggregate measure, one

attempts to derive separate measures of performance relative to sales and service,

with the intention of combining these separatemeasures into an aggregate score after

the fact. The problem here is that the shared resources Xs would need to be

apportioned to these two functions in some manner consistent with their usage in

creating the outputs of the functions. With any shared resources, however, branches

do not generally maintain a record of the usage split at the function level. Conse-

quently, a mechanism is needed to split shared resources across functions in some

equitable manner. To motivate the development, reconsider Fig. 16.1, but with the

shared resources Xs
j allocated to the two functions according to proportionality

variables, αi as depicted in Fig. 16.2. The issue of how αi should be derived is

discussed below. Let α ¼ α1,α2, . . . αIsð ÞT denote the column vector of proportion-

ality variables, and let α Xs
j denote the column vector (α1xs1j, α2 xs2j, . . . αIx

s
jI)

T.

Further, we let (1 � α) Xs
j denote the column vector ( 1� α1ð Þxs1j, 1� α2ð Þxs2j, . . . ,

1� αIsð ÞxsjIs) T.

Xj
s

Xj
1

Xj
2

Branch j

Xj
1

αXj
s

Xj
2

(1−α)Xj
s

Service

Sales

Yj
1

Yj
2

Fig. 16.2 Splitting shared resources
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16.2.2 The Aggregate Performance Measure

From Fig. 16.2 one can argue that since the total bundles of outputs Y1j and Y2j are

produced from the inputs X1
j , X

2
j and X

s
j , a measure of aggregate performance eaj can

be represented by:

eaj ¼ u1 Y1
j þ u2Y2

j

v1X1
j þ vs1 αXs

j

� �
þ vs2 1� αð ÞXs

j

� �
þ v2X2

j

ð16:1Þ

For this representation, the vectors of multipliers u‘ and vt would be determined

in a DEA manner to be discussed below. The rationale for allowing for the

possibility of different vectors vs1 and vs2 for the shared service and sales resources,

respectively, is that the relative importance of the components of Xs in generating

Y1 may be different than their importance in generating Y2. This was discussed earlier.
In this manner, we avoid the possibility of infeasibilities created by possibly

conflicting restrictions on the multipliers vs. There is yet another rationale for permit-

ting vs1 and vs2 to be different multiplier vectors. It can be argued that normally in a

DEA analysis there is no clear connection between subsets of outputs and subsets of

inputs. In this event, it is certainly the case that vs1 and vs2 should be the same vectors

since they pertain to the same inputs (for example, support staff). When a direct link

can be made between such subsets of input and output bundles, however, one might

then attempt to impose some form of linking constraints as discussed in earlier

literature. We do this in the model discussed below. Such constraints may only be

feasible if vs1 and vs2 are, in fact, permitted to be different vectors.

16.2.3 Function-Specific Performance Measures

From eaj , performance measures for DMU j that capture service and sales efficiency

would appear to be appropriately represented by e1j and e
2
j , respectively, as defined by:

e1j ¼
u1Y1

j

v1X1
j þ vs1 αXs

j

� � ð16:2Þ

and

e2j ¼
u2Y2

j

vs2 1� αð ÞXs
j

� �
þ v2X2

j

: ð16:3Þ

Property 16.1 The aggregate performance measure eaj is a convex combination of

the service and sales measures.
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Specifically eaj ¼ βje1j + (1 � βj)e2j , where β is the portion of all inputs utilized

in e1j (applied to the service component), i.e.

βj ¼
v1X1

j þ vs1 αXs
j

� �h i
v1X1

j þ vs1 αXs
j

� �
þ vs2 1� αð ÞXs

j

� �
þ v2X2

j

h i :

The aggregate measure is, therefore, a weighted average of the performance

across the various functions of the organization, as one would intuitively expect.

From this property it is seen that a DMU will be deemed efficient, if and only if it is

efficient in both service and sales components. Again we point to the importance of

separate vectors vs1 , vs2 being permitted in the aggregate measure (16.1). If vs1 and
vs2 are forced to be the same in (16.1), yet are permitted to be different in (16.2) and

(16.3), then no connection between the aggregate and function-specific measures,

as per Property 1, can be made.

16.2.4 Derivation of eaj , e
1
j , e

2
j

The defined measures are based upon proportionality variables α which will be

treated as DMU-specific variables. Thus, it will be at the discretion of each DMU j

to allocate Xs
j across the two functions. Furthermore, the model will make the

necessary provisions to ensure that all three measures are appropriately scaled,

specifically they will not exceed unity.

Consider the following mathematical programming model:

maxeao
subject to:

eaj � 1 8j
e1j � 1, 8j
e2j � 1, 8j
0 � αi � 1, 8i
μ1; μ2ð Þ∈Ω1

v1; v2; vs2 ; v2ð Þ∈Ω2

u1r , u
2
r , v

1
i , v

2
i , v

s1
i , v

s2
i � δ, 8i, j

ð16:4Þ

In this formulation, the objective is to maximize the aggregate efficiency rating

for each DMU “o”, while ensuring that the function level ratings (for sales and

service) do not exceed 1. We replace ε by δ here to denote the fact that an absolute

lower bound δ may be in effect. The sets Ω1 and Ω2 are assurance regions (see

Thompson et al. 1990) defined by any restrictions imposed on the multipliers.
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Similar work was done by Beasley and Wong (1990). The set Ω1 may, for example,

contain ratio constraints on the components μ1j and μ
2
j (the output multipliers), dictated

by ranges on transaction processing times. The region Ω2 would be defined by any

restrictions expressing the relative importance of the various inputs pertaining to their

impacts on outputs. More will be said regarding such assurance regions later. In

general, (16.4) is a constrained version of the original model of Charnes et al. (1978)

wherein linking constraints that connect output and input bundles are present.

16.2.5 An Alternative Formulation

Model (16.4) can be reduced to a non-ratio format in the usual manner of Charnes

and Cooper (1962), yielding:

eao ¼ maxμ1Y1
o þ μ2Y2

o

subject to :

v1X1
o þ vs1 αXs1

o

� �þ vs2
�
1� αð ÞXs2

o

�þ v2X2
o ¼ 1

μ1Y1
j þ μ2Y2

j � v1X1
j � vs1 αXs

j

� �
� vs2 1� αð ÞXs

j � v2X2
j � 0, 8j

μ1Y1
j � v1X1

j � vs1 αX2
j

� �
� 0 8j

μ2Y2
j � vs2

�
1� αð ÞX2

j

�� v2X2
j � 0 8j

0 � αi � 1, 8i
μ1; μ2ð ÞεΩ1,

�
v1, vs1 , vs2 , v2

�
εΩ2

μr, vi � δ, 8i, j

ð16:5Þ

Since αi is a decision variable, this problem is clearly nonlinear. If we make the

change of variables vs1 ¼ αvs1 and vs2 ¼ 1� αð Þvs2, then problem (16.5) reduces to

the following form:

eao ¼ maxμ1Y1
o þ μ2Y2

o

subject to :

v1X1
o þ vs1Xs

o þ vs2Xs
o þ v2X2

o ¼ 1

μ1Y1
j þ μ2Y2

j � v1X1
j � vs1Xs

j � vs2Xs
j � v2X2

j � 0, 8j
μ1Y1

j � v1X1
j � vs1X2

j � 0 8j
μ2Y2

j � vs2X2
j � v2X2

j � 0, 8j
0 � αi � 1, 8i
μ1; μ2ð Þ∈Ω1,

�
v1, vs1 , υs2 , v2

�
∈Ω2

μ1r , μ
2
r , v

1
i , v

2
i � δ

vs1i � αiδ, v
s2
i � 1� αið Þδ

ð16:6Þ
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The form of Ω2 depends upon how Ω2 is structured. Clearly, if Ω2 is the full

real space, as is the case when no additional restrictions are imposed on the input

multipliers, then (16.6) is a linear programming problem whose solution will

immediately yield a solution to the nonlinear model (16.5). In the case that Ω2 is a

proper subset of the real space, defined by restrictions on the input multipliers,

then (16.6) may or may not be linear. We consider various types of restrictions on

the vectors v, and their impact on the linearity of Ω2, hence model formulation

(16.6). Again, we point out that this model is similar to that developed by Beasley

(1995) for analyzing the efficiency of universities in terms of teaching and

research. In that case the same vector vs was used for both functions (teaching

and research), rather than allowing for different multipliers for vectors on the two

components. As a result, Beasley’s model does not have an LP equivalent.

16.2.6 Types of Constraints in Ω2

1. Absolute bounds on the components of v1; v2; vs1 ; vs2ð Þ:
In the case of upper and lower bounds of the form δ1 � vei � δ2, where e ¼ 1,

2, s1, s2,, then Ω2 will consist of linear restrictions since, for example, δ1 � vs1i
� δ2 becomes αiδ1 � vs1i � αiδ2.

2. Share of total virtual input occupied by a particular subset of inputs.

Here, we might have constraints of the form

vs1 αXsð Þ
vs1

�
αXs þ vs2 1� αð ÞXsð Þ � c:

Again, such constraints are linear and do not result in nonlinear restrictions inΩ2.

3. Ratio constraints

Restrictions of the cone-ratio variety, see Charnes et al. (1990), may result in

nonlinearities in Ω2, depending upon which components of the v -vectors are

compared. Specifically, cone-ratio restrictions that do not involve vs1 or vs2 will

result in linear constraints in Ω2, for instance the cone-ratio restriction v1i1=v
2
i2

� c can be rewritten as the linear constraint v1i1 � cv2i2 . Ratio constraints on the

multipliers of the shared resources will render Ω2 nonlinear; for example,

restrictions of the form

vs1i1
vs1i2

� c,
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are transformed to

αi1v
s1
i1

αi2v
s1
i2

� c
αi1
αi2

or
vs1i1
vs1i2

� c
αi1
αi2

,

in order to take account of the sharing of resources between sales and service

activities.

16.2.7 Special Cases

The extent to which both shared and dedicated resources exist can vary from one

situation to another. There can be special circumstances where, for example, there

are no dedicated resources and all resources are shared. This does not change the

general structure of the constrained DEA model (16.4), nor the requirement that

component measures must fall out of the results. One special case is worth noting,

namely, when no shared resources are present, and only resources dedicated to the

separate components are involved. In this situation, (16.4) is completely separable

in the sense that one can derive the individual component measures e1o and e
2
o by two

separate DEA analyses; one for sales and one for service. The overall aggregate

measure eao is then a convex combination of these two measures.

In the following section an application of this multi-component model to a set

of bank branches is provided. Due to the presence of ratio constraints of this latter

type in the example, the resulting model is nonlinear. In a practical setting with a

large number of bank branches to evaluate, solving a quadratic programming

problem for each would probably prove to be problematic. A linear relaxation of

this nonlinear model is discussed, and outputs from the example are presented.

Such a relaxation would prove to be more tractable in the situation where many

DMUs are present.

16.3 An Application

The model presented herein evolved from an earlier conventional DEA study

of branch efficiency in a major Canadian bank. A total of approximately

1,300 branches was involved, with the aim of the study being to identify benchmark

branches for purposes of establishing cost targets. While data on several hundred

different transactions is available from bank records, 13 of the major ones (some

grouped) account for approximately 80 % of branch workload, and were used

as outputs in the analysis. The only inputs considered in that study were
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personnel counts. Time studies were conducted previously on a small sample of

typical branches, and provide ranges on unit processing times for all transactions.

These ranges were the basis for the cone-ratio constraints on output multipliers for

the DEA runs performed. One result of the aforementioned study was that members

of the set of branches identified as being efficient, were those that were primarily

service oriented units – specifically those with low levels of activity on the sales

side while being very efficient in terms of routine counter transactions. The clear

desire of the organization was a methodology that could provide a measure of

performance on both components as well as an overall efficiency score. In this way

one can identify not only those branches that are underperforming, but also the

component that is weakest. The model discussed in Sect. 16.2 was applied to a

dataset of 20 branches out of the full set of bank branches. These were all chosen

from one district. For purposes of illustration only, a subset of transaction types was

chosen as outputs, and only personnel counts were used as inputs. The chosen input-

and output measures used are summarized in Table 16.1.

The relevant data for a 1 year period is displayed in Table 16.2. To provide for a

realistic picture of branch performance, a number of restrictions were imposed:

Type 1: Ratio constraints on multipliers
Ratio constraints of the forma � μr1=μr2 � bon output multipliers were imposed to

reflect processing times. Ratio constraints on the shared input multipliers were

applied to reflect the relative importance of the two inputs (support and other staff)

that are split between sales and service.

Type 2: Limitations on αi
It is generally the case that some bounds need to be imposed on the fraction αi of
shared resource i being allocated to service activities. For illustrative purposes the

range 1/3 � αi � 2/3 was chosen.

Type 3: Constraints on the ratios of total service inputs to total inputs.
Here constraints are imposed to restrict the portion of virtual inputs being allocated

to the service component. Recalling the definition of βj in Property 1, restrictions

were imposed on the range over which βj could vary. For present purposes the limits

1/3 � βj � 2/3 were applied. While the same limits were used for all branches j in
the example herein, it may be the case that different ranges would apply to different

classes of branches. Large urban branches may allocate different mixes of resources

to sales than small or mid-size branches.

Table 16.1 Input- and output measures used in an application of the model

Inputs Outputs

FSE # service staff MDP # counter level deposits

FSA # sales staff MTR # transfers between accounts

FSU # support staff RSP # retirement savings plan openings

FOT # other staff MOR # mortgage accounts opened
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16.3.1 Model Relaxation

The model presented in the previous section is nonlinear in the presence of ratio

constraints (Type 1) on shared input multipliers. Specifically, when we impose

constraints α � vs11 =v
s1
2 � b, these take the form

a
α1
α2

� vs11 α1
vs12 α2

� b
α1
α2

in the presence of the transformation discussed in Sect. 16.3. To render the model

more tractable, various linear relaxations are possible. One approach attempted

was iterative. Specifically, in the first stage all αi are assumed to be equal for any

given branch (i.e., αi ¼ d, a single variable), and the resulting linear problem was

solved to determine a starting solution. This yields an optimal solution (μ�ð1Þ,
v�ð1Þ,α

�
ð1Þ). Fixing μ ¼ μ�ð1Þ and v ¼ v�ð1Þ, the second stage derives a best set of

α�i (2) relative to the constants μ�ð1Þ and v�ð1Þ. In subsequent stages one alternately

fixes either α*(n) or the pair (μ�ðnÞ,v
�
ðnÞ), and optimizes (16.4) on the other. One of the

difficulties encountered with this method was that many iterations were required in

order to converge to a solution that was reasonably close to the optimum.

Table 16.2 Branch data for a selection of 20 bank branches

Service outputs Sales outputs Inputs Shared inputs

DMU MDP MTR RSP MOR FSE FSA FSU FOT

01 2.873 1.498 03.6 04.2 0.455 0.492 0.17 0.73

02 3.093 1.226 05.9 09.7 0.942 0.661 1.88 1.00

03 1.857 0.865 03.7 04.9 0.510 0.293 0.47 1.01

04 8.532 3.290 04.8 12.2 1.239 0.916 1.13 0.10

05 4.304 1.777 07.9 16.8 1.015 0.724 4.48 0.12

06 4.340 0.110 00.5 00.9 0.883 1.474 3.61 0.33

07 4.640 1.493 08.7 05.2 0.594 0.320 2.86 0.21

08 6.821 3.243 07.4 11.0 0.815 0.669 2.99 0.16

09 4.709 2.599 06.5 06.3 0.862 0.670 0.92 1.21

10 0.015 0.037 00.6 02.9 0.000 0.060 5.45 1.55

11 8.532 4.332 09.7 07.2 0.972 1.216 0.12 0.14

12 5.312 2.718 03.5 03.5 0.035 1.007 0.42 0.31

13 3.643 2.115 08.4 06.4 1.317 0.550 2.59 0.17

14 4.878 3.010 05.9 06.0 0.610 0.939 0.54 0.12

15 4.109 1.993 06.0 06.2 0.511 0.659 1.96 0.01

16 4.950 2.950 05.3 04.7 0.719 0.602 1.17 0.49

17 6.389 2.415 12.3 07.8 1.485 0.689 5.03 0.26

18 2.939 1.377 09.0 04.3 0.528 0.436 0.39 0.13

19 6.184 1.975 02.7 04.3 0.743 0.546 0.83 0.56

20 3.053 0.951 01.0 03.2 0.508 0.395 1.44 1.25
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An alternative and somewhat more practical method was investigated. This

amounted to choosing a grid of points in each αi range. In the present case, each

of the two αi ranged from 0.25 to 0.75 and the grid of five values 0.25, 0.35, 0.45,

0.65, 0.75 was used. Recall that α1 is the percent of “support staff” allocated to

service transactions and that α2 represents the split of “other staff”. This resulted in
5 � 5 ¼ 25 different combinations for (α1,α2).

Given the relatively small sample of DMUs in this particular example

(20 DMUs), the problem can easily be treated directly in its nonlinear form, and

was solved using a standard spreadsheet solver.

16.3.2 Results

A proper evaluation of data such as that in Table 16.2 is complicated by the fact that

the sales component is a two-level process as discussed earlier. The ranges for

average processing times, as reflected in the cone-ratio constraints imposed upon

the output multipliers, pertain only to the second of these two levels, namely the

transaction part of sales. These average times do not account for the level of effort
required to transact the sale. This effort would involve activities such as interaction

with customers, review of portfolios, etc. To compensate for the understated values
of the μj components, one must either scale up these values, or adjust (downward)

the resources (inputs) allotted to the sales component. The latter option becomes

problematic in that the portion of sales resources not allocated to the transaction

part of sales is left as unassigned inputs (i.e., they appear to not contribute to any of

the outputs). In the present situation, the former option of scaling up the sales output

multipliers was chosen. The scaling factor γ, defined as the ratio of the “Total Sales
effort” to the “Transaction effort” was based on an estimate provided by the

organization. The ranges provided for μj, namely a � μj � b, were replaced by

scaled ranges γa � μj � γb. The resulting aggregate, service and sales efficiency

scores are displayed in Table 16.3. It is noted that only one of the branches (#11), is

efficient in the aggregate sense, that is in both sales and service. Clearly, branches

may be efficient in one component only, such as is the case for branches #12 and

#18. The respective α1 and α2 values are also shown.

16.4 Measuring Multi Component Efficiency:

An Additive Model

16.4.1 Addressing Some Shortcomings

The model described above, when applied within the organization, did help to point

to areas where inefficiency existed within branches, and aided in setting targets for

improvements. Two suggestions from management for enhancement of perfor-

mance measurement arose from this application.

16 Multicomponent Efficiency Measurement in Banking 389



16.4.1.1 Non-volume Related Activities

The first issue has to do with the characterization of those activities surrounding the

sales function. The sales function within the bank environment can be viewed as

consisting of two sets of activities. The first set, and those examined in the previous

sections, would be classified as volume-related activities. These activities consist of
those tasks linked directly to sales products, after the decision to purchase has been
made. These would include the filing of documents, preparation of certificates, etc.

Such tasks are characterized by known time estimates, arrived at in the same

manner as is the case for service transactions.

The second set, the non-volume-related activities, may not be directly linked to

any specific product. Such activities would include responding to customer queries,

routine tasks such as reproduction of forms, reviewing customer portfolios, carrying

out computer searches, and so on. Support costs for print materials, computer

expenses, etc. would, as well, fall into this category.

16.4.1.2 Providing a Fair Balance Between Sales and Service

Performance Measures

The model of the previous section, because of the form of the objective function,

will often produce component measures e1j and e2j that differ from each other in an

Table 16.3 Efficiency

scores and optimal split

of shared resources

Aggregate Service Sales

α1 α2DMU eak e1k e2k
01 0.47972 0.52172 0.45354 0.72676 0.75000

02 0.40499 0.17158 0.52749 0.75000 0.25000

03 0.41946 0.23162 0.50145 0.75000 0.25000

04 0.74913 0.51905 0.91297 0.75000 0.64929

05 0.54472 0.17250 0.54472 0.75000 0.75000

06 0.14925 0.17663 0.03273 0.75000 0.66891

07 0.47257 0.28014 0.55697 0.75000 0.75000

08 0.58236 0.38787 0.70302 0.36427 0.29968

09 0.41178 0.36773 0.43157 0.25000 0.55019

10 0.07307 0.00570 0.09894 0.26281 0.68108

11 1 1 l 0.75000 0.66891

12 0.57384 1 0.29015 0.75000 0.74959

13 0.40464 0.17685 0.53991 0.53334 0.75000

14 0.70675 0.71811 0.70001 0.53334 0.75000

15 0.49252 0.36720 0.55537 0.75000 0.75000

16 0.44784 0.46087 0.43869 0.25000 0.54547

17 0.36581 0.19350 0.45445 0.25000 0.72687

18 0.85924 0.46010 1 0.25000 0.72687

19 0.49243 0.52389 0.37181 0.72682 0.72188

20 0.21444 0.26296 0.18235 0.72676 0.72224
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unreasonable way. Essentially, the model, in setting out to maximize the aggregate

score eaj will do so by maximizing one of the two component measures at the

expense of the other. A suggestion raised by management was to attempt to derive

measures with the idea of showing both sales and service performance in the best

light. To address the above two concerns, an additive form of the DEA model was

adopted.

16.4.2 The General Additive Model

In the next subsection we develop a dual-component DEA model for evaluating

both sales and transaction functions within bank branches. For purposes of that

development, the Pareto-Koopmans, or additive model structure is exploited. While

the additive model is seldom the structure of choice in most DEA analyses (one

generally utilizes one of the radial models), it is demonstrated that it’s structure is,

in fact, a general framework containing the radial models as special cases. Specif-

ically, any of the standard models are obtainable by way of constrained versions of

the additive model. For development purposes herein, it is convenient to approach

the standard models from this angle, rather than in the more conventional way.

It is instructive to examine both dual and primal forms of the additive model:

The Dual

min
X
i

νixio �
X
r

μryro � μo ð16:7aÞ

subject to:X
i

νixij �
X
r

μryrj � μo � 0, 8j ð16:7bÞ

μr � 1=yro , 8r ð16:7cÞ
νi � 1=xio ,8i ð16:7dÞ

It is noted that we have chosen lower bounds on the multipliers (16.1c) and

(16.7d) that are DMU-specific. This is usually referred to as the units invariant form
of the model. The “dual” of (16.7a) is the model:

The primal

max
X
i

s1i =xio
� �þX

r

s2r=yro ð16:8aÞ
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subject to:X
j

λixij þ s1i � xio , 8i, ð16:8bÞ

X
j

λjyrj � s2r � yro, 8r, ð16:8cÞ
X
j

λj ¼ 1, ð16:8dÞ

s1i , s
2
r , λj � 0, 8i, r, j: ð16:8eÞ

If we adopt the notation

θi ¼ 1� s1i =xio ,ϕr ¼ 1þ s2r=yro ð16:9Þ

and let θi ¼ 1� θi,ϕr ¼ ϕr � 1, model (16.8a, 16.8b, 16.8c, 16.8d and 16.8e)

becomes

max
X
i

θi þ
X
r

ϕr ð16:10aÞ

subject to :X
j

λixij þ θixio � xio ,8i ð16:10bÞ

X
j

λjyrj � ϕryro � yro , 8r ð16:10cÞ
X
j

λj ¼ 1 ð16:10dÞ

θi,ϕr, λj � 0, 8i, r, j ð16:10eÞ

This format is a particularly convenient way to view the additive model, as it

exhibits an immediate connection to other models. This form is related to the

“Russell Measure” as discussed in Fare and Lovell (1978). There, the objective

function takes the form

min R ¼
X
i

θi þ
X
r

1=ϕrð Þ
" #

= I þ Rð Þ,

where I, R are the numbers of inputs and outputs, respectively. Cooper et al. (1999)

discuss several variations on the additive model, as does Thrall (1996).

It is immediately clear that one can adopt a purely input oriented variation on the

additive model concept, by setting ϕr ¼ 0 for all r, and replacing constraints

(16.10b) and (16.10c) by
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X
j

λjxij þ θixio � xio ð16:11aÞ
X
j

λjyrj � yro ð16:11bÞ

This type of structure is discussed in Zieschang (1984). In the section to follow

we focus attention on the input oriented model. Furthermore, if we restrict the θi
further by requiring that they all be equal, then we have a structure equivalent to the

standard input oriented radial model of Charnes et al. (1978) (or at least Banker

et al. (1984)).

In the case that the input oriented approach is to be taken, in which case (16.11a)

and (16.11b) replace (16.10b) and (16.10c) in the primal problem (16.10a), the

equivalent modification to the dual problem (16.7a) is to replace the lower bound on

μr (constraint (16.7c) by μr � 0. As with the Russell measure, an appropriate

measure of performance in the input oriented additive model is

RI ¼
XI

i¼1

1� θi
� �

=I ¼
XI

i¼1

θi=I: ð16:12Þ

It is noted that in the restricted case where θi ¼ θ for all i (the BCC radial

model), RI ¼ θ. In any event, it will be the case that 0 � RI � 1, with RI ¼ 1 if all

θi ¼ 0; for example, in this case the pair (Y0,X0) is on the frontier or an extension.

Stated formally then, the pure input version of (16.10a, 16.10b, 16.10c, 16.10d

and 16.10e) is:

max
X
i

θi=I

subject to:X
j

λjxij þ θixio � xio , 8i
X
j

λjyrj � yro, 8r ð16:13Þ
X
j

λj ¼ 1

θi, λj � 0

Thus, the additive model can be viewed as a flexible mechanism for capturing

different aspects of efficiency. Admittedly, restricted versions of the model can

fail to be comprehensive in the sense discussed by Cooper et al. (1999). Obviously,

it will be true that restricting attention to the input side of the problem, for example,

can mean that improper envelopment can occur, as is well known in the radial

models.
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16.4.3 An Additive Model for Sales and Service Components

The notation of the previous section will be used in the current model, but with the

one addition, namely, to use two output multipliers μ21 for the per unit processing
times for volume-related and μ22 for non-volume related portions of the sales

outputs Y2j . We also chose in this second analysis to use the VRS DEA model,

hence defined output variables μ1o and μ2o for service and sales components.

An alternative to optimizing the aggregate efficiency measure as in the previous

sections, is to attempt to optimize, in some manner, both the service measure

e1o ¼ ν1X1
o þ νs1 αXs

o

� �� μ1Y1
o � μ1o ð16:14Þ

and sales measure1

e2o ¼ ν2X2
o þ νs2 1� αð ÞXs

o

� �� μ21Y2
o � μ22Y2

o � μ2o: ð16:15Þ

One approach is to minimize the maximum inefficiency, for example, we solve

the goal programming problem.

min d
subject to:
e1o � d, e2o � d
SeIj � SeOj � 0, SaIj � SaOj � 0,8j:

ð16:16Þ

In attempting to reduce the maximum inefficiency (d), the model has the

tendency to equalize the sales and service performance measures if feasibility

permits. In some respects this could be justified insofar as one can argue that a

branch will, or should, give equal importance to all components of its business. It

must be pointed out that additional restrictions may be imposed on the multipliers in

(16.16) (e.g., assurance regions as per Thompson et al. (1990)). For example, the

components of μ1 would be related to one another through limits arising from

branch time studies. For model development purposes in this section, however, we

avoid applying specific additional restrictions. This permits us to obtain primal and

dual efficiency measurement models, not tied to application-specific situations. The

inclusion of these in the models is examined in the next section dealing with the

application of the tools in a specific setting.

1In the context of the VRS structure, we let μ1o, μ
2
o denote service and sales variables, respectively.
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Formally, the dual form of the proposed model is given by (16.17).

min d

subject to:

� v1X1
o � vs1 αXs

o

� �þ μ1Y1
o þ μ1o þ d � 0

v1X1
j þ vs1 αXs

j

� �
� μ1Y1

j � μ1o � 0, 8j,

� v2X2
o � vs2

�
1� αð ÞXs

o

�þ μ21Y2
o

þ μ22Y2
o þ μ2o þ d � 0

v2X2
j þ vs2

�
1� αð ÞXs

j

�� μ21Y2
j

� μ22Y2
j � μ2o � 0, 8j,

v1i � 1= x1io :
��I1��� �

,8i∈I1,

v2i � 1= x2io :
��I2��� �

,8i∈I2,

vs1i � 1= xsio :
��Is��� �

, 8i∈Is,

vs2i � 1= xsio :
��Is��� �

, 8i∈Is,

μ1r � 0, 8r∈R,

μ21r � 0, 8r∈R,

μ22r � 0, 8r∈R,

ð16:17Þ

Note that we have introduced the lower bounds 1/x1o. jI1j, etc., to force 0 � d
� 1. Here, jI1j denotes the cardinality of the input set I1.

To deal with the nonlinearity created by the products ανs1 and (1 � α)νs2,
introduce the change of variables vs1 ¼ αvs1, and vs2 ¼ (1 � α) vs2.

Then, replace the two constraints νs1i � 1/(xsio. jIsj) and vs2j � 1/(xsiojIsj) by ανs1i
� α 1/(xsio. jIsj) and (1 � α) vs2j � 1/(xsiojIsj) � α1/(xsiojIsj).
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It is generally the case that constraints will be imposed on the αi; specifically, the
percent of any resource that can be allocated to the service component will be

required to be within some interval, namely

L1i � αi � L2i :

Model (16.17) can now be rewritten in the form:

ep ¼ max
X
i∈I1

s1i

(
= xsio

��I1��� �þX
i∈I2

s2i =
�
x2io

��I2���

þ
X
i∈Is

ss2i = xsio
��Is��� �þ L1i γ

1
i � L2i γ

2
i

� �)

subject to:X
k

λ1kx
1
ik � λ1nþ1x

1
io þ s1i � 0, i∈I1,

X
k

λ1kx
s
ik � λ1nþ1x

s
io þ ss1i � 0, i∈Is,

X
k

λ2kx
2
ik � λ2nþ1x

2
io þ s2i � 0, i∈I2,

X
k

λ2kx
s
ik � λ2nþ1x

s
io þ ss2i � 0, i∈Is,

�
X
k

λ1ky
1
rk � λ1nþ1y

1
ro � 0, r∈R1,

�
X
k

λ2ky
2
rk þ λ2nþ1y

2
ro � 0, r∈R2,

λ1nþ1 þ λ2nþ1 ¼ 1

�ss1i = xsio:
��Is��� �þ ss2i =

�
xsio:

��Is���
þγ1i � γ2i � 0,

γ1i , γ
2
i , λ

1
k , λ

2
k , s

1
i , s

2
i � 0:

ð16:18Þ
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The dual of this problem is given by

ep ¼ max
X
i∈I1

s1i

(
= xsio

��I1��� �þX
i∈I2

s2i =
�
x2io

��I2���

þ
X
i∈Is

ss2i = xsio
��Is��� �þ L1i γ

1
i � L2i γ

2
i

� �)

subject to:X
j

λ1j x
1
ij � λ1nþ1x

1
io þ s1i � 0, i∈I1,

X
j

λ1j x
s
ij � λ1nþ1x

s
io þ ss1i � 0, i∈Is,

X
j

λ2j x
2
ij � λ2nþ1x

2
io þ s2i � 0, i∈I2,

X
j

λ2j x
s
ij � λ2nþ1x

s
io þ ss2i � 0, i∈Is,

�
X
j

λ1j y
1
rj � λ1nþ1y

1
ro � 0, r∈R1,

�
X
j

λ2j y
2
rj þ λ2nþ1y

2
ro � 0, r∈R2,

λ1nþ1 þ λ2nþ1 ¼ 1

�ss1i = xsio:
��Is��� �þ ss2i =

�
xsio:

��Is���
þγ1i � γ2i � 0,

γ1i , γ
2
i , λ

1
j , λ

2
j , s

1
i , s

2
i � 0:

ð16:19Þ

Letting θ
1

i ¼ s1i =x
1
io, θ

2

i ¼ s2i =x
2
io, θ

s1

i ¼ s si =x
s
io, θ

s2

i ¼ ss2i =x
s
io, problem (16.19) can

be written as
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ep ¼ max
X
i∈I1

θ
1

i

(
=
��I1��þX

i∈I2

θ
2

i =
��I2��

þ
X
i∈Is

θ
s2
i =

��Is���þ L1i γ
1
i � L2i γ

2
i

� �)

subject to :X
j

λ1j x
1
ij � λ1nþ1x

1
io þ θ

1

i x
1
io � 0, i∈I1,

X
j

λ1j x
s
ij � λ1nþ1x

s
io þ θ

s1

i x sio � 0, i∈Is,

X
j

λ2j x
2
ij � λ2nþ1x

2
io þ θ

2

i x
2
io � 0, i∈I2,

X
j

λ2j x
s
ij � λ2nþ1x

s
io þ θ

s2

i x
s
io � 0, i∈Is,�

X
j

λ1j y
1
rj � λ1nþ1y

1
ro � 0, r∈R1,

�
X
j

λ2j y
2
rj þ λnþ1y

2
ro � 0, r∈R2,

λ1nþ1 þ λ2nþ1 ¼ 1,

� θ
s1

i =
��Is��þ θ

s2

i =
��Is��þ γ1i � γ2i � 0,

γ1i , γ
2
i , λ

1
j , λ

2
j , θ

1

i , θ
2

i � 0:

ð16:20Þ

It can be seen that (16.20) is a direct generalization of (16.13). The equivalent of

the R1 measure given in (16.12) is ep ¼ 1� ep:
It must be noted, of course that ep ¼ ed (the objective function value of (16.18))

is the maximum of the two components e1o , e20 , as per (16.2) and (16.3). the

separate sales and service measures would fall out as part of the analysis.

16.5 Application to Bank Branches

To demonstrate the application of the additive structure, we again examine data on

a sample of branches, with somewhat different outputs. Data on 20 branches is

displayed in Table 16.4. The outputs chosen were:
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Service:

TOTEMU – total number of menu account transactions

VISA – number of Visa cash advances

CAD – number of commercial deposit transactions

Sales:

RSP – number of RSP account openings

MORT – number of mortgages transacted

BPL – number of variable rate consumer loans transacted

In the current example, inputs were restricted to personnel only. We have not

included other operating expenses such as computers, rent, etc. Specifically, the

inputs were:

Service: FSE – total number of full time equivalent service staff

Sales: FSA – total number of full time equivalent sales staff

Shared: FSU – total number of full time equivalent support staff

FST – total number of full time equivalent “other” staff.

As discussed earlier, in applying the models described herein, attention was paid

to multiplier restrictions that reflect the relative weights to be placed on the various

outputs. Specifically, the components of μ1 and μ21 have been constrained in a ratio
sense to obey time limits on branch transactions. For example, the specified time

interval for a commercial deposit transaction is (in minutes) (1.2, 3.6); that for a

VISA cash advance is (0.8, 2.5). To reflect these limits in the multipliers μ12 and μ
1
3,

we require 0:8
3:6 � μ12=μ

1
3 � 2:5

1:2: Similar restrictions have been applied to the compo-

nents of μ21 to accommodate the time limits on the transaction portion of sales

outputs.

No such detailed information was obtainable on the non-volume portion of the

sales component. From interviews with branch consultants, it has been estimated

that 30–50 % of the sales effort lies with the non-volume activity, and the remainder

is the transaction or volume-related work. In general, this would imply that 3
7
� μ22

y2j =μ
21y2j � 1 for each branch k. To simplify matters, we choose here to take a more

restricted view, and constrain the ratio for each product i to be in this range.

Specifically, 3
7
� μ22i y2ij=μ

21
i y2ij � 1, implying that 3

7
� μ22i =μ21i � 1.

Table 16.4 displays the data on all inputs and outputs for a sample of 20 branches

of the bank. The result from applying model (16.18), (augmented by the multiplier

restrictions discussed above), are shown in Table 16.5. Recall that d represents the

maximum inefficiency associated with the two components (sales and service). The

corresponding efficiency measures es (sales) and eT (service) are displayed. It is

noted that d ¼ 1 � min{eT,eS}. As noted earlier, this model tends to force eT and eS
together, and in a large percentage of the cases, the two measures are equal.

Wehavenotdirectly addressed the issueof an aggregatemeasure of efficiencywhich

should be some combination of the two separate measures. Arguably, this aggregate

measure eA should be some average of the component scores. A reasonable candidate

for this might be of the form eA ¼ βeT + (1 � β)eS where β is the proportion of total
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resources consumed by the service component (dedicated service inputs together with

shared inputs).

In the application of model (16.18), the splitting variables α1 and α2 have each
been restricted to the range .25 � α�.75. This range would need to be established

by branch consultants in much the same manner that ranges on output multiplies

might be set by way of time study estimates.

16.6 Conclusions

This chapter has examined model structures for dealing with multi-component

efficiency measurement in a banking environment. The conventional DEA

approach, as applied in bank related studies, has tended to concentrate on a single

measure of performance for the DMU. Very often, however, there are multiple

components or sub units within the DMU whose individual performance is

required. The model provided herein provides a mechanism for developing multi-

component measures.
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Chapter 17

Evaluating Power Plant Efficiency:

Hierarchical Models

Wade D. Cook, D. Chai, J. Doyle, and R. Green

Abstract In many efficiency-measurement settings there are identifiable groups or

clusters of DMUs whose impacts should be captured in the analysis. In such

problem settings at least two issues need to be considered. The first is that there

may be both DMU-level and cluster-level factors each of which should be consid-

ered in their proper settings. The second issue is that we wish to identify both

DMU-specific and DMU-cluster efficiency measures. In the current chapter we

examine the problem of measuring efficiencies of a set of electric power plants,

where each plant consists of a group of power units, hence clustering or grouping

occurs naturally.
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17.1 Introduction

In many problem settings that potentially lend themselves to analyses via DEA,

there are identifiable groups or clusters of DMUs, whose impacts should be

captured in the analysis. One form of grouping has been examined by Banker and

Morey (1986), where the idea of categorical variables was discussed. Such vari-

ables allow for a comparison of any DMU with those in its own category and in

those categories below it. Categorical variables generally apply in those situations

where there is a natural nesting of the groups of DMUs. For example, in evaluating

a set of banks, if the banks are arranged in increasing order according to the sizes of

the towns or cities in which they are located, then categorical variables can be used

to represent this size component, and banks in a given population category will be

compared only to DMUs in this same category and to those in smaller population

categories.

In many situations, however, where there is a grouping phenomenon present,

categorical variables do not provide an appropriate structure for analysis. Consider

the problem of evaluating DMUs such as hospitals in different parts of the country.

Here, grouping may take several forms. First, in countries such as Canada or the

United States, there may be jurisdictional considerations, e.g., state or provincial

regulations can have budgetary or legislation implications for the hospitals. In

Canada, for example, health care is under provincial rather than federal jurisdiction.

Second, there may be different categories of medical units – extended care facili-

ties, convalescent units, surgical units, and so on. Clearly, these DMUs do not form

anything resembling a homogeneous set, making it necessary to address the group

elements of the problem. At least two issues must be examined in the context of

such problems:

Issue 1: There are both DMU (e.g., hospital) level factors and group (e.g., all

extended care facilities versus all surgical facilities) level factors which should

be dealt with in their proper settings;

Issue 2: We want not only to identify a measure of efficiency for each individual

DMU (hospital), but also for each identified group of units. How do hospitals

(as a group) in one jurisdiction compare, in an efficiency sense, to those in

another jurisdiction? Do extended care facilities perform differently than surgi-

cal facilities?

In the following sections we examine the problem of efficiency evaluation when

grouping of DMUs is a consideration. The discussion is based on the articles by

Cook et al. (1998) and Cook and Green (2005). In Sect. 17.2 we present a problem

setting where both individual DMU and group evaluation arise. The case illustrates

two types of grouping – hierarchical grouping and grouping on levels. Section 17.3
presents appropriate model structures for evaluating group and individual DMU

efficiency in a hierarchy. In particular we discuss a procedure for adjusting ratings

of DMUs at any given level in a hierarchy to reflect ratings of groups of those units

at levels higher up in the structure. In Sect. 17.4 we examine efficiency within
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groups on a level and develop a procedure for combining different efficiency ratings

for a given DMU. In Sect. 17.5 the models are illustrated through an analysis of the

application discussed in Sect. 17.2. In Sect. 17.6 the power plant evaluation

problem is re-examined using the multicomponent concepts presented in Chap. 6.

This arises from the need to deal with output shared among power units within a

grouping. Section 17.7 illustrates the concepts using data similar to that found in

Sect. 17.5. Conclusions and further directions follow in Sect. 17.8.

17.2 Hierarchical Structures: Power Plants

Ontario Hydro (now called Ontario Power Generation) is a crown corporation supply-

ing electric power to both domestic and foreign markets in the northern USA. Two

classes of power units or plants are managed under Hydro’s jurisdiction – nuclear and

thermal.While the number of nuclear units is relatively small, a total of 40 suchunits of

varying ages, capacities, fuel types and so on are operated by the corporation. These

latter will be the setting for the analysis of Sect. 17.5.

The standard measure of productivity used by management is the ratio of total

annual expenditure (operating, maintenance and administration) to total energy

produced, in megawatt hours per year. While it is the case that the total power

production is a principal output of the operation, and is certainly the most conve-

nient and readily available indicator of productive capability, management is

interested in other, related indicators as well. What may be missing in this simplistic

measure of productivity is a consideration of those factors that reflect manage-

ment’s skill. To a great extent, a power unit’s efficiency measure should reflect the

quality of maintenance that keeps it operating, and the abilities of management in

charge of that maintenance. At least two types of other outputs should be consid-

ered, namely outages and deratings.
An outage is a situation in which a unit is shut down, hence it is not generating

electric power. Types of outages include:

• planned outage, which is scheduled downtime (usually for major overhauls);

• maintenance outage, a form of scheduled down time, but for more minor, i.e.,

routine maintenance;

• forced outage, which is unscheduled and generally caused by equipment failure,

environmental requirements, or other unforeseen incidents. There is generally

some prior warning for this type of shutdown, and some delay is possible;

• sudden outage, which is a forced outage with no prior warning.

While it can be argued that operating hours essentially capture all forms of

outages, it must be recognized that there is a difference between taking a unit out of

service on a scheduled basis at non peak times, versus sudden brownouts or

blackouts. The latter ignite public opinion, interrupt business operations, and

generally reflect negatively on the organization. Thus, such outages should play a

direct role in any measure of efficiency.
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A derating is a reduction in unit capacity, where the operation may, for a number

of reasons, operate at only a fraction (e.g., 75 % or 50 %) of its available (full)

capacity. Breakdowns in coal belts, pulverizers or rollers (of which there are several

operating in any plant) is a primary cause of such forced deratings. Environmental

restrictions, in particular SO2 emissions, can limit the extent to which a plant can

operate at full capacity. Furthermore, such restrictions will often apply to a group of

units (e.g., at a given geographical location).

As with outages, there are several forms of deratings, some of which are beyond

the control of management and which have nothing to do with maintenance quality

(e.g., grid or transmission network load restrictions), while others are a clear

reflection of maintenance quality, such as equipment failures.

As with outputs, inputs should include several factors. In addition to expendi-

tures, factors such as plant age and available but not operating time (ABNOT)

should play a role as well. The latter factor (ABNOT) is the time during which the

plant is able to operate, but for reasons beyond managements control (such as SO2

restrictions), the plant is not running.

Grouping is a natural phenomenon here. Plants can be grouped by size or

capacity, by geographical location, and so on. It is this necessity to view problems

from a grouping and hierarchical perspective that we examine herein.

17.3 Models for Evaluating Plant Hierarchies

The power plant application discussed in the previous section provides an example

of what might be termed a pure hierarchy. The basic DMU is the power unit. These

40 units are naturally clustered into eight plants.

17.3.1 The Two-Level Hierarchy

For simplicity of presentation in this subsection we assume there are only two levels

in the hierarchy. Let the level 1 (power units) vectors of inputs and outputs be

denoted X(1), Y(1) respectively, with v(1), μ(1) representing the appropriate mul-

tipliers in the input orientation version of the CCR (Charnes et al. 1978) model.

In the normal case where we are interested only in a level 1 (power unit) analysis

of efficiency, the “multiplier” form of the CCR model is:

max μT 1ð ÞYo 1ð Þ ð17:1aÞ

subject to:

vT 1ð ÞXo

�
1
� ¼ 1

ð17:1bÞ

408 W.D. Cook et al.



μT 1ð ÞYj 1ð Þ � vT 1ð ÞXj 1ð Þ � 0, jεJ ð17:1cÞ

μ 1ð Þ, v 1ð Þ � ε, ð17:1dÞ

where J is the set of DMUs under consideration. Suppose, however, that we want, in

addition, to evaluate the relative efficiencies of the eight plants into which the

40 units are grouped. Clearly, one approach might be simply to evaluate each DMU

relative to the entire set of 40 units as indicated above, (hence J would represent the
entire set of power units), and use the average of the ratings for those units within

any plant as representative of the standing of that plant. While it is difficult to argue

that such an approach is wrong, it does possess some undesirable aspects. First,

those factors that apply at the group level (level 2) are not represented (or at least

not represented appropriately) in level 1. Second, and as indicated above, it would

seem more appropriate at level 1 to evaluate a DMU relative to those DMUs in the

same group only. In this case, J in (17.1c) above would refer to those units in a

specific plant, whereupon, those factors which distinguish the groups (plants) can

be omitted from the level 1 evaluation, and can more properly be applied at level

2. If this is done, then averaging within a plant does not help at all to understand the

relative standings of the level 2 DMUs.

An alternative approach for evaluating efficiency at both levels 1 and 2, is to

treat the level 2 groups themselves as decision making units, using a combination of

the group-specific factors, and factors which emerge from level 1. The use of level

1 factors at level 2 may involve some form of aggregation as will be discussed in the

next section.

For notational purposes define

K – the number of groups of level 1DMUs, henceK is the number ofDMUs at level 2;

k – a subscript representing a DMU at level 2;

jk – a subscript representing a level 1 DMU that belongs to group k;

Ykjk 1ð Þ,Xkjk 1ð Þ – level 1 outputs and inputs;

Y1k(2), X
1
k(2) – those level 2 outputs and inputs that are aggregates of factors that are

used to evaluate level 1 DMUs;

Y2k(2), X
2
k(2) – those outputs and inputs used at level 2 that distinguish the K groups,

and which were not used at level 1.

Let ν(1), μ(1) and ν(2), μ(2) denote the level 2 multipliers to be associated with

X1
k(2), Y

1
k(2) and X2

k(2), Y
2
k(2) respectively. It is noted that ν(1), μ(1) are the same

multipliers as used in level 1, as will be explained below.

In performing the analysis within a general model framework we make the

following assumptions:

(a) When the “DMU” under consideration is a level 1 unit, we want to ensure that it

is evaluated only relative to those units in the same group, hence DMUs in other

groups should be excluded or disengaged from the constraint set;
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(b) Level 2 DMUs (groups) should not interfere with, hence should be disengaged

from, level 1 analyses;

(c) Level 1 DMUs should be included or engaged in the analysis of level 2 units.

Assumption (c) above is invoked with the argument that multipliers

ν(1), μ(1) when applied at level 2 should also be feasible when applied to any

level 1 units within the groups under consideration. Specifically, since the effi-

ciency of a given group i at level 2 should be related to the efficiencies of that

group’s members, then the multipliers ν(1), μ(1) should be such that when applied

to each member of the group, the ratio for that member should not exceed unity.

To accommodate the above considerations we propose the following general

model. When applied to a level 2 DMU, the model would take the form:

maxeo ¼ μT 1ð ÞY1
0 2ð Þ þ μT 2ð ÞY2

0 2ð Þ ð17:2aÞ

subject to:

vT 1ð ÞX1
0

�
2
�þ vT

�
2
�
X2
0

�
2
�þMw

�
2
� ¼ 1

ð17:2bÞ

μT 1ð ÞY1
k

�
2
�þ μT

�
2
�
Y2
k

�
2
�� vT

�
1
�
X1
k

�
2
�

�vT 2ð ÞX2
k

�
2
�� w

�
2
� � 0 k ¼ 1, . . .K

ð17:2cÞ

μT 1ð ÞYkjk 1ð Þ � vT 1ð ÞXkjk 1ð Þ � wk 1ð Þ � 0, jkεJk, k ¼ 1, . . . ,K ð17:2dÞ

w 2ð Þ � wk 1ð Þ � 0, k ¼ 1, . . . ,K ð17:2eÞ

μ 1ð Þ, μ 2ð Þ, v 1ð Þ, v 2ð Þ � ε ð17:2fÞ

wk 1ð Þ,w 2ð Þ � 0, 8k ð17:2gÞ

When applied to a level 1 DMU, the model would take the form

maxe0 ¼ vT 1ð ÞY0 1ð Þ ð17:2a0Þ

subject to:

vT 1ð ÞX0

�
1
�þMw0

�
1
� ¼ 1

ð17:2b0Þ

(17.2c, 17.2d, 17.2e, 17.2f, and 17.2g)

Here M denotes a large positive number. In (17.2d), Jk denotes the index set of

level 1 DMUs in group k (plant k). The notation Y10(2) in (17.2a) denotes the type

1 output (an aggregate of level 1 outputs) used at the second level and for a

particular DMU k ¼ " 0. ". In (17.2a0) the notation Y0(1) denotes the output at

level 1 for a particular DMU and group ( jk,k) ¼ " 0. " The variables wk(1), w
(2) are introduced to include or exclude certain DMUs from the analysis. In

reference to the above discussion, these are referred to as engagement variables.
It is noted that in (17.2b0), w0(1) refers to the particular level 2 groups k ¼ " 0 " in
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which the DMU under evaluation lies at the time. So, for example, all DMUs in a

particular group k will be assigned the same variable w0(1).

In reference to assumptions (a), (b) above, we prove the following theorem:

Theorem 17.1 In the evaluation of any level 1 DMU jk0εko, only DMUs within the

same group (k0) as that DMU will be engaged. All other level 1 groups and all level
2 DMUs are disengaged.

Proof Only the particular group k ¼ " 0 " in which the level 1 DMU under

consideration lies, has its engagement variable (w0(1)) involved in constraint

(17.2b0). This variable will be forced to zero, otherwise the objective function

value of (17.2a0) will equal zero. Furthermore, since all other engagement variables

are free to assume the most favorable values possible (from the perspective of the

DMU under evaluation), then all wk(1) (except for w0(1)) and w(2) will assume

values large enough to render redundant all constraints in (17.2c), as well as all

constraints in (17.2d) corresponding to those Jk, k 6¼ " 0. " Since constraints

(17.2e) are also redundant, the result follows.

Q.E.D.

From this theorem it follows as well that when a level 2 DMU is under

evaluation, the engagement variable w(2) will be forced to zero (hence engaging
all level 2 DMUs). By virtue of constraints (17.2e), all wk(1) ¼ 0 as well, hence

engaging all level 1 DMUs, thereby verifying assumption (c).

17.3.2 Efficiency Adjustments in a Hierarchy

In Sect. 17.5 we present an analysis of the efficiencies of power plants and groups of

plants. One issue that arises in such multi level analyses has to do with adjustments in

DMU efficiencies at one level to account for scores assigned at a higher level. Specif-

ically, the scores achieved by individualDMUs (e.g., level 1) aremeasured only against

others in the same group. To adjust these to reflect the standings of the groups

themselves, it is necessary to merge the scores at these two levels in some reasonable

manner. We describe a three step procedure to bring about the desired adjusted ratings.

Step 1: (Remove inter-group noise)
Scale the level 1 ratings by dividing each rating ekjk in group k by the average of the

group k ratings. Specifically, define

f kjk ¼ ekjk=ek where ek ¼
X
jkεJk

ekjk

 !.��Jk��

where jJkj denotes the cardinality of Jk. Since the level 2 ratings are intended to

account for any inter-group differences, this transformation is intended to remove
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any differences (noise) among the groups that are not level 2 – related. See Property

17.2 below and explanation following it.

Step 2: (Introduce level 2 adjustment)
Adjust the scaled ratings f kjk by multiplying them by the level 2 (group) ratings ek.

That is, define

gkjk ¼ f kjk � ek:

Step 3: (Adjust to [0,1] scale)
Further adjust the step 2 ratings gkjk to ensure that the maximum level 1 rating is

unity. Specifically, we want to adjust the gkjk ratings to the form

hkjk ¼ gkjk � R

where R is such that hkjk � 1, and maxk, jk hkjk
� � ¼ 1: Hence R ¼ mink, jk 1=gkjk

n o
:

The final adjusted ratings therefore have two important properties:

Property 17.1 All level 1 ratings hkjk � 1, with at least one hkojko ¼ 1:

Property 17.2 The averages of the ratings hk within the K groups are such that
hk1
hk2

¼ ek1
ek2
:

The latter property captures the fact that the final adjusted ratings not only

represent the standing of DMUs (e.g., power units) within their own group

k (plant), but also reflect their standing relative to DMUs in other groups. That is,

if the rating ek1 of one group k1 is, for example, only 80 % of the rating ek2 of another

group k2, then the averages for the DMUs in the two groups, namely hk1 and hk2 ,
have this same property.

17.3.3 The Multi Level Hierarchy

The model (17.2a, 17.2b, 17.2c, 17.2d, 17.2e, 17.2f, and 17.2g) can be generalized

to the case of an L-level hierarchy. We assume that the outputs and inputs used at

any level ‘ are aggregates of ‘ � 1 level factors together with any additional factors

that distinguish the groups at the ‘ th level. We introduce the following notation:

‘ – subscript representing a level in an L-level hierarchy;

K‘ – the number of DMUs at the ‘ th level;

k‘ – a subscript representing a DMU at level ‘;
jk‘ – a subscript representing a DMU at level ‘ � 1 that lies within a group k‘ (that

is, within a DMU k‘ at the next level up in the hierarchy);

Jk‘ – the subset of DMUs jk‘ at level ‘ � 1 that lie within group k‘;
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Ym
k‘jk‘

‘� 1ð Þ,Xm
k‘jk‘

‘� 1ð Þ
n o‘�2

m¼1
– those outputs and inputs used at level ‘ � 1 that

are aggregates of factors used for analysis of DMUs at lower levels m � ‘ � 2.

The subscript k‘ refers to the particular ‘ � 1 level group (i.e. ‘ th level DMU),

and jk‘ to a DMU within that group;

Y‘�1
k‘jk‘

‘� 1ð Þ,X‘�1
k‘jk‘

‘� 1ð Þ – those outputs and inputs at level ‘ � 1 that distinguish

the DMUs at that level, and which were not used at any lower level;

wk‘ ‘� 1ð Þ – denotes the engagement variables applicable at level ‘ � 1. These

distinguish the groups at this level.

w(L ) – denotes the engagement variable applicable at level L.

The model, when applied at the ‘ � 1 level then takes the form:

max eo ¼
X‘�1

m¼1

μT mð ÞYm
0 ‘� 1ð Þ ð17:3aÞ

subject to :X‘�1

m¼1

νT mð ÞXm
0

�
‘� 1

�þMw0

�
‘� 1

� ¼ 1
ð17:3bÞ

XL
m¼1

μT mð ÞYm
j Lð Þ �

XL
m¼1

νT mð ÞXm
j Lð Þ � w Lð Þ � 0, j ¼ 1, . . . ,KL ð17:3cÞ

X‘�1

m¼1

μT mð ÞYk‘jk‘
‘� 1ð Þ �

X‘�1

m¼1

νT mð ÞXk‘jk‘
‘� 1ð Þ � wk‘ ‘� 1ð Þ � 0,

‘ ¼ 2, . . . ,L, k‘ ¼ 1, . . . ,K‘, jk‘εJk‘ ð17:3dÞ

w Lð Þ � wkL L� 1ð Þ � 0, kL ¼ 1, . . . ,KL ð17:3eÞ

wk‘ ‘� 1ð Þ � wk‘�1
‘� 2ð Þ � 0, k‘ ¼ 1, . . . ,K‘, k‘�1εIk‘ ð17:3fÞ

μ mð Þ, ν mð Þ � ε, m ¼ 1, . . . , ‘� 1 ð17:3gÞ

where Ik‘ is comprised of those sets of DMUs at level ‘ � 2 that make up the k‘ th
set at level ‘ � 1.

As with the 2-level problem discussed earlier, the engagement variables wk‘

‘� 1ð Þact to include or exclude sets of DMUs as the analysis proceeds. With regard

to adjustments to ratings, a similar procedure could be applied here by starting at the

top level L in the hierarchy to bring about alterations to the ratings at level L�1.

Then, apply these adjusted ratings to alter the L�2 level ratings, and so on.
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In this subsection we have examined the problem of evaluating DMUs and

groups of DMUs which appear in the form of a hierarchy. In the following

subsection this idea is extended to look at the alternative groupings of DMUs on

the same level.

17.4 Grouping on Levels

The power plant application discussed above is a prime example of a pure hierarchy

in that DMUs are grouped at each level according to a single attribute – in this case

a jurisdictional or geographical attribute. In Sect. 17.5 we analyze the efficiency of

the set of power plants and groupings thereof. In this case, the problem of efficiency

evaluation seems to invite a 2-level analysis, in that plants can be grouped by a

number of different attributes – capacity, geographical location, fuel type and so

on. All these factors can be judged as level 2 attributes, although admittedly one can

conceive of very complex mixes of these. One could, for example, group plants at

the second level according to geographical location, then at a 3rd level group

locations by capacity, assuming, of course, that only one capacity of plants exists

at a given location. In the present example, this is not exactly the case. Of course, if

at the third level we attempted to group by capacity, regardless of the location, then

the hierarchical structure is destroyed. Groups at one level would be broken apart

when going to the next level.

In the following subsection we will consider grouping only at one level (level

2 in the case of the power plants), and according to multiple attributes. If we wish to

have plants at level 1 evaluated strictly within the groups that will form the DMUs

at level 2, it would appear that multi attribute grouping implies simply replicating

model (17.2a, 17.2b, 17.2c, 17.2d, 17.2e, 17.2f, and 17.2g) as many times as there

are attributes. Suppose, for example, that we wish to group plants in two ways:

(1) geographical and (2) according to capacity. The most practical approach would

appear to be to run this model once for each type of grouping. This would lead to

two sets of efficiency ratings. While an elaborate model with engagement variables

can easily be formulated, there would seem to be no practical advantage in doing so.

17.4.1 Deriving an Aggregate Rating

The issue of grouping on a level according to a number of different attributes gives

rise to the problem of how to derive some form of overall rating for a DMU.

Suppose, for example, that plants are grouped by geographical location. A given

plant j, when evaluated in a DEA manner, will be compared to other plants within

the same group (at the same location). The number of other plants in that group and

the efficiencies of those other plants will, of course, influence the score that

j receives. When evaluated according to some other grouping attribute such as
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capacity, plant jwill, in all likelihood, receive a different score. The problem then is

how to view the aggregate or overall standing of j, given the different ratings for

j that arise out of this multi attribute analysis.

One approach to this problem of deriving an overall efficiency measure is to

introduce an importance multiplier on the i th attribute. To formalize this, assume

there are I attributes, hence I different grouping types, and let eij denote the

efficiency rating received by DMU j when viewed in terms of the grouping created

by the i th attribute. Let αi denote the weight or importance to be accorded attribute

iεI. The αi may either be supplied weights or may need to be determined (discussed

below). Using these multipliers, we define the aggregate efficiency of DMU j to be:

ej ¼
X
iεI

αieij

In the event that the αi are decision variables, there may or may not be

information available as to appropriate values for these variables. In any event,

and in the spirit of general DEA, one approach to deriving an aggregate rating for

DMU jo is to determine {αi} through the optimization procedure

e∗jo ¼ max ejo ¼ max
XI
i¼1

αieijo ð17:4aÞ

subject to :XI
i¼1

αieij � 1, jεJ
ð17:4bÞ

α ¼ αi, . . . αIð ÞεΦ, ð17:4cÞ

where Φ defines the available information on the {αi}. Constraints (17.4b) bound
the problem by requiring that the aggregate efficiency for each DMU not exceed 1.

One minimal set of restrictions on the αi might be an ordinal ranking of the

attributes. Suppose, for example, that the set of attributes consist of:

(a) geographical location,

(b) capacity,

(c) age,

(d) fuel type used.

Furthermore, assume that these attributes can be prioritized in order of impor-

tance to the organization (the utility company). With no loss of generality, assume

that the most important attribute is geographical location, followed by capacity,

then age, and finally fuel type. In notational terms, this would imply that α1 > α2
> α3 > α4. Introducing an infinitesimal ε, Φ may then be defined in this case by

Φ ¼ α ¼ α1; . . . ; αIð Þ��αi � αiþ1 � ε, i ¼ 1, . . . , I � 1; αI � ε
� � ð17:4dÞ
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The idea of ordinal relations among multipliers in DEA was discussed in Ali

et al. (1991) and Golany (1988). A somewhat similar structure appears in Cook,

Kress and Seiford (1996) in the context of incorporating ordinal data within the

DEA framework. Clearly, problem (17.4a, 17.4b, 17.4c, and 17.4d) is a set of

J linear problems with each yielding a best or most efficient aggregate evaluation

for the DMU jo under consideration. One possible drawback to this approach is the

fact that a different set of {αi} will arise from each of the J optimizations. This, of

course, can be a general criticism of the DEA approach.

17.4.2 A Common Set of Multipliers

If it is desirable to obtain a single or common set of multipliers {αi}, one approach
to use in this particular instance is to determine the largest value of ε for which a

feasible set of αi exists. Specifically, solve the single optimization problem:

ε∗ ¼ maxε ð17:4eÞ

subject to (17.4b, 17.4c, and 17.4d)

The set of αi that are optimal in this problem provide a means of evaluating all

DMUs on a common basis. The essence of this approach is that the minimum extent

to which we distinguish or discriminate between the importance measures (αi)
attached to the various criteria is maximized.

17.4.3 Multiple Rankings of Attributes

In the above it is assumed that an overall single rank ordering of the attributes in I is
at hand. This ordering is intended to express the relative importance of the various

grouping mechanisms (geographical location, capacity, etc.). In some situations it

may be necessary to ask the question “importance in what sense?” If environmental

considerations are paramount, the above rank ordering which places geographical

location first in importance may be appropriate. On the other hand, if new technol-

ogy for powering the plants (new fuel types, e.g.,) is an issue, then the attribute ‘fuel

type’ used may rank in first place. Therefore, multiple rankings of the attributes

may be in order.

To formalize this concept, assume that Q ranking vehicles or mechanisms are to

be considered. Let αqi denote the importance or weight to be given to attribute iεI
when viewed from the perspective of ranking vehicle qεQ. Furthermore, let the

decision variable βq represent the weight to be given to vehicle q. While various

types of restrictions could be imposed on the βq, we assume here that only positivity

constraints are imposed, i.e. βq � ε for all q. If a rank ordering on the αqi is now
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imposed relative to each q, then Q feasible regions {Φq}q=1
Q would be defined.

Specifically, define

Φq ¼ αq ¼ αq
1 ; α

q
2 ; . . . ; α

q
I

� �
αq
i‘
� αq

i‘þ1
� ε, ‘ ¼ 1, . . . , I � 1; αq

iI
� ε

n o
, ð17:4fÞ

where αq
i‘
denotes the ‘ th ranked attribute from the point of view of the q th ranking

vehicle. Following the logic of problem (17.4a, 17.4b, and 17.4c), an aggregate

efficiency rating for DMU jo could then be determined by solving the J problems:

e∗jo ¼ maxejo ¼ max
XQ
q¼1

XI
i¼1

βqα
q
i eijo ð17:5aÞ

subject to :XQ
q¼1

XI
i¼1

βqα
q
i eij � 1, jεJ ð17:5bÞ

αq ¼ αq
1 ; . . . ; α

q
I

� �
εΦq, q ¼ 1, . . . ,Q: ð17:5cÞ

βq � ε, q ¼ 1, . . . ,Q ð17:5dÞ

Problem (17.5a, 17.5b, 17.5c, and 17.5d), unlike the earlier single ranking

vehicle formulation, is nonlinear with the product of the βq and α
q
i . This formulation

can be transformed to an equivalent linear structure, however, through a simple

change of variables. That is, define

δqi ¼ βqα
q
i ,

and note that the constraints αq
i‘
� αq

i‘þ1
� ε and αq

iI
� ε can be replaced (through

multiplication by βq on both sides of the inequality) by δqi‘ � δqi‘þ1
� εβq, and δqiI

� εβq: Problem (17.5a, 17.5b, 17.5c, and 17.5d) is then equivalent to the linear

problem:

e∗jo ¼ maxejo ¼ max
XQ
q¼1

XI
i¼1

δqieijo ð17:6aÞ

subject to :XQ
q¼1

XI
i¼1

δqieij � 1, jεJ ð17:6bÞ

δqi‘ � δqi‘þ1
� εβq � 0, ‘ ¼ 1, . . . , I � 1; q ¼ 1, . . . ,Q ð17:6cÞ

δqiI � εβq � 0, q ¼ 1, . . . ,Q: ð17:6dÞ
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That is, given an optimal solution (δ∗iq,β
∗
q ) to (17.6a, 17.6b, 17.6c, and 17.6d),

then αq∗i ¼ δ∗iq/β
∗
q and β∗q constitute an optimal solution to (17.4f, 17.5a, 17.5b,

17.5c, and 17.5d), due to the fact that all δ∗iq, β
∗
q are strictly positive.

In certain situations the ranking vehicles referred to above may take the form of

opinions offered by a set of Q voters (e.g. managers). That is, the relative impor-

tance of the I grouping attributes may be a matter of opinion, hence model (17.5a,

17.5b, 17.5c, and 17.5d) (and therefore (17.6a, 17.6b, 17.6c, and 17.6d)) is intended

to derive a rating which takes into consideration the various opinions (rankings)

offered.

Clearly the earlier comments regarding a common set of weights applies in the

present situation as well.

In the following section an application is presented which illustrates some of the

model structures presented in this and the previous section.

17.5 Efficiency Analysis of Power Plants: An Example

Earlier a description was given of a problem setting involving thermo generating

plants, wherein it was argued that efficiency should be viewed in terms of a set of

outputs and inputs. Table 17.1 shows the number of thermal units operating at each

of eight locations, two of which (Plant 4(1) and Plant 7(1)) are each broken down

into two groups for a total of ten groupings. Given also are the construction dates,

fuel types and capacities in megawatt hours.

In the analyses of the plants, two levels were examined, namely, the individual

power unit level (level 1) and a second level where plants are grouped in various

ways. Two forms of analyses were carried out:

Table 17.1 Thermal plants

Location # units Age range

Fuel

Size (MWH)Utilized

Plant 1 8 1971–1972 U.S. Bit. Coal

& Western Cdn. Coal 500

Plant 2 8 1968 U.S. Bit. Coal 300

Plant 3 4 1970 U.S. Bit Coal 500

Plant 4 (1) 1 1964–1966 U.S. Bit Coal 100

Plant 4 (2) 2 1974–1975 Liquid Bit 150

Plant 5 4 1974 Oil 500

Plant 6 1 1978 Lignite Bit. Coal 200

Plant 7 (1) 4 1956 Gas/Coal 100

Plant 7 (2) 4 1960 Gas/Coal 200

Plant 8 4 1952 U.S. Bit. Coal 50
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1. a hierarchical analysis at the two levels, where plants are grouped in level 2 by

location;

2. analysis of efficiency on a level where, with different types of grouping, it is

necessary to deal with several ratings for a given DMU.

Table 17.2 displays the raw data for the 40 plants under analysis.1 Shown are

three outputs and two inputs. These outputs and inputs are defined as follows:

Outputs

• OPER – a function of equivalent full capacity operating hours. This factor

accounts for the fact that when operating at less than 100 % capacity (e.g. if

the unit is derated to 50 % capacity), the operating hours during this period are

prorated. To bring the scale of values for the units of measurement within the

range of the scales used for other factors, we apply a scaling factor of 1
10
,

i.e. OPER ¼ 1
10
� full capacity operating hours.

• OUT – a function of the number of forced and sudden outages.

OUT ¼ N�K (# forced outages + # sudden outages). Sudden and forced out-

ages, as unscheduled shutdowns of operations, are often consequences of equip-

ment failure. Again, to bring scales into line we arbitrarily choose N ¼ 200,

K ¼ 10.

• EQDER – a function of forced deratings caused by equipment failure.

EQDER ¼ N�K (# equipment related deratings), with N ¼ 200 and K ¼ 10 as

above.

Since on the output side, any measure used must be such that bigger is better,

one cannot directly take outages as an output. To achieve the bigger is better

condition, we subtract outages from some constant to create a proper scale

measure. The value 200 has been chosen arbitrarily, but at the same time to

yield “OUT” values that are in line with the scales used for other factors. Some

sensitivity analyses were done relative to this parameter (200), and the particular

value chosen was found to have very little effect on the final relative efficiency

outcomes.

Inputs

• MAINT – the total maintenance expenditure (labor + materials) in thousands of

dollars.

Clearly, we could separate this into monetary inputs, but for purposes here we

aggregate the two amounts into one figure.

• OCCUP – a function of total occupied hours, that is

OCCUP ¼ 1
10
(Total hours available – available but not operating hours).

In evaluating the ten level 2 DMUs (where, for example, the group of plants at

Plant 1 is taken as a DMU), the averages of the level 1 DMUs make up the first

three outputs and the first two inputs. For example, the average of the ten

1 It is pointed out that this is sanitized data for illustration purposes only. It in no way reflects the

actual operating positions of the various plants.

17 Evaluating Power Plant Efficiency: Hierarchical Models 419



Plant 1 operating hours figures is 582. In addition to these aggregated figures,

two further outputs, ENDER (a factor for environmental deratings) and planned

capacity were used for the level 2 analyses. As well, a third input, average year

of construction, was utilized. The data for the level 2 analyses is shown in

Table 17.3.

Table 17.2 Outputs

and inputs for unit level

analyses Group Unit

Outputs Inputs

Oper Out Eqder Maint Occup

Plant 1 1 573 95 110 538 895

2 560 138 120 290 770

3 637 151 150 386 886

4 685 139 160 290 760

5 542 157 130 343 721

6 520 100 120 470 810

7 531 122 60 439 820

8 511 135 160 293 888

Plant 2 1 521 102 93 440 771

2 634 93 102 324 780

3 610 86 75 378 825

4 538 95 106 380 815

5 591 116 119 241 880

6 650 123 105 141 766

7 621 107 91 355 823

8 686 125 110 270 750

Plant 3 1 620 120 130 350 750

2 550 81 95 630 770

3 525 105 125 495 860

4 580 125 106 345 800

Plant 4(1) 1 430 105 140 190 810

Plant 4(2) 1 560 110 105 280 770

2 510 125 95 180 820

Plant 5 1 650 170 140 300 7,000

2 550 120 120 275 800

3 580 160 110 447 650

4 640 110 130 370 720

Plant 6 1 480 95 125 228 880

Plant 7(1) 1 320 70 110 230 790

2 250 60 110 220 790

3 370 100 140 320 840

4 280 90 100 280 810

Plant 7(2) 1 520 120 100 281 750

2 430 100 140 302 850

3 470 110 150 227 770

4 410 80 110 254 825

Plant 8 1 475 100 120 179 750

2 560 150 120 143 800

3 510 120 110 114 750

4 425 140 90 172 820
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17.5.1 Hierarchical Analysis

Table 17.4 displays the outcomes from the hierarchical analysis. Here, power units

have been grouped by location (Plant 1, Plant 2, . . ., Plant 8), and have been

analyzed using the hierarchical DEA model (17.2a, 17.2b, 17.2c, 17.2d, 17.2e,

Table 17.3 Group level data

Group

Outputs Inputs

Oper. Out. Eqder Ender Cap Maint. Occup Yr. const.

Plant 1 582 130 126 125 500 381 818 71

Plant 2 606 106 100 147 300 317 801 68

Plant 3 569 103 108 121 500 455 795 70

Plant 4(1) 430 105 140 111 100 190 810 65

Plant 4(2) 420 105 100 125 150 350 815 75

Plant 5 605 140 125 141 500 348 717 74

Plant 6 480 95 125 117 200 348 800 78

Plant 7(1) 305 80 115 110 100 263 808 56

Plant 7(2) 458 103 125 116 200 266 799 58

Plant 8 493 128 110 135 50 152 780 52

Table 17.4 Efficiency scores – hierarchical analysis (grouped by location)

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Group Unit

Group

ratings

Unit

ratings

Adjusted

unit ratings Group Unit

Group

ratings

Unit

ratings

Adjusted

unit ratings

Plant 1 1 100.0 70.8 70.8 Plant 4(1) 1 100.0 100.0 87.7

2 99.1 99.1 Plant 4(2) 1 80.6 100.0 70.7

3 86.0 86.0 2 100.0 70.7

4 100.0 100.0 Plant 5 1 100.0 100.0 90.2

5 100.0 100.0 2 93.5 84.3

6 71.1 71.1 3 100.0 90.2

7 76.1 76.1 4 95.7 86.3

8 98.7 98.7 Plant 6 1 87.5 100.0 76.8

Plant 2 1 100.0 82.0 80.2 Plant 7(1) 1 87.1 100.0 76.4

2 89.1 87.1 2 100.0 76.4

3 80.7 78.9 3 100.0 76.4

4 88.5 86.5 4 100.0 76.4

5 95.1 93.0 Plant 7(2) 1 93.9 100.0 90.5

6 100.0 97.8 2 84.5 76.4

7 82.4 80.5 3 100.0 90.5

8 100.0 97.8 4 79.6 72.0

Plant 3 1 100.0 100.0 94.9 Plant 8 1 100.0 100.0 89.7

2 86.1 81.7 2 100.0 89.7

3 83.7 79.4 3 100.0 89.7

4 100.0 94.9 4 90.9 81.6
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17.2f, and 17.2g) and (17.2a0, 17.2b0). The ten group ratings are shown under

column (3). Column (4) provides the “within group” ratings of individual power

units, i.e., those ratings achieved when units are compared only to the members of

their own group. To obtain ratings whereby all 40 DMUs can be compared on a

common basis, the suggested three-stage adjustment developed earlier has

been applied to the column 4 figures. The resulting adjusted values are shown in

column 5.

17.5.2 Grouping on Levels

In the above analyses, power units were grouped by location (e.g., the eight Plant

1 units formed one group). The within groups analyses resulted in the ratings shown

in column 4 of Table 17.4. Two other types of groupings were then evaluated – by

fuel type and by capacity. Table 17.5 specifies the memberships of the groups.

When the within group analyses were carried out on the power units under these

alternative groupings, ratings of units changed to reflect group membership.

Table 17.6 displays power unit ratings under the different membership scenarios

(columns (2),(3),(4)). The location scenario has been replicated here (from

Table 17.4). To combine the three ratings for each power unit, model (17.4a,

17.4b, 17.4c, and 17.4d) and model (17.4e) with (17.4b, 17.4c, and 17.4d) were

applied. The outcomes from these models are displayed under columns (5) and

(6) respectively. In both instances the set Φ of (17.4d) is defined such that capacity

is rated to be of highest importance, followed by location, then by fuel type, i.e.,

Capacity > location > fuel:

Although multiple rankings of attributes could clearly be applied to this

example, such an analysis was not carried out here.

Table 17.5 Plant groupings by capacity and plant groupings by fuel type

Group Capacity Units included

Group 1 500 MWH Plant 1, Plant 3, Plant 5

Group 2 200–300 MWH Plant 2, Plant 6, Plant 7(2)

Group 3 <200 MWH Plant 4(1), Plant 4(2), Plant 7(1), Plant 8

Group Fuel type Units included

Group 1 U.S. Bit. Coal Plant 1, Plant 2, Plant 3, Plant 4(1), Plant 8

Group 2 Gas/Coal Plant 7(1), Plant 7(2)

Group 3 Liquid Bit. Coal Plant 4(2)

Group 4 Oil Plant 5

Group 5 Lignite Bit. Coal Plant 6
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Table 17.6 Power unit ratings under different groupings

(1) (2) (3) (4) (5) (6)

Plant Unit

Grouping by Aggregate

(District Wts.)

Aggregate

(Common Wts.)Location Capacity Fuel

1 1 70.8 68.8 69.6 69.8 69.6

2 99.1 87.1 90.7 93.1 91.7

3 86.0 82.0 86.0 84.7 84.0

4 100.0 100.0 100.0 100.0 100.0

5 100.0 90.0 100.0 96.7 95.0

6 71.1 70.8 71.0 71.0 71.0

7 76.1 69.6 76.1 73.9 72.8

8 99.5 98.7 99.5 99.0 98.8

2 1 82.0 80.1 73.6 81.0 79.6

2 89.1 88.9 87.4 89.0 88.7

3 80.7 80.7 78.1 80.7 80.3

4 88.5 80.4 72.1 84.4 81.7

5 95.1 85.0 78.4 90.0 87.3

6 100.0 100.0 100.0 100.0 100.0

7 82.4 82.4 80.6 82.4 82.1

8 100.0 100.0 100.0 100.0 100.0

3 1 100.0 89.0 90.7 94.5 92.9

2 86.1 76.6 76.9 81.3 79.8

3 83.7 68.9 68.9 76.3 73.8

4 100.0 78.0 82.7 89.0 86.1

4(1) 1 100.0 100.0 100.0 100.0 100.0

4(2) 1 100.0 100.0 100.0 100.0 100.0

2 100.0 88.1 100.0 96.0 94.0

5 1 100.0 100.0 100.0 100.0 100.0

2 93.5 86.6 93.5 91.2 90.0

3 100.0 100.0 100.0 100.0 100.0

4 95.7 95.6 95.7 95.6 95.6

6 1 100.0 80.6 100.0 93.5 90.3

7(1) 1 100.0 80.5 72.3 90.2 85.6

2 100.0 80.4 75.5 90.2 86.1

3 100.0 96.2 85.4 98.1 95.7

4 100.0 74.5 73.7 87.2 82.9

7(2) 1 100.0 95.8 100.0 98.6 97.9

2 84.5 84.5 84.5 84.5 84.5

3 100.0 100.0 100.0 100.0 100.0

4 79.6 72.8 79.6 77.3 76.2

8 1 100.0 100.0 93.0 100.0 98.8

2 100.0 100.0 100.0 100.0 100.0

3 100.0 100.0 100.0 100.0 100.0

4 90.9 90.9 89.4 90.9 90.7
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17.6 Simultaneous Evaluation Across Levels

The model discussed above evaluates efficiencies at various levels in a hierarchy in

a multi-stage fashion. Specifically, in stage 1, performance measures for power

units within each plant are computed relative to their peers (within that plant’s

subset of units). In stage 2, the plants, at Level 2, are treated as DMUs, and requisite

efficiency scores are computed there. Level 1 scores (for the power units) are then

adjusted to reflect differences in efficiencies among the plants. In the hierarchical

structure, DMUs at Level n have 2 types of inputs and outputs: (1) those consisting
of aggregates of the corresponding factors at Level n � 1, and (2) additional

measures that apply only at Level n.
In the current section we approach efficiency measurement at the various levels

in this hierarchical structure by considering all levels simultaneously, and by

directing the optimization at the highest level in the hierarchy. In the two-level

setting, this means treating the plants at Level 2 as the DMUs, with the power units

at Level 1 viewed as components of the DMUs. The complicating feature of this

approach is the presence of plant-specific output factors which must be apportioned

across the components in an equitable manner. The ideas used here are similar to

those applied in Chap. 6 involving multi component efficiency in banking.

There appear to be at least two disadvantages of the two-stage approach discussed

above. First, the measure applied (as suggested by the power authority) is simply

related to the frequency of environmental deratings per year, as opposed to some

function of the level of the SO2 above or below the threshold. Arguably, it is the

quantity of environmental damage that one may wish to capture as an output from the

plant. Second, since the environmental variable only applies at the plant level, it is

then the case in the hierarchicalmodel that each power unit within that plant is equally
penalized. Clearly, however, an individual power unit in a plant may contribute more

or less toward the production of hazardous materials (e.g. SO2) than is true for some

other power unit. A power unit that is, for example, shut down formaintenance during

peak pollution periods would not likely contribute as much to pollution accumulation

as other units that were operating at full capacity during that time.

In this section, we present an augmented version of the DEA model that views

both levels in the hierarchy simultaneously, generating performance measures for

each plant and for the power units within those plants. Level 2 (plant level) variables

are allocated across the level 1 power units. This is done in a manner consistent with

any imposed constraints on the proportions of the output assigned to the various

power units, and with the objective of maximizing the performance measure of the

level 2 (plant) unit under consideration at any stage in the DEA model.

Consider the situation in which there are K power plants, with Jk power units
within plant k. We define:

Ykjk ¼ ykr1jkð Þ – the R1 – dimensional vector of outputs generated by power unit jk in

plant k.
Xkjk ¼ xkijkð Þ – the I – dimensional vector of inputs consumed by power unit jk in

plant k.
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Yks ¼ ykr2sð Þ – the R2 – dimensional vector of outputs generated by plant k.

Let ν, μ, μs denote vectors of multipliers associated with Xkjk , Ykjk and Yks
respectively.

It is noted that in the current application, plant level (level 2) factors appear only

on the output side. In the previous model, year of construction was taken as a level

2 input, but turned out to be relatively insignificant. While the model structure

herein is easily extended to include both inputs and outputs, we restrict our attention

only to such factors on the output side.

To facilitate model development, define the R2 -dimensional decision vectors

α k
jk
¼ α k

r2jk

� �
, where α k

r2jk
is the proportion of output ykr2s allocated to power unit jk.

As well, let Yk, Xk denote the aggregates of the output vectors Ykjk

� �
jk
and input

vectors Xkjk

� �
jk
, respectively. That is

Yk ¼
X
jkεJk

Ykjk ,Xk ¼
X
jkεJk

Xkjk :

In this particular problem setting, aggregates derived in this manner make

logical sense, although in some settings, sums of outputs may not be relevant.

The proportionα k
r2jk

of output ykr2s to be allocated to power unit jk, may fall within

certain logical bounds. Arguably, in the case that a given output r2, is, for example,

SO2 emissions, the relative shares of this output allocated to two given units jk1 , jk2
could depend on a number of factors. These would include fuel types used,

capacities in megawatt hours, operating hours, frequency of equipment failure

deratings, etc. Since fuel type and capacity are fixed for units within the same

plant, one can assume that α k
r2jk

is a function of factors such as operating hours.

Reasonable bounds might take the form:

Ljk � α k
r2jk

=α k
r21

� Ujk

Here, we assume that power unit #1 in plant k is taken as a standard, and other

units jk are compared to #1.Ljk andUjk represent lower and upper limits respectively

on the ratio of the proportions of output r2 assigned to power units #1 and # jk.
In the present two-level structure as described earlier, the plant (k) level

performance measure (for any given set of multipliers (μ, μs, ν)) is given by:

ek ¼ μYk þ μsYks½ �=νXk ð17:7Þ
Here, we distinguish between Yk, the aggregate of level 1 (power unit) outputs,

and Yks, the plant level (level 2) outputs that are to be allocated to the respective

level 1 units. We can view Yks as a form of shared output (that is, shared among the

power units). The corresponding jthk power unit performance ratio is given by:

ekjk ¼ μYkjk þ μsα
k
jk
Yks

h i
=νXkjk ð17:8Þ
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We use here the notation α k
jk
Y k
s to denote the R2 -dimensional vector

α k
1jk

yk1s,α
k
2jk

yk2s, . . . ,α
k
R2jk

ykR2s

	 
t
:

Property 17.3 The aggregate performance measure ek of (17.7) is a convex

combination of the Jk power unit measures ekjk

n oJk

jk¼1

, defined in (17.8).

Property 17.4 A power plant k is efficient (ek ¼ 1) if and only if each power unit

jk within the plant is efficient ðekjk ¼ 1Þ:
We now propose the following two-level variant of the standard CCR model:

max eo

subject to :

ek � 1 all k,

ekjk � 1 all k, jk εJk

Ljk � α k
r2jk

=α k
r21

� Ujk all r2, k, jkεJk,X
jkεJk

α k
r2jk

¼ 1 all r2, k,

αr2jk , μr1 , μsr2 , vi � 0, all r1, r2, k, jki:

ð17:9Þ

Problem (17.9) is nonlinear in two respects. First ek and ekjk are linear fractional

functionals. Second ekjk involves the product of variablesμsr2α
k
r2jk

:However, it can be

shown that (17.9) is equivalent to a linear programming formulation, as given by

the following theorem.

Theorem 17.2 Problem (17.9) can be represented as a linear programming
problem.

Proof First it is noted that from Property (17.4), the constraints ek � 1 are redun-

dant, and can be removed from the problem. Make the change of variables

γkr2jk ¼ μsr2 � α k
r2jk

:

It is noted that the constraint set

Ljk � α k
r2jk

=α k
r21

� Ujk

becomes

Łjkα
k
r21

� α k
r2jk

� Ujkα
k
r21

which, with multiplication through by μsr2 , becomes
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Ljkγr21 � γkr2jk � Ujkγr21:

As well, the convexity restrictionX
jkεJk

α k
r2jk

¼ 1

can be replaced by X
jkεJk

γ kr2jk ¼ μsr2 :

Following the standard conversion of Charnes and Cooper (1962) the linear

fractional programming model (17.9) becomes

max μYo þ μsY
o
s ,

subject to :

vXo ¼ 1,

μYkjk þ γ kjkYks � vXkjk � 0 all k, jk,

Ljkγ
k
r21

� γ kr2jk � Ujkγ
k
r21

all r2, k, jk

γ kr2jk , μr, μsr2 , vi � 0 all r1, r2, k, jk, i:

ð17:10Þ

Clearly, problem (17.10) satisfies the necessary linearity property.

Q.E.D.

From the optimal solution of (17.10), one can compute α̂ k
r2jk

from

α̂ k
r2jk

¼ γ̂ k
r2jk

=μ̂ sr2

In the following section, we apply model (17.10) to evaluate efficiencies of a set

of power plants and corresponding power units.

17.7 Analysis of Efficiency: An Example

Considering again the data of Table 17.2, we can view the power plants (level 2 in

the hierarchy) as aggregates of the units that comprise those plants. In this regard,

the aggregates of all level 2 outputs and inputs can serve as level 2 factors.

(As discussed previously, such aggregation may not be relevant in all cases,

although it is so in this instance). In addition, there are factors that pertain primarily

to the plant level only. The best example of such a factor in this situation is SO2

emissions. The total environmental damage caused by a plant can be measured by
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the level (density of particulates) of SO2 above some tolerable threshold, and

multiplied by the number of hours that this phenomenon prevails during the year.

Again, this factor falls into the more is worse category, as is true of the level

1 outputs, and was subtracted from the worst case value.

17.7.1 Proportional Split of Plant-Level Outputs

In the process of solving (17.10), the γjk - variables (that give rise to the αjk -

variables) are intended to split the shared output (SO2) across the units in a plant, in

a way that is most fair for that plant. If a particular power unit jk1 in a plant is

experiencing a higher degree of outages and equipment-related deratings than is

true of the other units in that plant, then jk1 should arguably be penalized with a

smaller proportion of the environmental damage due to SO2.

Unfortunately, the data is too coarse to be able to detect when a power unit was

simultaneously experiencing equipment-related deratings, and environmental (SO2)

deratings. Clearly, if a power unit jk1 was shut down for some reason on a given day

when SO2 emissions were high, the correspondingαjk1 should be set to 0. To capture
this idea we have imposed assurance region constraints, as per Thompson

et al. (1990), of the form:

Ljk � α k
r2jk

=α k
r21

� Ujk ,

where we have numbered that power unit 1 as the unit whose total OUT + EQDER

is lowest. (This is the power unit whose total number of hours of outage +

equipment deratings is highest). The argument is that for plant k, α k
r21

should be

the lowest proportion among all units for that plant. We have then chosenLjk ¼ 1 for

all units jk. Since it is unclear what the precise relationship is concerning the timing

of non-environmental deratings and outages (as discussed above), we have chosen

here to set allUjk equal to one another. We experimented with different values, and

found that while the efficiency ratings of the various power units within a plant

tended to decrease as Ujk is lowered, their order (relative to one another) was quite

stable. Table 17.7 displays the plant-level and associated power unit-level effi-

ciency scores.

The advantage of viewing efficiency in this manner is that not only can one

evaluate the performance of plants, but at the same time can uncover the extent to

which each of the subunits (power units) within the plant is contributing to that

performance. This permits management to identify which power units in a plant are

under-performing, and which units could serve as benchmarks within that plant.

Following Properties 17.3 and 17.4, it is noted that for efficient plants such as 4,5

and 6, all power units within these are efficient as well.
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17.8 Conclusions

This chapter has presented DEA-based models for evaluating the efficiency of a set

of power plants, and corresponding power units as a hierarchical structure. In the

earlier part of the chapter, hierarchical efficiency was viewed as a multi-stage

process. In Sect. 17.7 however, hierarchical efficiency measurement is viewed at

all levels simultaneously. This is accomplished by first defining the decision

making units (DMUs), as the units at the highest level in the hierarchy (power

plants in the current application). The elements lower down in the hierarchy are

then viewed as components of the top level DMUs, and as such, have their

efficiency evaluated as well.

A complicating feature of this latter structure is the presence of outputs at any

level in the hierarchy that must be allocated among the components at the next stage

down in that hierarchy. In the setting herein, this is accomplished by defining

variables which provide for a split of such (plant-level) outputs among the power

units within each plant. We demonstrate that this resulting non-linear model can be

converted to a linear programming problem.

Table 17.7 Power plant and power unit ratings

Plant Unit

Unit Plant

Plant Unit

Unit Plant

Rating Rating Rating Rating

1 1 0.64 0.833 4(1) 1 1 1

2 1 4(2) 1 1 1

3 0.99 2 1

4 1

5 1 5 1 1 1

6 0.67 2 1

7 0.46 3 1

8 1 4 1

2 1 0.58 0.861 6 1 1 1

2 0.80

3 0.63 7(1) 1 0.87 0.84

4 1 2 1

5 1 3 0.81

6 1 4 0.69

7 1

8 1 7(2) 1 0.82 0.935

2 0.92

3 1 0.82 0.793 3 1

2 0.91 4 1

3 0.79 8 1 0.99 0.997

4 0.66 2 1

3 1

4 1
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The developed models have been applied to 40 power generating units organized

under eight plants. Sulphur dioxide (SO2) emissions are generally regarded as a

plant-level output which we wish to allocate to the power units under each plant.

This allocation in practice could be a function of various factors including the

percent downtime for scheduled maintenance, etc. The outcome of the efficiency

evaluation is given in Table 17.7.

The application of DEA principles to hierarchical structures is an important area

for research. Many organizational structures tend to exhibit such a profile. The ideas

herein can potentially lend themselves to other areas of study, for example, supply

chains. The ideas are also somewhat related, as well, to the concepts presented by

Fare and Grosskopf (1996) regarding intermediate products, as well as structures

studied in the network DEA model of Fare and Grosskopf (2000).
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Chapter 18

Multicomponent Efficiency Measurement

and Core Business Identification

in Multiplant Firms

Wade D. Cook and R.H. Green

Abstract As discussed in the previous chapters, the DMU may perform different

types of functions. In that case it is desirable to derive a measure of performance not

only at the DMU level but as well at the level of the particular functions within the

DMU. In the current chapter we examine a set of manufacturing plants operating

under a single umbrella, with the objective being to use the component or function

measures to decide what might be considered as each plant’s core business. It is

proposed that this information can aid the company in any reorganization initiatives

designed to capitalize on the strengths of each location (DMU).

Keywords Multicomponent • Core business • Shared inputs • Bundles

18.1 Introduction

The DEA model, developed by Charnes et al. (1978), provides a constant return to

scale (CRS) methodology for evaluating the performance of a set of comparable

decision making units (DMUs). In the usual setting, each DMU is evaluated in

terms of a set of outputs that represent its accomplishments, and a set of inputs that

represent the resources or circumstances at its disposal.
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In some application areas, it has been recognized that the DMU may perform

different types of functions. In such situations, it is desirable to derive a measure of

performance, not only at the level of the DMU, but, as well, at the level of the

particular function within the DMU. Cook and Roll (1993) were the first to examine

the idea of partial efficiency measures, where the separate components of the DMU

possess their own bundles of outputs and inputs. These bundles were assumed to be

mutually exclusive of one another. Beasley (1995) examined both teaching and

research components within a set of universities in the UK, and presented a

nonlinear programming model for measuring DMU performance. A similar situa-

tion is encountered in Cook et al. (2000), and Cook and Hababou (2001), where

sales and service components are evaluated within a set of bank branches. They

discuss linear models for providing both overall performance of a branch, as well as

separate component performance measures. In that context, as with Beasley (1995)

the input is a shared resource to be allocated to two production units. The compli-

cating feature in each of these problem settings, that was not present in Cook and

Roll (1993), is the presence of shared resources. The existence of shared resources
means that the usual DEA structure must be modified to provide for a splitting of

those resources among the various components.

In the current chapter we examine a set of manufacturing plants operating under

a single corporate umbrella, with the objective of identifying how well each plant

performs in each of its components thus identifying what might be considered each

plant’s a core business. Here, each component consists of a group of products

selected from the totality of products offered, according to the specific interests of

the corporate decision maker. Unlike the aforementioned dual-component applica-

tions (e.g., sales and service components in a bank branch), these components may

overlap. Examples are (1) those products made from rolled steel of given dimen-

sions; (2) those products servicing the automotive industry, . . ., etc. This setting is

clearly similar to those discussed above in that product groups are functions of the

business, and, as will be seen, there are resources that are shared among those

components. The models proposed here represent a departure from the earlier work

of Beasley (1995), Cook and Roll (1993), Cook et al. (2000), and Cook and

Hababou (2001), in two respects. First, we examine the extension of the earlier

models to a multi-component (two or more) setting. Second, using this multi-

component structure as a point of departure, we develop models for identifying
the most appropriate product groupings for each plant (DMU).

Section 18.2 presents the problem setting in more detail. In Sect. 18.3, exten-

sions of the models of Cook et al. (2000, 2001) and Beasley (1995) are presented.

Multiple, and potentially overlapping components are considered. These models

are appropriate where the issue is one of identifying overall performance, as well as

isolating particular areas (components) where the plant can be improved. Sec-

tion 18.4 extends this idea to those situations wherein the organization wishes to

identify the segment of the business that is performing best in any given DMU. In

this way, the core business of each plant can be isolated, thus aiding the company in

any reorganization initiatives designed to capitalize on the strengths of each

location. Section 18.5 discusses the application of these models in the plant setting

described earlier. Conclusions are given in Sect. 18.6.
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18.2 Multicomponent Efficiency Measurement and Core

Business Identification

In this chapter we examine multi-component efficiency measurement from two

perspectives. In the first situation, we make the assumption that the purpose of the

performance assessment exercise is to determine an aggregate measure of effi-

ciency, as well as measures for each of the separate components. Such evaluation

will aid management in identifying the extent to which overall performance can be

improved. As well, for specific business areas, the measures can point to those that

are doing well, as well as those that require attention. Section 18.3 addresses this

setting.

In the second situation, it is assumed that the organization wishes to go beyond

simply identifying the level of performance of specific subunits of the business.

Rather, it is desirable to identify the area(s) where DMUs are performing best,

hence defining what might reasonably be regarded as each DMU’s core business. A
given DMU may then wish to focus its energies on this selected part of the

operation, while de-emphasizing, or in some cases, even abandoning those portions

of the business where it performs at a less than satisfactory level. This development

is undertaken in Sect. 18.4.

To illustrate these ideas we examine a company with several plants that operate

in the rolled steel industry. The company manufactures steel products, both of the

finished variety that are sold on the open market, and semi-finished items that are

custom-ordered, and sold to other manufacturers. These latter products can, for

example, be items such as slit steel, used by other firms that manufacture steel doors

and door frames. Other products, such as cylindrical bearings, are further along the

value chain, and are purchased by companies that manufacture such consumer

products as lawn mowers, or outboard motors for boats. Anticipating the detail

given in Sect. 18.5, it is convenient to view the company’s operations in terms of

nine distinct products, and in conventional DEA terms each of these products would

be considered an output. However, corporate management as well as being inter-

ested in the overall efficiency of each plant, is also interested in performance with

respect to four overlapping groupings of these nine products. In what follows we

will refer to a defined group of products, variously and interchangeably, as a

component, subunit or segment. In some cases products are grouped to represent

a particular market segment, e.g., automotive manufacturers who source certain

products from the company. In other cases they are grouped to represent an

internally meaningful segment of the operation, e.g., all products both semi-finished

and finished, but pertaining to a certain size or quality of steel, or products made on

particular machines.

In the section to follow, we present model structures for evaluating both the

aggregate performance of each of a set of DMUs, as well as the performance of the

separate subunits or components within a DMU’s operation. For purposes of this

development, we utilize the problem setting discussed herein as a backdrop.
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18.3 Multicomponent Model Structures

The conventional model structure for evaluating the relative efficiency of each

member of a set of DMUs is the DEA model of Charnes et al. (1978). Specifically,

given an output vector Yk ¼ (y1k, y2k . . ., yRk), and input vector Xk ¼ (x1k,x2k, . . .,
xIk), for each of a set of n DMUs k ¼ 1, . . ., n, the constant returns to scale model is

given by

max μoYo=voXo,

subject to:

μoYk=voXk � 1, all k, ð18:1Þ
μo, vo � ε:

The structure in (18.1) presumes that one desires to measure the overall effi-

ciency (e.g., operational efficiency) of each DMU, without consideration for the

performance of subunits that may exist within the DMU. In the problem setting

presented herein, we wish to provide for a more detailed performance evaluation,

i.e., at the level of these subunits.

18.3.1 Multi-component Efficiency Measurement
with Shared Inputs: Non-overlapping Subunits

Our point of departure for the discussion in this section, is the model structures of

Cook et al. (2000), (see also Cook and Hababou 2001). There, the authors examine

the problem of providing separate efficiency measures for both sales and service
components of a set of bank branches for a major Canadian bank. Adopting the

notation of Cook et al. (2000), and extending their model structure to “T” compo-

nents, we have:

Parameters:

Ytk ¼ the R-dimensional vector of outputs included in the tth component of DMUk

R ¼ set of all outputs

Rt ¼ set of outputs generated by the tth component

Xt
k ¼ the I-dimensional vector of inputs dedicated to the tth component of DMUk

I ¼ set of all inputs

It ¼ set of inputs dedicated to the tth component

XS
k

¼ the Is-dimensional vector of inputs shared among the T components of DMU k

Is ¼ set of shared inputs

Lti, U
t
i ¼ lower, upper limits on the portion of the ith shared resource, that can be assigned to the

tth component of a DMU

T ¼ set of all components
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Decision Variables:

μto ¼ vector of multipliers applied to outputs Yto
νto ¼ vector of multipliers applied to inputs Xt

o

νsto ¼ vector of multipliers applied to that portion of shared inputs XS
o that are assigned to

component t

αto ¼ vector representing the proportion of shared inputs XS
o allocated to the tth component

In the two-component problem addressed in Cook et al. (2000), the principal

area of difficulty was the presence of shared inputs XS
k .. Specifically, there are

certain resources such as branch expenditure on computer technology and general

branch staff, that are shared across the two components of the business. There is no

well defined split of these resources across different functions, and the basic

problem has to do with the allocation of these inputs among the components. To

facilitate this, and at the same time extend the idea to the general case of

T components, a decision vector αtk is introduced that permits the DMU k in

question to apportion XS
k among the T competing components. In Cook

et al. (2000), this is done in a manner that optimizes the aggregate performance

measure (of DMU “o”) given by:

eao ¼
X
tεT

μ t
oY

t
o

. X
tεT

ν t
oX

t
o þ ν st

o α t
oX

S
o

� �� �" #
ð18:2Þ

The component-specific performance measures eto are given by:

e to ¼ μ t
oY

t
o= ν t

oX
t
o þ ν st

o α t
oX

S
o

� �� � ð18:3Þ

It is pointed out that the notation αtoX
S
o represents the vector

α t
o1x

S
o1, α

t
o2x

S
o2, . . . , α

t
oIS
x S
oIS

� �
of shared inputs allocated to component t byDMU “o”.

In the discussion below, we distinguish between optimal performance measures

and performance measures for a DMUk, evaluated in terms of the multipliers for a

DMU “o” currently being considered. (Doyle and Green (1994) use the term cross-
evaluation in this instance). For this purpose, we adopt the notation ê a

k , ê
t
k to denote

the measures for DMUk that represent their optimal performance, while eak , e
t
k

denote performance relative to multipliers arising from the optimization of (some

other) DMU “o”.

The multi-component DEA model is given by:

ê a
o ¼ maxeao

subject to
ð18:4aÞ

e tk � 1, all t, k ð18:4bÞ
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Lt
i � α t

oi � Ut
i all t, i ε IS, ð18:4cÞX

tεT

α t
oi ¼ 1, i εIS, ð18:4dÞ

μ t
o, ν

t
o, ν

st
o � ε, all t: ð18:4eÞ

Here, the objective (18.4a) maximizes the overall performance measure for the

DMU “o”, in the spirit of the original DEA model of Charnes et al. (1978).

Correspondingly, we restrict each component measure etk by an upper bound of

1 in (18.4b). A permissible range on the proportion of the ith shared resource that

can be allocated to the tth component by any DMU is given by (18.4c). Constraints

(18.4d) specify that the proportional splits of any input i across the T components

sum to unity. Finally, constraints (18.4e) restrict multipliers to be strictly greater

than zero.

The limits Lti, U
t
i, on the proportions αtoi of the various inputs i to components

t would need to be specified by the user. Such limits might generally arise from any

information available at the plants regarding standard amounts of inputs i per unit of
product in components t.

From the above discussion it is clear that problem (18.4) is a restricted version of
problem (18.1). Specifically, any feasible solution to (18.4) is also feasible for

(18.1). Problem (18.4) only permits multipliers which identify each component of

the plant as a bona fide sub-DMU whose performance measure is captured at the

same time as that of the entire plant. Problem (18.1), however, is focused purely at

the plant level, with no recognition whatever of subunits.

Definition 18.1 A DMU “o” is said to be efficient if its aggregate score ê a
o ¼ 1:

Definition 18.2 A DMU “o” is said to be efficient in its tth component if ê t
o ¼ 1:

Theorem 18.1 In model (18.4), the resulting aggregate performance measure ê a
k

for any DMUk, does not exceed unity, i.e., ê a
k � 1.

Proof If we define

β t
k ¼ ν t

oX
t
k þ ν st

o α t
oX

s
k

� �� �.X
tεT

ν t
oX

t
k þ ν st

o α t
oX

s
k

� �� �
,

then, the aggregate measure (in terms of the (μo, νo) multipliers), is given by

ê a
k ¼

X
tεT

β t
kê

t
k:

Hence, eak is a convex combination of the component measures, and as such

eak � 1.

Q.E.D.
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Theorem 18.2 In model (18.4), a DMU is efficient if and only if it is efficient in
each of its components.

Proof Case 1: Assume all component measures ê t
k ¼ 1.

By definition,

ê a
k ¼

X
tεT

β t
kê

t
k

from Theorem 18.1, and since ∑t β
t
k ¼ 1, it follows that ê a

k ¼ 1:
Case 2: Assume ê a

k ¼ 1. Then, if any ê t
k < 1, it must be the case that

ê a
k ¼

X
tεT

β t
kê

t
k < 1,

as well, in contradiction.

Q.E.D.

We now examine multi-component performance measurement when overlaps

can occur.

18.3.2 Multi-component Efficiency Measurement
with Overlapping Subunits

The models presented above presume a set of subunits that are mutually exclusive.

Arguably, in the bank branch setting of Cook and Hababou (2001), and Cook

et al. (2000), sales and service components meet the mutual exclusivity require-

ment. In many settings this restriction may not hold, however, as is the case with the

business components described later.

In the case where mutual exclusivity prevails, it is sufficient to subdivide a

shared input among the set of components. That is, αtoi represents the portion of

input i assigned to component t. It is not necessary to address how this portion αtoi is
distributed among the outputs comprising component t. In case there is overlap
among the components due to the existence of common outputs, the manner in

which the proportions {αtoi}t=1
T behave, is no longer clear. It is, for example, not

true that ∑tεT αtoi ¼ 1, due to the overlap.

In recognition of the overlap problem, we need to be more exacting as to how the

shared input i is assigned to outputs rεℜ. Specifically, we define variables αoir that
denote the proportion of shared input xsoi (the ith component of vector Xs

o) that is

allocated to output yor. As well, let Lri , U
r
i , denote lower and upper bounds,

respectively, on αoir, and impose the constraint
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X
r∈ℜ

αoir ¼ 1:

The proportion αtoi of input i allocated to component t is then the sum of the

proportions αoir of i allocated to those outputs comprising t, i.e.

α t
oi ¼

X
tεℜt

αoir:

For brevity in modelling, we henceforth denote the feasible set of α ¼ (αt) by

Λo ¼ αof ¼ α t
o

� �
: 1ð Þα t

oi ¼
X
rεℜt

αoir;

2ð Þ Lr
i � αoir � Ur

i ; 3ð Þ
X
rεℜ

αoir ¼ 1,

αoir � 0, all iε Is, all tg:

The multi-component DEA model is then given by:

Max eao ,

subject to
ð18:5aÞ

e tk � 1, all t, k, ð18:5bÞ
αoεΛo, ð18:5cÞ

μ t
o, v

t
o, v

st
o � ε, all t: ð18:5dÞ

It is noted that the objective function (18.5a) credits the DMU for producing an

output ytor as many times as that output appears as a member of a component’s

output set. For example, an output yor, contained in both components t ¼ 1 and

t ¼ 2, (i.e., y1or1 ¼ y2or2), would appear in (18.5a) twice, as μ
1
or1yor1 and μ

2
or2yor2 .

We point out, however, that, as in the case of non-overlapping subunits, it is also

true here that problem (18.5) is simply a restricted version of problem (18.1), if we

view the inputs X in (18.1) as all being shared inputs. This is captured by the

following theorem.

Theorem 18.3 Any feasible solution to problem (18.5) is feasible to (18.1).

Proof Define the R-dimensional multiplier vector Ut ¼ (utr) by

ut
r ¼

μ t
r if product r is in component t

0 otherwise

�

and let U ¼ ∑tεT Ut. Letting Y denote the R-dimensional vector of all outputs as

used in (18.1), it follows that

438 W.D. Cook and R.H. Green



X
tεT

μtYt ¼ UY:

Similarly, one can replace the set of inputs {Xt} by the I-dimensional vector X
(1) ¼ (X1,X2, . . .,XT), and replace the set of “shared resource” vectors αtXs by the

sum of these component shares to get Xs. Let X ¼ (X(1), Xs), the full vector of all

inputs. Then, as with the output side, one can express the denominator of the

performance measure as X
tεT

νtXt þ νst αtXsð Þ½ � ¼ VX,

where V is defined in terms of the νt, νst in a manner analogous to the definition of

U in terms of {μt}. Hence eao in (18.5) can be written as

eao ¼ UY=VX:

Since it is true that each component measure etk � 1, then it must also be true

that the aggregate score eak � 1 as well. Thus, any feasible solution to (18.5) is also

feasible for (18.1).

Q.E.D.

Hence, the overlap of the components does not lead to inconsistencies in regard

to problem (18.1). Defining the aggregate measure in this manner results in the

following theorem. The Proof is analogous to those of Theorems 18.1 and 18.2, and

is, therefore, omitted.

Theorem 18.4

(a) The aggregate measure of efficiency given by (18.5a) does not exceed unity.
(b) A DMU will be aggregate-efficient, (the objective function (18.5a) will equal

unity), if and only if it is efficient in each component measure.

Model (18.5), thus, allows one to examine the performance of a DMU in each

business area. As well, it provides an overall or aggregate measure of performance

across all business components.

Because the orientation of model (18.5) is toward evaluation of the DMU at an

aggregate level, with component measures arising only as a by-product, it can be

argued that the individual subunits of the business may not be shown in their most

favorable light. In some cases, the strategic intent of the organization might be to

identify the core business for each DMU, the purpose being to focus the attention of

the DMU toward the areas of the business at which it performs best. In the section to

follow, we present model structures wherein the intention is to choose a core

business component on behalf of each DMU. It should be pointed out that the

identification of a core business component will not necessarily imply the imme-

diate termination of all activities at a plant that are not included in that component.

Rather, a DMU would initially continue to service all existing activities, possibly

phasing out non-core activities as these are redistributed to where they are best

accomplished over some time horizon.
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18.4 Modelling Selection of Core Business Components

A typical problem setting would be one where each of a set of plants for a given

company produces a full product line, for sale and distribution to customers. There

can be a number of reasons why it is cost effective for a certain product line, for

example, to be manufactured in particular locations, but not in others. Certain

manufactured items may, for instance, require specialized and expensive equipment

that the company might prefer to make available in only one location. Alternatively,

certain customers (e.g. farmers) may be highly concentrated in one geographical

area, meaning that a plant close to that concentration should produce products

related to that customer group. As well, simple economies of scale may dictate

that the production for a product be concentrated in only a few plants, or even a

single plant.

The problem then is to identify which collection of products or product lines

should be handled by any given plant, thus defining that plant’s core business.

The conventional DEA model does not readily lend itself to resource allocation

(i.e. allocation of shared inputs). The DEA approach focuses attention on the

performance of a particular DMU “o”. If the objective is to allocate components

to DMUs (plants), and to divide shared resources among products (and thus among

components), one needs to view this allocation process from the perspective of the

entire collection of DMUs, simultaneously rather than from the conventional DEA

perspective, i.e. iteratively, one DMU at a time.

To facilitate the allocation of components to DMUs, define the bivalent variables

{dtk}
T
t¼1, for each DMU k,

d t
k ¼

1 if component t is assigned to DMUk,
0 otherwise:

�

The aggregate performance (ratio) measure for the collection of DMUs, given an

allocation defined by a chosen set of dtk values, can be expressed as:

X
k

X
t
d t
kμ

tY t
k

h i
X

k

X
t
d t
k νtX t

k þ νst α t
kX

s
k

� �� �h i

The optimal assignment of components to DMUs, as defined by the dtk, is
arguably that for which the ratio of aggregate output to aggregate input is maxi-

mized. The set of dtk for which this maximum occurs can be determined by solving

the fractional programming problem:
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max
X
k

X
t

d t
kμ

tY t
k

" #.X
k

X
t

d t
k νtX t

k þ νst α t
kX

s
k

� �� �" #

subject to

ð18:6aÞ

μtY t
k= νtX t

k þ νst α t
kX

s
k

� �� � � 1, all k, t ð18:6bÞ
αεΛ0, ð18:6cÞX
t

d t
k � 1, all k, ð18:6dÞ

X
k

d t
k � 1, all t, ð18:6eÞ

μt, νt, νst � ε, all t, d t
k ε 0; 1f g, all k, t: ð18:6fÞ

Constraints (18.6b) restrict the ratio of outputs to inputs in any component to not

exceed unity. (18.6c) requires that the resource splitting variables satisfy conditions

as defined earlier inΛo. Constraints (18.6d) force each plant k to support at least one
product group or component. Similarly, (18.6e) stipulates that each component

must be produced at one or more of the plants.
It is conceivable that at the optimum, certain plants may be chosen to support

several product groups, while other plants may service only one group.

Model (18.6a–f), assigns multipliers μt, νt, νst to each component t in each DMU

k. While it is not the purpose of the model to measure the efficiency of the entire
operation of each plant, the supplied (common set of) multipliers do in fact provide

the basis for an efficiency score for each plant and the aggregate across all plants,

should one want to extract these. That aggregate score clearly includes the contri-

bution rendered by both core and non-core components of the plant. Admittedly, the

set of multipliers is derived in a manner designed to display core components in

their best light, and by implication, non-core components in a light less than best.

Hence, non-core components may be represented in a disadvantageous manner.

One might argue that this is appropriate since, over time, such non-core components

will, in any event, be phased out. Thus, their estimated performance (by that stage)

will be a non-issue. At the same time, the model does, in fact, recognize their

existence, and the bounds [Lri ,U
r
i ] appropriately force the allocation of shared

resources across all components (both core and non-core). Thus, choice of these

bounds by management affirms the continuing presence of non-core components in

the operation.

Thus, the real purpose of the model is to single out those components of each

plant on which that plant exhibits its best performance. It is these core components

whose aggregate performance we wish to capture.

The implication of this is that when a set of plants exhibit inefficiency, it is often

desirable to strive for specialization. The questions that management would like to

answer are:
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(1) In what parts of the operation should each plant specialize?

(2) If plant operations were reorganized to implement such specialization, what

would be the anticipated performance of the resulting operation?

(3) How would each reorganized (future) plant perform?

Question 1: The purpose of the model is to extract those components at each plant

that appear to be the ones in which the plant should specialize.

Question 2: While the model yields an aggregate performance across all core

components in all plants, there is an implied measure of performance for each

plant on a portion (core business portion) of that plant’s operation. Specifically,

using d̂ t
k

	 
T

t¼1
, for each k, the model yields a measure of performance for that

subset of components in terms of the inputs that those components utilize, and

the outputs generated by those components. This measure captures how the

(reduced) plant would perform if non-core business elements were not present.

Question 3: In a reorganized structure, the essence of the model is that each plant

would concentrate only on its core business activities. It is argued that if each

plant were to scale up its operation such as to come to full capacity in its resource

utilization, then it is hypothesized that the resulting output generated would be

scaled up by the same factor.

To solve problem (18.6a–f), it can be shown that it is representable as a mixed

integer linear programming problem. This is given by the following theorem.

Theorem 18.5 Problem (18.6a–f) can be represented as a mixed integer (binary)
linear problem.

Proof Problem (18.6a–f) is equivalent to the mixed binary nonlinear programming

model:

max
X
k

X
t

d t
kμ

tY t
k

subject to

ð18:7aÞ

X
k

X
t

d t
k νtX t

k þ νst α t
kX

s
k

� �� � ¼ 1 ð18:7bÞ

μtY t
k � νtX t

k þ νst α t
kX

s
k

� �� � � 0, all k, t, ð18:7cÞ
αεΛo, ð18:7dÞX
t

d t
k � 1, all k, ð18:7eÞ

X
k

d t
k � 1, all t, ð18:7fÞ

μt, νt, νst � ∈, all t, d t
k ε 0; 1f g, all k, t: ð18:7gÞ
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Make the change of variables:

νst ¼ νstαt, v st
k ¼ d t

kν
st, v t

k ¼ d t
kν

t, ut
k ¼ d t

kμ
t:

It is noted that we can replace an expression such as vtk ¼ dtkν
t by the constraint

set

v tk � Md t
k,

νt � v tk,

νt � v tk þM 1� d t
k

� �
,

where M is a large positive number. Specifically, if dtk ¼ 0, then vtk ¼ 0; if dtk ¼ 1,

then vtk ¼ νt. A similar set of constraints can be imposed to replace the nonlinear

expressions utk ¼ dtkμ
t, and vstk ¼ dtkυ

st. Problem (18.7a–g) can then be written as the

mixed binary linear programming model

max
X
k

X
tεT

u t
kY

t
k,

subject toX
k

X
tεT

v tkX
t
k þ vstk X

s
k

� � ¼ 1,
X
tεT

�
ut
kY

t
k � v tkX

t
k þ vstk X

s
k

� �� � 0, all k,

υ t
k � Md t

k, all t,

νt � vt
k, all t,

νt � vt
k þM 1� dt

k

� �
, all t,

u t
k � Mdt

k, all t,

μt � u t
o, all t,

μt � u t
k þM 1� dt

k

� �
, all t,

υ st
k � Mdt

k, all t,

νt � vst
k , all t,

νt � vst
k þM 1� dt

k

� �
, all k, t,

αεΛ,X
t

d t
k � 1, all k,

X
k

d t
k � 1, all t,

ν st
i � εα t

i , all i, t,

μ t
r , ν

t
i � ε, all i, r, t,

u t
kr, v

t
ki � 0, all i, r, k,

υ st
ki � 0, all r, t, i ¼ 1, . . . , IS,

d t
kε 0; 1f g, all k, t:

ð18:8Þ
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This completes the proof.

Q.E.D.

There are clearly variations of this model where, for example, it may be pertinent

for certain product groupings or components to be manufactured in only certain

plants that are perhaps in the best possible position to handle them. This might

be due to equipment capability, proximity of the market, and so on. Thus, for a

given component to, we might require that d to
k ¼ 0, k εK

to
, where Kto is the set of

allowable plants for manufacturing component to, and K
to
is its compliment.

In the section to follow, this model is used to allocate business components to ten

plants within the company under study.

18.5 Application of Core Business Selection Model

to a Set of Plants

In the problem studied, 10 plants currently operate under a single corporate

umbrella, producing a variety of steel products including bearings, pipes and

sheet steel of various sizes. Clearly, some of these products are of the finished

goods variety (e.g. pipes), while others are semi-finished, becoming components in

other manufactured items (bearings), or are sold to other plants for further

manufacturing (sheet steel).

As indicated earlier, it is convenient to view each plant’s business as consisting

of various components. While it is the case that there can be a large number of

products to consider (e.g. different sizes of circular bearings), here items have been

grouped by management under a few major categories. For purposes of this study

we present the operation of any plant as consisting of four (overlapping) compo-

nents, defined by their outputs ytr, the number of units of output r in the tth
component:

Component #1:

• All solid bearings (y11)

• Circular bearings (automotive) (y12)

• Sheet steel �4 ft in length (y13).

Component #2:

• Solid bearings (automotive) y21)

• Steel pipes �8 ft in length y22)

• Sheet steel 4–8 ft in length (y23)

Component #3:

• Steel pipes >8 ft in length (y31)

• Sheet steel >8 ft in length (y32)
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Component #4:

• Circular bearings (automotive) (y41)

• Circular bearing (non-auto) (y42)

• All solid bearings (y43)

• Sheet steel �4 ft in length (y44)

Table 18.1 displays the data for all outputs for the 10 plants considered.

The resources committed to the production of these product lines can be grouped

under four headings, namely

• Shop labour (x1)
• Machine labour (x2)
• Steel splitting equipment (x3)
• Lathes (x4)

Shop labour and machine labour are measured in full time equivalent (FTE)

staff. Both equipment variables are expressed in hundreds of hours of capacity

available per month. Given the manner in which the four components have been

defined, with the inherent overlap of products, all four of these inputs should be

viewed as shared resources.

Table 18.2 shows the amounts of the four resources corresponding to each plant.

The connection between the shared inputs and the product outputs (ytr) is quite
complex, and must be reflected through the αir. If a given input such as lathes (x4)

does not impact on a particular output such as sheet steel (�4 ft) (y13) then that

particular variable α is set to zero. Figure 18.1 shows the input-to-output impact

matrix.

In the figure, an “x” denotes the fact that the particular input contributes to the

output shown. It must be noted as well, that when we have a product common to two

or more components, the corresponding variables αirmust be equated. For example,

since sheet steel �4 ft is part of both components 1 and 4 (i.e., y13 ¼ y44), then
α1,3 ¼ α1,12.

Table 18.1 Outputs for four components

Plant y11 y12 y13 y21 y22 y23 y31 y32 y41 y42 y43 y44
1 50 30 70 30 60 50 40 80 30 50 50 70

2 45 35 60 25 50 50 40 75 35 55 45 60

3 75 25 50 35 55 40 50 70 25 60 75 50

4 60 40 80 40 40 30 70 50 40 50 60 80

5 35 25 25 20 25 20 35 20 25 30 35 25

6 55 60 40 40 60 45 60 50 60 50 55 40

7 120 100 100 100 80 120 120 60 100 110 120 60

8 60 80 25 50 100 20 80 35 80 80 60 25

9 25 75 65 20 25 80 100 70 75 70 25 65

10 100 55 40 70 35 65 35 45 55 60 100 40
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For solution purposes we have restricted each αir to lie in the range 0.1–0.4. This
means that for each shared input i, at least 10 % and not more than 40 % of that

input would be dedicated to any given output r.. Although the decision on such

bounds was difficult for management to pin down, the 0.1–0.4 range was deemed

reasonable. As well, we impose both upper and lower limits on the numbers of

plants to which any given component can be assigned. Specifically, we require for

each component t:

1 �
X
k

d t
k � 4:

Hence, at least one plant, and no more than four plants can be assigned

component t.

Efficiency Results
Table 18.3 displays the optimal component assignment to plants. In summary:

Component #1 ! Plants 5,7,10

Component #2 ! Plants 6,8

Component #3 ! Plants 1,3,9

Component #4 ! Plants 2,4

The overall efficiency score corresponding to this assignment is 96.6 % (the

value of objective function (18.7a)). Specifically, if plants are evaluated only on

their core business components, their performance will be such that if viewed as a

single entity, the aggregate score is 96.6 %. Table 18.4 displays both the current

Input 1
1y

1
2y

1
3y

2
1y

2
2y

2
3y

3
1y

3
2y

4
1y

4
2y

4
3y

4
4y

x1
— — x — x x x x — — — x

x2
x x — x — — — — x x x —

x3
— — x — x x x x — — — x

x4
x x — x — — — — x x x —

Fig. 18.1 Input versus

output impact matrix

Table 18.2 Shared resources DMU x1 x2 x3 x4

1 30 15 100 150

2 40 12 90 180

3 35 16 97 100

4 38 20 85 85

5 28 9 110 125

6 37 13 76 140

7 31 18 83 110

8 35 15 100 150

9 25 19 95 190

10 30 10 65 210
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aggregate efficiencies for the 10 plants, as well as a decomposition of these scores

into component efficiencies. For example, Plant #3 currently displays an overall

performance score of 75 %. This is composed of partial efficiency scores of 52 %,

61 %, 90 % and 76 % for components 1, 2, 3 and 4, respectively. Recall that the

measure of partial efficiency for a DMUk in its tth component is given by

e tk ¼ μtY t
k= νtX t

k þ α t
kν

stX S
k

� �
:

It is noted, as well, that with the recommended component-to-plant assignments,

plant #3 would be expected to have an efficiency of 90 % (up from 75 %), if it could

ultimately phase out non-productive portions of its operation, and move its full

emphasis to that part of the business defined by component #3. It must be empha-

sized that the component to assigned to a plant may not be the one whose partial

efficiency is highest for that plant. Notice, for example, that component #2 is

assigned to plant #6, with a partial efficiency of 79 %, yet component #3 actually

performs better within that plant (at a partial efficiency of 83 %). This can occur

Table 18.3 Assignment

of components to plants
DMU T1 T2 T3 T4

1 0 0 1 0

2 0 0 0 1

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

6 0 1 0 0

7 1 0 0 0

8 0 1 0 0

9 0 0 1 0

10 1 0 0 0

Table 18.4 Decomposition of DMU efficiency

DMU

Assignment of components

to plants Partial efficiencies of component

T1 T2 T3 T4 T1 T2 T3 T4

Aggregate

efficiency

1 0 0 1 0 0.51 0.68 1.00 1.00 0.93

2 0 0 0 1 0.54 0.68 1.00 1.00 0.94

3 0 0 1 0 0.52 0.61 0.90 0.76 0.75

4 0 0 0 1 0.53 0.39 0.76 1.00 0.86

5 1 0 0 0 0.43 0.45 0.25 0.59 0.47

6 0 1 0 0 0.60 0.79 0.83 0.79 0.78

7 1 0 0 0 1.00 1.00 1.00 1.00 1.00

8 0 1 0 0 0.56 1.00 0.50 0.56 0.60

9 0 0 1 0 0.45 0.34 1.00 0.84 0.78

10 1 0 0 0 0.81 0.78 0.85 0.86 0.85
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because rather than minimizing a sum of efficiency ratios, we are optimizing the

ratio of aggregate output (across all plants), to aggregate input.

18.6 Discussion

This chapter has examined the problem of identifying core business components for

each of a set of comparable decision making units. In the context of a set of

manufacturing plants, a modified version of the DEA model of Charnes

et al. (1978) has been developed and demonstrated. Unlike conventional applica-

tions of DEA where the scope of the business (bundle of products produced) is

assumed to remain fixed, the approach herein is intended to aid in making decisions

pertaining to functional specialization in plants. An important by-product of the

core-business selection process is the evaluation of efficiency of each component of

the business as well as of the overall DMU. The result, as demonstrated by

Table 18.4, is an efficiency profile that management can utilize in deciding where

to aim for improvements and, as well, which components to de-emphasize or

phase out.

We do not attempt to address issues relating to plant reorganization toward

specialization. Rather, the model can aid management in choosing those (core)

business activities to place within each plant. The logistics of restructuring and any

change management considerations are beyond the scope of the current chapter.

One of the potential shortcomings of the model given here is the apparent

absence of consideration of distribution costs on the input side. Specifically, in

some settings, the choice of a particular plant as the location out of which a given

component of the business will be operated, has distributional consequences. For

example, manufacturing auto parts in a location remote from automobile plants (the

customer) may be more costly than having them manufactured at a less efficient,

but closer-to-market facility. In the application discussed herein, this issue was not

highlighted as a major concern. Presumably, in situations where distribution is a

major issue, one would need to augment the input bundle to include a provision for

distribution costs.
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Chapter 19

Two-Stage Network DEA with Bad Outputs

Hirofumi Fukuyama and William L. Weber

Abstract Conventional black-box DEA models allow producer performance to

be measured for technologies where undesirable outputs are jointly produced

by-products of desirable output production. These models allow for non-radial

scaling of desirable outputs, undesirable outputs, and inputs and can account for

slacks in the constraints that define the technology. We review some of these

black-box performance measures and show how to measure performance in

two-stage network models. In these kinds of network models inputs are used to

produce intermediate outputs in a first stage and then, those intermediate outputs

become inputs to a second stage where final desirable outputs and undesirable

outputs are produced. The bias from using a black-box model when a network

technology exists is examined as well as the bias from ignoring slacks in the

constraints defining the network technology.
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19.1 Introduction

In this chapter, we focus on the measurement of producer performance in two-stage

network production models where undesirable outputs are jointly produced

by-products of desirable output production. Fukuyama and Weber (2010) used a

two-stage network model to analyze bank performance. The motive for their model

was the disagreement among various researchers regarding whether deposits should

be taken to be an output of banks or as an input (see Sealey and Lindley 1977;

Hancock 1985; Barnett and Hahm 1994; Berger and Humphrey 1997). Instead,

Fukuyama and Weber (2010) assumed that banks used labor, physical capital, and

equity capital in a first stage to generate the intermediate output of deposits which

become an input in a second stage where a portfolio of assets, including various

kinds of loans and securities investments is produced. In addition, in the second

stage of production some of the loans became non-performing: an undesirable

by-product of producing loans.

Network models of production were developed by Färe and Grosskopf (1996,

2000). Various two-stage models where intermediate outputs are produced in a first

stage and then used to produce final outputs in a second stage have been offered by

Wang et al. (1997), Seiford and Zhu (1999), Chen and Zhu (2004), Sexton and Lewis

(2003), Kao and Hwang (2008), Chen et al. (2009a, b) and Fukuyama and Weber

(2010, 2012, 2013). In a non-network setting Färe et al. (1994) considered technol-

ogies with jointly produced undesirable outputs and the theory was extended by Färe

et al. (2005), and Fukuyama andWeber (2008b).Murty et al. (2012) offer a two-stage

model where pollution is generated in a first stage and then abated in a second

stage of production. Two-stage network models are useful extensions to the first

generation black-box models of DEA (data envelopment analysis), especially for

measuring the performance of producers in industries that are vertically integrated.

In the following sections we present the black-box DEAmodel and show how it can

be extended to measure performance in a two-stage network DEA production

process with undesirable outputs as by-products of desirable outputs. An Appendix

provides some remarks on the synthetic data and estimates of each of the black-box

and network directional distance functions that are presented in this paper.

19.2 Some Basics

19.2.1 Conceptual Black-Box and Network
Technologies with Bad Outputs

The black-box DEA model (Charnes et al. 1978) assumes that inputs x ∈ ℜN
þ

are used to produce desirable (good) outputs y ∈ ℜM
þ and undesirable (bad)
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outputs b ∈ ℜL
þ. In this setting, the technology is defined by the black-box tech-

nology set:

BT ¼ x; y; bð Þ x ∈ ℜN
þ can produce y; bð Þ ∈ ℜMþL

þ
��� �

: ð19:1Þ

We assume that inputs, x, and final desirable outputs, y, are freely disposable

and undesirable outputs are only weakly disposable. Free disposability of desirable

outputs and inputs means that if (x,y,b) ∈ BT then for (x, � y, b) � (x0, � y0, b),
(x0,y0,b) ∈ BT. That is, it is possible to use more input or produce less desirable

output and still remain in the black-box technology set.Weak disposability of undesir-

able outputs means that if (x,y,b) ∈ BT then for 0 � θ � 1, (x, θy, θb) ∈ BT.
Weak disposability implies an opportunity cost of reducing undesirable outputs;

fewer desirable outputs must be produced in order to reduce the jointly produced

bad outputs.

Two radial measures of performance are the Shephard (1953, 1970, 1974) input

and output distance functions. The Shephard input distance function gives the

maximum proportional contraction in inputs and the reciprocal of the Shephard

output distance function gives the maximum proportional expansion in outputs.

Non-radial projections of inputs and outputs to a production frontier are sometimes

useful. Since we are considering jointly produced desirable and undesirable outputs

we would like our performance measures to allow desirable outputs to be expanded

while undesirable outputs and inputs are simultaneously contracted. One function

that allows non-radial projections of output and inputs is the directional distance

function. This distance function was developed by Chambers et al. (1996, 1998) as

an extension of Luenberger’s (1992, 1995) shortage and benefit functions. The

directional distance function seeks the simultaneous maximum expansion in desir-

able outputs along the directional vector gy ¼ (gy1, . . .,g
y
M) ∈ ℜM

þ , contraction in

undesirable outputs along the directional output vector gb ¼ (gb1, . . .,g
b
L) ∈ ℜL

þ,
and contraction in inputs along the directional vector gx ¼ (gx1, . . .,g

x
N) ∈ ℜN

þ. To
simplify notation we also use gyb ¼ (gy,gb) ∈ ℜM

þ � ℜL
þ and g ¼ (gx,gy,gb)

∈ ℜN
þ � ℜM

þ � ℜL
þ.

Relative to (19.1), the black-box directional distance function is defined as

B~D x; y; b; gð Þ ¼ sup
β

β x� βgx, yþ βgy, b� βgb
� �

∈ BT
��� �

: ð19:2Þ

An observation of inputs and outputs is weakly efficient relative to the black-box

technology if

x; y; bð Þ ∈ BT and x� βgx, yþ βgy, b� βgb
� �

=2 BT for β > 0 ð19:3Þ

A producer is weakly efficient when B~D x; y; b; gð Þ ¼ 0 and is inefficient when

B~D x; y; b; gð Þ > 0 for the given directional vector, g. The interpretation of the

directional distance function depends on the directional vector that is chosen.
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For instance, when g ¼ (1,1, . . .,1), the directional distance function gives the

simultaneous maximum unit contraction in inputs and undesirable outputs and

expansion in desirable outputs. An alternative directional vector, such as the pro-

ducer’s observed inputs and outputs, gives g ¼ (gx,gy,gb) ¼ (x,y,b). For this direc-

tional vector the directional distance function multiplied by 100 % gives the

maximum percentage contraction in inputs and undesirable outputs and percentage

expansion in desirable outputs. One or more of the components of the directional

distance function can be set to zero. In such a case, the directional distance function

holds the appropriate input or output constant and scales the remaining inputs and

outputs to the frontier by the positive components of the directional vector. For

instance, when gx ¼ 0, the directional distance function holds inputs constant and

seeks the maximum expansion in desirable outputs and contraction in undesirable

outputs.

To move from the black-box technology to a two-stage network technology let

z ∈ ℜQ
þ represent a vector of Q intermediate products. A two-stage network

technology is defined as

NT ¼ x; y; bð Þ x ∈ ℜN
þ can produce z ∈ ℜQ

þ Stage 1ð Þ
z ∈ ℜQ

þ can produce y, bð Þ ∈ ℜMþL
þ

�
Stage 2

�
�����

( )

ð19:4Þ

where the intermediate product vector z is determined endogenously.

Figure 19.1 depicts a two-stage network production technology. In the first stage

of production a decision making unit (DMU) or firm employs exogenous inputs to

produce intermediate outputs that become inputs to a second stage where desirable

outputs are produced along with undesirable by-products. From here on, we use the

term “network” to mean “two-stage network”.

Using (19.4), the network directional distance function is written as

N~D x; y; b; gð Þ ¼ sup
β

β x� βgx, yþ βgy,b� βgb
� �

∈ NT
��� �

: ð19:5Þ

The network directional distance function expands desirable outputs and

contracts undesirable outputs and inputs along the directional vector g.

intermediate

products

bad outputs
inputs Stage 1 Stage 2

good outputs

Production of 
Final Outputs 

Production of
Intermediate Outputs  

Fig. 19.1 Two-stage network production for DMUs
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Although intermediate outputs are produced in stage 1 and used as inputs in stage

2 of (19.4), these intermediate outputs are determined endogenously and so are not

part of the network directional distance function.

We define an observation of inputs and outputs as weakly efficient for the

network technology if

x; y; bð Þ ∈ NT and x� βgx, yþ βgy, b� βgb
� �

=2 NT for β > 0: ð19:6Þ

That is, an observation is weakly efficient if it is not possible to simultaneously

contract inputs and undesirable outputs and expand desirable outputs given the

technology and directional vector. A producer is weakly efficient for the network

technology if N~D x; y; b; gð Þ ¼ 0 and inefficient if N~D x; y; b; gð Þ > 0.

19.2.2 The DEA Technology and Directional Inefficiency

In this section we follow the work of Fukuyama and Weber (2010) to develop DEA

performance measures for a two-stage network technology. To estimate the dis-

tance functions given in (19.2) and (19.5) in DEA we assume there are j ¼ 1, . . ., J

decision making units (DMUs), each of which converts inputs xj ∈ ℜN
þ, into

intermediate products zj ∈ ℜQ
þ in a first stage of production and then uses the

intermediate products in a second stage to produce final desirable outputs yj ∈ ℜM
þ

and bad (undesirable) outputs bj ∈ ℜL
þ.

Let 0 be an appropriate dimensional vector of zeros. The black-box DEA

technology for (19.1) takes the form

BT ¼ x, y,bð Þ x �
XJ
j¼1

xjλj; y �
XJ
j¼1

yjλj; b ¼
XJ
j¼1

bjλj; λ � 0

�����
( )

ð19:7Þ

where λ is a nonnegative intensity vector. Throughout this chapter, we assume all

observed attributes of production are positive, i.e., xj > 0 (8 j), zj > 0 (8 j), bj
> 0 (8 j) and yj > 0 (8 j). The black-box production possibility set (19.7) exhibits

constant returns to scale. The directional distance function defined on (19.7) for

DMU “o” is

B~D xo; yo; bo; g
� � ¼ max

β, λ, sx, sy
β xo �

XJ
j¼1

xjλj þ βgy þ sx; yo �
XJ
j¼1

yjλj � βgy � sy;

�����
(

bo ¼
XJ
j¼1

bjλj þ βgb; λ � 0; sx � 0; sy � 0

)

ð19:8Þ
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where sx and sy represent any remaining slack in the input and desirable output

constraints that remains after the observed quantities (xo,yo,bo) have been scaled to

the frontier along the scaling vector g. The dual form of (19.8) is written as

min
v, u, w

vxo � uyo þ rbo
vgx þ ugy þ rgb ¼ 1; vxj � uyj þ rbj � 0 8j;
v � 0; u � 0; r : free

����
� �

ð19:9Þ

where v, u, and r are multipliers. Although Fukuyama and Weber (2009a)

modeled (19.8) under the assumption of variable returns to scale, it is necessary

to employ either constant or non-increasing returns to scale if the assumption of null

jointness of bad outputs is to be satisfied.1 See Fukuyama andWeber (2008a) for the

implementation of non-increasing returns to scale. Shephard and Färe (1974) define

and discuss the assumption of null jointness.

To incorporate the two-stage structure given in Fig. 19.1 in a DEA model we

define the intensity vectors for the two stages as λ1 ¼ (λ11, . . .,λ
1
J) ∈ ℜJ

þ and

λ2 ¼ (λ21, . . .,λ
2
J) ∈ ℜJ

þ. The network production possibility set is

NT ¼ x; y; bð Þ
x �

XJ
j¼1

xjλ
1
j ; y �

XJ
j¼1

yjλ
2
j ; b ¼

XJ
j¼1

bjλ
2
j ;

XJ
j¼1

zjλ
1
j � ẑ ;

XJ
j¼1

zjλ
2
j � ẑ ; λ1 � 0; λ2 � 0; ẑ � 0

����������

8>>>><
>>>>:

9>>>>=
>>>>;
ð19:10Þ

where ẑ is endogenously determined in (19.10).

Using DEA, network directional inefficiency for DMU “o” takes the form:

N~D xo; yo; bo; g
� �

¼ max
λ1, λ2, sx, sy, ẑ , β

β

xo ¼
XJ
j¼1

xjλ
1
j þ βgx þ sx; yo ¼

XJ
j¼1

yjλ
2
j � βgy � sy;

bo ¼
XJ
j¼1

bjλ
1
j þ βgb;

XJ
j¼1

zjλ
1
j � ẑ ;

XJ
j¼1

zjλ
2
j � ẑ ;

λ1 � 0; λ2 � 0; sx � 0; sy � 0; ẑ � 0; β : free

�������������

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð19:11Þ

1 Null jointness means that if b ¼ 0 and (x,y,b) ∈ BT then y ¼ 0.
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The network directional distance function projects the observed outputs

and inputs of DMUo to the weakly efficient frontier. That is,

ẑ �, xo � β�gx, yo þ β�gy, bo � β�gb
� �

∈ NT where the star (*) indicates an optimal

solution to (19.11) and ẑ �, xo � β
0
gx, yo þ β

0
gy,bo � β

0
gb

� �
=2 NT for β0 > β*.

Thus, a DMUmust be a weakly efficient frontier point for both stages of production

if ẑ � is an optimal solution to (19.11). We note that the constraints on inputs and

desirable outputs have slack variables added because of strong disposability.

However, undesirable outputs only satisfy weak disposability and therefore have

no slack variables. Although the projection is weakly efficient, it might leave

positive slacks.

The dual form of (19.11) is

min
v, u,w1,w2, r

vxo � uyo þ rbo

vgx þ ugy þ rgb ¼ 1; vxj � w1zj � 0 8j;
w2zj � uyj þ rbj � 0 8j; w1 � w2 � 0;

v � 0; w1 � 0; w2 � 0; u � 0; r : free

������
8<
:

9=
;:

ð19:12Þ

The non-negativity constraints ẑ � 0 in (19.11) correspond to w1 � w2 � 0 in

(19.12). Treating ẑ as free variables in (19.11) yields the corresponding dual form

which can be obtained by replacing the inequality constraints w1 � w2 � 0 with

equality constraints w1 � w2 ¼ 0, but will not change the optimal objective values

of (19.11) and (19.12).

Note that in (19.11) ẑ is positive. The first stage constraint,
XJ
j¼1

zjλ
1
j � ẑ , and the

second stage constraint,
XJ
j¼1

zjλ
2
j � ẑ , leads to

XJ
j¼1

zjλ
1
j � ẑ �

XJ
j¼1

zjλ
2
j > 0 because

there exists a nonzero vector (λ1,λ2) in (19.11) and zj > 0 (8 j). This shows that a
DMU must be a frontier point for both stages of production if ẑ � is an optimal

solution to (19.11). In their input-oriented Farrell measure, Kao and Hwang (2008)

assumed equal shadow prices between the two stages. By allowing for different

shadow prices, Chen et al. (2010) provided a modification but showed that their

model is equivalent to Kao and Hwang’s (2008). Hence, we assume a common

shadow price vector w ∈ ℜQ
þ for the two divisions in (19.12).

The Farrell input efficiency measure (FI(x,y,b)) is the reciprocal of Shephard’s

(1970) input distance function, 1/BDI(x,y,b), and takes the form

FI x; y; bð Þ ¼ 1

BDI x; y; bð Þ ¼ inf
θ

θ θx, y, bð Þ ∈ BTjf g: ð19:13Þ
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Chen et al. (2010) estimated a network Farrell input efficiency model and

implicitly used the equivalence in the following relations:

XJ
j¼1

zjλ
1
j � ẑ and

XJ
j¼1

zjλ
2
j � ẑ ,

XJ
j¼1

zjλ
1
j �

XJ
j¼1

zjλ
2
j � 0

,
XJ
j¼1

zj λ1j � λ2j

	 

� 0: ð19:14Þ

It is easy to see that the relations in (19.14) hold under a directional model as

well. Therefore, we replace the constraints,
XJ
j¼1

zjλ
1
j � ẑ and

XJ
j¼1

zjλ
2
j � ẑ , by the

constraints

XJ
j¼1

zj λ1j � λ2j

	 

� 0: ð19:15Þ

The optimal intermediate outputs and intermediate inputs are obtained from

(19.14) as
XJ
j¼1

zjλ
1�
j and

XJ
j¼1

zjλ
2�
j . Equation (19.15) allows a portion of intermediate

outputs to be consumed within the evaluated DMU so that the intermediate inputs

do not necessarily have to equal the intermediate outputs. Hence,
XJ
j¼1

zjλ
1�
j >

XJ
j¼1

zjλ
2�
j implies the existence of internal waste or internal consumption. If

λ1j ¼ λ2j (8 j), the network directional distance function collapses to the black-

box directional distance function (19.8).

In Table A.1 we report a synthetic data set where J ¼ 10 producers use N ¼ 3

inputs to produce Q ¼ 2 intermediate outputs in a first stage of production. Then,

in the second stage of production the Q ¼ 2 intermediate outputs are used to

produce M ¼ 3 final outputs and L ¼ 2 bad outputs. Table A.2 reports each of

the performance measures that are presented in this paper. The estimates show that

N~D xo; yo; bo; g
� � � B~D xo; yo; bo; g

� �
since the two-stage process allows produc-

tion possibilities to expand.
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19.3 Slacks-Based Inefficiency Measures

19.3.1 Black-Box Slacks-Based Inefficiency

Although the black-box and network directional distance functions scale inputs and

outputs to the weakly efficient frontier the projection can still leave slacks in the

constraints defining the DEA reference technology. When slacks exist it is possible

to contract at least one of the inputs or expand at least one of the desirable outputs

even though it is not possible to further contract all inputs and undesirable outputs

and expand all desirable outputs along the directional vector g. Therefore, the

directional distance function potentially underestimates the amount of producer

inefficiency.

Table A.2 Performance estimates

j (1) (2) (3) (4) (5) (6) (7) (8)

1 0 0.50482 0 1.94814 0 1.23397 1.23397 1.23397

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0.18049

5 0 0 0 0.08333 0 0 0 0

6 0 0 0 1.38989 0 2.24679 0 2.24679

7 0.60889 1.00879 1.96581 1.98798 1.56439 1.63782 1.63782 1.63782

8 0 0 0 0 0 0.47475 0 0.47475

9 0.16667 0.16667 1.77778 1.77778 0.16667 0.16667 0.16667 0.16667

10 0 0.28906 0 2.47222 0 1.14634 1.14634 1.14634

(1) ¼ B~D x; y;b; gð Þ, (2) ¼ N~D x; y;b; gð Þ, (3) ¼ BSBI(xo,yo,bo;g), (4) ¼ NSBI(xo,yo,bo;g),

(5) ¼ B~DO x; y;b; gyb
� �

, (6) ¼ BI~DO p=α, y, b; gyb
� �

, (7) ¼ N~DO x; y;b; gyb
� �

,

(8) ¼ NI~DO p=α, y, b; gyb
� �

Table A.1 Synthetic data j x1 x2 x3 z1 z2 y1 y2 y3 b p1 p2 p3

1 8 10 1 12 5 5 5 12 3 1 1 1

2 7 9 2 14 6 7 7 19 2 1 1 1

3 9 5 4 16 7 15 10 17 3 1 1 1

4 4 14 5 20 3 3 15 10 4 1 1 1

5 9 4 6 15 6 2 12 18 3 1 1 1

6 6 12 7 12 7 4 8 19 5 1 1 1

7 10 12 8 25 8 12 10 21 5 1 1 1

8 12 6 9 22 8 15 5 25 4 1 1 1

9 15 5 8 22 9 14 7 15 3 1 1 1

10 14 7 1 20 9 9 9 13 4 1 1 1
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To account for slacks in the constraints defining the black-box DEA technology

Tone (2001) introduced a slacks-based performance measure. In this section we

extend Tone’s method and incorporate undesirable outputs as part of the technol-

ogy. We normalize the slacks in each constraint by the directional vector which

allows the normalized slacks of inputs and outputs to be added. The black-box

slacks-based inefficiency measure (BSBI) for DMUo takes the form

BSBI xo; yo; bo; g
� � ¼ max

s�, sþ, s#, λ

1
N

XN
n¼1

s�n
gx
n

þ 1
M

XM
m¼1

sþm
gy
m
þ 1

L

XL
l¼1

s#l
gb
l

3

xo ¼
XJ
j¼1

xjλj þ s�;

yo ¼
XJ
j¼1

yjλj � sþ;

bo ¼
XJ
j¼1

bjλj þ s#;

s� � 0; sþ � 0; s# � 0; λ � 0

�������������������

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:
ð19:16Þ

In (19.16), the slack in each input constraint, s�n (n ¼ 1, . . ., N ), is normalized

by its corresponding component of gx. Similarly, slacks in the output constraints,

sþm (m ¼ 1, . . ., M ), are normalized by gy, and slacks in the bad output constraints,

sl
# (l ¼ 1, . . ., L ), are normalized by gb. Thus, BSBI(xo,yo,bo;g) is independent of

the units of measurement for inputs and outputs. The BSBI is a directional exten-

sion of Tone’s (2001) slacks-based efficiency measure, or equivalently, Pastor

et al. (1999) enhanced Russell graph efficiency measure.

Equivalent to (19.16) is the black-box directional Russell inefficiency measure,

denoted by

BR xo; yo; bo; g
� � ¼ max

1
N

XN
n¼1

ξ�n þ 1
M

XM
m¼1

ξþm þ 1
L

XL
l¼1

ξ#l

3

xo ¼
XJ
j¼1

xjλj þ ξ�
J

gx;

yo ¼
XJ
j¼1

yjλj � ξþ
J

gy;

bo ¼
XJ
j¼1

bjλj þ ξ#
J

gb;

ξ� � 0; ξþ � 0; ξ# � 0; λ � 0

:

�����������������

9>>>>>>>>>>>=
>>>>>>>>>>>;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19:17Þ

where ξ� ¼ (ξ�1 , . . .,ξ
�
N ) ∈ ℜN

þ, ξ+ ¼ (ξþ1 , . . .,ξ
þ
M) ∈ ℜM

þ and ξ# ¼ (ξ1
#, . . .,ξL

# )

∈ ℜL
þ. The symbol ‘�’ indicates component-wise multiplication. By setting

ξ�n ¼ s�n /g
x
n (8 n), ξþm ¼ sþm /g

y
m (8 m) and ξl

# ¼ sl
#/gbl (8 l ) in (19.17), we obtain

the network SBI measure given in (19.16).
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The dual formulation of (19.16) is

min
v, u, r

vxo � uyo þ rbo

vxj � uyj þ rbj � 0 8j

v � 1

3Ngx
1

, . . . ,
1

3Ngx
N

2
4

3
5

u � 1

3Mgy
1

, . . . ,
1

3Mgy
M

2
4

3
5

r � 1

3Lgb
1

, . . . ,
1

3Lgb
L

2
4

3
5

v � 0, u � 0, r � 0

��������������������������

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

: ð19:18Þ

Hence, slacks-based inefficiency can be obtained by maximizing
1

N

XN

n¼1
ξ�n þ 1

M

XM

m¼1
ξþm þ 1

L

XL

l¼1
ξ#l

3
in (19.17) or minimizing vxo � uyo +

rbo in (19.18). The inefficiency measures (19.16) and (19.17) are generalizations of

the directional distance function given in (19.8). Fukuyama and Weber (2009a,

2010) discuss how the directional distance function in (19.8) is related to the slacks-

based inefficiency measures given by (19.16), (19.17) and (19.18).

The black-box slacks-based inefficiency measure, BSBI(xo,yo,bo;g), equals the
average of mean input inefficiency, mean desirable output inefficiency, and mean

undesirable output inefficiency. Furthermore, BSBI(xo,yo,bo;g) collapses to the

black-box directional distance function (B~D xo; yo; bo; g
� �

) when the slacks-based

projection and the directional projection are equal: xBSBI; bBSBI; yBSBI
� � ¼

xB
~D; bB

~D; yB
~D

	 

. When slacks exist xBSBI ,bBSBI , � yBSBI

� �
<
6¼ xB

~D, bB
~D, � yB

~D
	 


and BSBI xo; yo; bo; g
� �

> B~D xo; yo; bo; g
� �

.

19.3.2 Network Slacks-Based Inefficiency

Adapting Tone and Tsutsui’s (2009) ratio measure,2 Fukuyama and Weber (2010)

defined network slacks-based inefficiency (NSBI) as

2 See Fukuyama and Mirdehghan (2012) for some discussion and analysis of the constraints

associated with intermediate products.
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NSBI xo; yo; bo; g
� �

¼ max
λ1, λ2, sx, sy, sb, ẑ

1
N

XN
n¼1

s�n
gx
n

þ 1
M

XM
m¼1

sþm
gy
m
þ 1

L

XL
l¼1

s#l
gb
l

3

xo ¼
XJ
j¼1

xjλ
1
j þ s�;

yo ¼
XJ
j¼1

yjλ
2
j � sþ;

bo ¼
XJ
j¼1

bjλ
2
j þ s#;

XJ
j¼1

zj λ1j � λ2j

	 

� 0;

λ1 � 0; λ2 � 0; s� � 0;

sþ � 0; s# � 0

���������������������������

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

:

ð19:19Þ

Similar to N~D xo; yo; bo; g
� �

, slacks of intermediate products are not included in

the objective function of (19.19), and only the slacks of the exogenous inputs, final

outputs, and bad outputs are maximized. Equation (19.19) can be thought of as a

directional slacks-based version of Färe and Grosskopf’s (1996) network model

depicted in Fig. 19.1. If NSBI(xo,yo,bo;g) ¼ 0, then DMUo is efficient. Values of

NSBI(xo,yo,bo;g) > 0 indicate inefficiency.

The dual of (19.19) is

min
v,w, u, r

vxo � uyo þ rbo

vxj � wzj � 0 8j; wzj � uyj þ rbj � 0 8j;

v � 1

3Ngx
1

; . . . ;
1

3Ngx
N

2
4

3
5; u � 1

3Mgy
1

; . . . ;
1

3Mgy
M

2
4

3
5;

r � 1

3Lgb
1

; . . . ;
1

3Lgb
L

2
4

3
5; v � 0; u � 0; r � 0; w � 0:

��������������

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð19:20Þ

The relation between the network directional distance function defined in (19.11)

and network slacks-based inefficiency in (19.19) is similar to the one between the

black-box slacks-based inefficiency measure (19.16) and the directional distance

function (19.8). That is, BSBI x; y; b; gð Þ � B~D x; y; b; gð Þ and NSBI x; y; b; gð Þ �
N~D x; y; b; gð Þ.

Accounting for undesirable outputs, Färe and Grosskopf’s (1996) input-based

network efficiency measure takes the form
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FG xo; yo; bo
� � ¼ min

λ1, λ2, θ, s�, sþ
θ

θxo ¼
XJ
j¼1

xjλ
1
j þ s�;

yo ¼
XJ
j¼1

yjλ
2
j � sþ;

bo ¼
XJ
j¼1

bjλ
2
j ;

XJ
j¼1

zj λ1j � λ2j

	 

� 0;

λ1 � 0; λ2 � 0; s� � 0; sþ � 0

�����������������������

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

: ð19:21Þ

Similarly, Kao and Hwang’s (2008) input-oriented efficiency measure can be

modified to account for undesirable outputs as

KH xo; yo; bo
� � ¼ max

v, u, w, r
uyo � rbo

vxo ¼ 1

wzj � vxj � 0 8j,
uyj � rbj � wzj � 0 8j,
v � 0, w � 0, u � 0, r free

��������

8>><
>>:

9>>=
>>;:

ð19:22Þ

Since (19.21) and (19.22) are dual to each other they are equivalent models. This

equivalence was established by Chen et al. (2010) for the case without bad outputs.

Table A.2 of the Appendix provides DEA estimates of BSBI(xo,yo,bo;g) and
NSBI(xo,yo,bo;g) for the synthetic data set reported in Table A.1. Furthermore, the

estimates verify thatBSBI xo; yo; bo; g
� � � B~D xo; yo; bo; g

� �
andNSBI xo; yo; bo; g

� �
� N~D xo; yo; bo; g

� �
.

19.3.3 Decomposing Network Slacks-Based Inefficiency

In the context of the models presented in the previous sections two types of bias

can arise when measuring the inefficiency of decision-making units. The first type

of bias arises when there is a network production structure but inefficiency is

estimated using one of the many standard black-box DEA models. The second type

of bias ariseswhen the inefficiencymeasure ignores potential input and output slacks.

We define a DMU as strongly efficient relative to the black-box technology if

x; y; bð Þ ∈ BT and x� s�n , yþ sþm ,b� s#l
� �

=2 BT for s�n > 0, sþm > 0, or s#l > 0:

ð19:23Þ
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That is, an observation is strongly efficient if it is not possible to contract at least

one of the inputs or undesirable outputs, or expand at least one of the desirable

outputs given the technology. Similarly, a DMU is strongly efficient relative to the

network technology if

x; y; bð Þ ∈ NT and x� sþn , yþ sþm ,b� s#l
� �

=2 NT for s�n > 0, sþm > 0, or s#l > 0:

ð19:24Þ

Network directional inefficiency, N~D xo; yo; bo; g
� �

, contracts inputs and unde-

sirable outputs, and expands desirable outputs to the weakly efficient frontier.

However, the projected point of N~D xo; yo; bo; g
� �

can still leave slacks in the

constraints that define the DEA technology. When slack exists, it is possible for a

DMU to be on the weakly efficient frontier but able to expand at least one desirable

output or contract at least one undesirable output or input. In contrast, BSBI(xo,yo,
bo;g) and NSBI(xo,yo,bo;g) contract inputs and undesirable outputs and expand

desirable outputs to the strongly efficient frontier, which is a subset of the weakly

efficient frontier.

We define an indicator of slack bias for DMUo as

SlackBias xo; yo; bo; g
� � ¼ NSBI xo; yo; bo; g

� �� N~D xo; yo; bo; g
� �

: ð19:25Þ

Let the decision variables that are solutions to the network directional distance

function defined in (19.11) be represented as β*, sx*, sy*, and λ*. By setting

s�n ¼ β*gx + sx*, sþm ¼ β*gy + sy* and sl
# ¼ β*gb, and letting the intensity vari-

ables, λkj in (19.19) equal the optimal intensity variables λk�j from (19.11) for all

j and k ¼ 1,2, the objective function of (19.19) becomes

1

N

XN
n¼1

s�n
gx
n

þ 1

M

XM
m¼1

sþm
gy
m
þ 1

L

XL
l¼1

s#l
gb
l

3
¼

1

N

XN
n¼1

β�gx
n þ sx�n
gx
n

þ 1

M

XM
m¼1

β�gy
m þ sy�m
gy
m

þ 1

L

XL
l¼1

β�gb
l

gb
l

3

¼ β� þ

1

N

XN
n¼1

sx�n
gx

þ 1

M

XM
m¼1

sy�m
gy
m

3

ð19:26Þ

and all the constraints of (19.11) satisfy

xo ¼
XJ
j¼1

xjλ
1�
j þ s��, yo ¼

XJ
j¼1

yjλ
2�
j � sþ�, and bo ¼

XJ
j¼1

bjλ
2�
j þ s#�: ð19:27Þ
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It follows that NSBI xo; yo; bo; g
� � � β� ¼ N~D xo; yo;bo; g

� �
. If NSBI(xo,yo,bo;g)

equals N~D xo; yo; bo; g
� �

, then SlackBias(xo,yo,bo;g) ¼ 0 and the network direc-

tional distance function projects the outputs and inputs to the strongly efficient

frontier. When NSBI(xo,yo,bo;g) is greater than N~D xo; yo; bo; g
� �

, there is at least

one of the constraints defining the network technology where slack remains and

SlackBias(xo,yo,bo;g) > 0. Therefore, SlackBias(xo,yo,bo;g) measures the amount

that the network directional distance function underestimates inefficiency. A sim-

ilar indicator of slack bias could be constructed for the black-box technology by

estimating the amount that BSBI(xo,yo,bo;g) is greater than B~D xo; yo; bo; g
� �

.

To investigate the second kind of bias-ignoring a network structure-let the

optimal solution vector to the black-box slacks-based inefficiency, BSBI(xo,yo,
bo;g), be (sBx�*,sBy+*,sBb*,λ*), where λ* ¼ (λ�1, . . . λ

�
J) is the vector of intensity

variables that defines the black-box technology. For the same DMU let the

optimal solution vector to NSBI(xo,yo,bo;g) be (sNx�*,sNx+*,sNb*,λ1*,λ1*), where
λ1* ¼ (λ1�1 , . . .,λ1�J ) and λ2* ¼ (λ2�1 , . . .,λ2�J ) are the optimal intensity vectors for

stage 1 and stage 2 of the network technology. A feasible, but not necessarily

optimal solution to NSBI(xo,yo,bo;g) is found by choosing λ1 ¼ λ2 ¼ λ*. Since

other choices of λ1 and λ2 that satisfy
XJ
j¼1

zj λ1j � λ1j

	 

� 0 are possible, NSBI(xo,yo,

bo;g) is greater than or equal to BSBI(xo,yo,bo;g). We define the bias in the black-

box estimate of inefficiency relative to the network estimate of inefficiency as

NetBias xo; yo; bo; g
� � ¼ NSBI xo; yo; bo; g

� �� BSBI xo; yo; bo; g
� � � 0 ð19:28Þ

for (xo,yo,bo) ∈ BT. This indicator shows the bias in black-box slacks-based

inefficiency that arises from ignoring an existing network structure.

From (19.25) and (19.28), we obtain the following network slacks-based

inefficiency decompositions:

NSBI xo; yo; bo; g
� � ¼ SlackBias xo; yo; bo; g

� �þ N~D xo; yo; bo; g
� �

NSBI xo; yo; bo; g
� � ¼ NetBias xo; yo; bo; g

� �þ BSBI xo; yo; bo; g
� �

:
ð19:29Þ

For managers of a company, SlackBias(xo,yo,bo;g) gives information on whether

or not any input can be contracted or output expanded given a network structure.

For example, bank managers who use benchmarking to evaluate their bank’s

performance might note that it is not possible to further expand outputs and

simultaneously contract inputs and non-performing loans if N~D xo; yo; bo; g
� � ¼ 0.

On the other hand, if SlackBias(xo,yo,bo;g) > 0, then the manager knows that even

though they are on the weakly efficient frontier it is possible to expand at least one

output or contract at least one input and this information can lead to further

efficiency gains.
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Similarly, an inefficiency measure that accounts for all slacks, such as BSBI
(xo,yo,bo;g), still provides no information on efficiency gains that might be realized

by accounting for a network structure to the bank technology. For managers,

positive values of NetBias(xo,yo,bo;g) tell them that they should look for efficiency

gains by investigating the linkage between various divisions or stages of production

within the bank and not focus solely on one specific output or input.

19.4 Budget-Constrained Inefficiency

19.4.1 Black-Box and Network Budget-Constrained
Output Sets and Inefficiency

Sometimes producers have a fixed budget with which to hire inputs but have

discretion over which inputs to hire. Different choices of inputs will yield different

output possibility sets. Let the (direct) output possibility set be defined as

BP xð Þ ¼ y;bð Þ��x ∈ ℜN
þ can produce y; bð Þ ∈ ℜMþL

þ
� �

: ð19:30Þ

The directional output distance function takes the form

B~DO x; y; b; gyb
� � ¼ sup β yþ βgy,b� βgb

� �
∈ BP xð Þ��� �

: ð19:31Þ

Following Shephard (1970, 1974), the budget-constrained (indirect) output set is

defined as

BIP p=αð Þ ¼ y; bð Þ y; bð Þ ∈ BP xð Þ and
XN

n¼1
pn=αð Þxn � 1

���n o
ð19:32Þ

where input prices are represented by p ¼ ( p1, . . .,pN) ∈ RN
þ, α ¼ px is a positive

budget used to hire inputs, and BIP(p/α) is the set of outputs that can be produced

given the fixed budget and input prices. The budget-constrained output set can also

be expressed as

BIP p=αð Þ ¼ y; bð Þ BC p=α, y,bð Þ � 1jf g ð19:33Þ

where

BC p=α, y,bð Þ ¼ 1

α
�min

x
px x, y, bð Þ ∈ BT, x � 0jf g: ð19:34Þ

is the black-box cost efficiency measure. Färe and Primont (1995) showed that for

∑ N
n¼1( pn/α)xn � 1 that
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BIP p=αð Þ ¼ [
p=αð Þx�1

BP xð Þ: ð19:35Þ

Note also that BP(x) � BIP(p/α) for ∑ N
n¼1( pn/α)xn � 1. The relation given in

(19.35) holds because there might be a different set of inputs that can be hired at the

same cost as the observed inputs but be capable of producing even more output.

Such a situation occurs when the observed input bundle is not allocatively efficient.

Relative to the budget-constrained output set, BIP(p/α), the budget-constrained

directional output distance function takes the form

BI~DO p=α, y,b; gyb
� � ¼ sup φ yþ φgy, b� φgb

� �
∈ BIP p=αð Þ��� �

: ð19:36Þ

Similar to the black-box direct output set (19.30) and budget-constrained output

set (19.32), the network direct output set and network budget-constrained output set

are defined as

NP xð Þ ¼ y; bð Þ��x can produce z and z can produce y; bð Þ� �
and ð19:37Þ

NIP p=αð Þ ¼ y; bð Þ y; bð Þ ∈ NP xð Þ and
XN

n¼1
pn=αð Þxn � 1

���n o
¼ y; bð Þ NC p=α, y,bð Þ � 1jf g

ð19:38Þ

where

NC p=α, y,bð Þ ¼ 1

α
�min

x
px x, y, bð Þ ∈ NT, x � 0jf g ð19:39Þ

is the network cost efficiency measure (Fukuyama and Matousek 2011). The

associated network directional output distance functions take the form

N~DO x; y; b; gyb
� � ¼ sup β yþ βgy,b� βgb

� �
∈ NP xð Þ��� �

and ð19:40Þ
NI~DO p=α, y,b; gyb

� � ¼ sup φ yþ φgy,b� φgb
� �

∈ NIP p=αð Þ��� � ð19:41Þ

where subscript “O” in (19.40) and (19.41) indicates that performance is gauged for

outputs holding inputs constant; i.e., gx ¼ 0.

Gauging performance based on the network budget-constrained output set is

often appropriate when DMUs do not seek to maximize profits or revenues. Such

instances can occur for organizations in the public sector such as schools

(Grosskopf et al. 1997) or non-profit or cooperative financial institutions such as

Japanese credit cooperatives (Fukuyama et al. 1999) or in major professional sports

leagues like the National Football League or National Basketball Association where

each individual team faces a salary cap. In these cases the organizations may not

seek to minimize costs, but instead seek to maximize desirable outputs and mini-

mize undesirable outputs given their fixed budget. However, the organizations can

choose the level and mix of inputs and in turn, performance depends on the outputs
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produced relative to maximum potential outputs. Comparing DMU efficiency

relative to BP(x) and BIP(p/α) for the black-box model or NP(x) and NIP(p/α)
for the network model provides an estimate of the lost output due to a misallocation

of inputs, holding the total cost of production constant (Fukuyama and Weber

2009b, 2013).

19.4.2 DEA Implementation of Budget-Constrained
Inefficiency

Estimates of the direct and budget-constrained directional output distance functions

for the black-box and network technologies presented in the previous subsection

can be obtained using DEA. The black-box output possibility set takes the form

BP xð Þ ¼ y; bð Þ
XJ
j¼1

xjλj � x;
XJ
j¼1

yjλj � y;
XJ
j¼1

bjλj ¼ b; λ � 0

�����
( )

ð19:42Þ

and the black-box budget-constrained output possibility set takes the form

BIP p=αð Þ ¼ y; bð Þ
XJ
j¼1

xjλj � x;
XJ
j¼1

yjλj � y;
XJ
j¼1

bjλj ¼ b;
XN
n¼1

pnxn � α; λ � 0

�����
( )

ð19:43Þ

The black-box directional output distance function defined on (19.42) is

B~DO xo; yo; bo; g
yb

� � ¼ max
λ, β

β
XJ
j¼1

xjλj � xo;
XJ
j¼1

yjλj � yo þ βgy;

�����
(

XJ
j¼1

bjλj ¼ bo � βgb; λ � 0; β : free

) ð19:44Þ

and the budget-constrained directional output distance function defined on

(19.43) is

BI~DO po=αo, yo,bo
� � ¼ max

λ, x, β
β

XJ
j¼1

xjλj � x; pox � αo;
XJ
j¼1

yjλj � yo þ βgy;

�����
(

XJ
j¼1

bjλj ¼ bo � βgb; λ � 0; x � 0; β : free

)
:

ð19:45Þ
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In (19.44), the inputs for DMUo are taken as given and the desirable and

undesirable outputs are projected to the frontier. In contrast, in (19.45), the inputs

are optimally chosen so as to allow the maximum expansion in desirable outputs

and contraction in undesirable outputs.

The DEA-based network output possibility set is represented by

NP xð Þ ¼ y; bð Þ

XJ
j¼1

xjλ
1
j � x;

XJ
j¼1

yjλ
2
j � y;

XJ
j¼1

bjλ
2
j ¼ b;

XJ
j¼1

zj λ1j � λ2j

	 

� 0; λ1 � 0; λ2 � 0

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ð19:46Þ

and the network budget-constrained output possibility set is

NIP po=αoð Þ ¼ y; bð Þ

XJ
j¼1

xjλ
1
j � x, pox � αo;

XJ
j¼1

yjλ
2
j � y;

XJ
j¼1

bjλ
2
j ¼ b;

XJ
j¼1

zj λ1j � λ2j

	 

� 0; λ1 � 0; λ2 � 0; x � 0

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ð19:47Þ

where input prices are allowed to vary across DMUs. We employ a network

directional output distance function to measure technical inefficiency. This distance

function measures the extra desirable output and contraction in undesirable output

that can be produced for a given directional vector, gyb. The network directional

output distance function is

N~DO xo; yo; bo; g
yb

� �

¼ max
λ1, λ2, β

β

XJ
j¼1

xjλ
1
j � xo;

XJ
j¼1

yjλ
2
j � yo þ βgy;

XJ
j¼1

bjλ
2
j ¼ bo � βgb;

XJ
j¼1

zj λ1j � λ2j

	 

� 0; λ1 � 0; λ2 � 0; β : free

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð19:48Þ

This distance function measures output technical inefficiency. If

N~DO xo; yo; bo; g
yb

� � ¼ 0 and (yo,bo) is not dominated by any other activities in

NP(xo), then DMUo is weakly efficient relative to the output possibility set NP(xo).

Values of N~DO xo; yo; bo; g
yb

� �
> 0 indicate inefficiency. The dual to (19.48) is
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min
v,w, u, r

vxo � uyo þ rbo

ugy þ rgb ¼ 1; vxj � wzj � 0 8j;
wzj � uyj þ rbj � 0 8j;
v � 0; w � 0; u � 0; r : free

������
8<
:

9=
;: ð19:49Þ

If DMUo is allowed to choose inputs and intermediate outputs, performance can

be measured by the network budget constrained directional output distance function

defined on (19.47) as:

NI~DO po=αo, yo,bo; g
yb

� �

¼ max
λ1, λ2, x,φ

φ

XJ
j¼1

xjλ
1
j � x, pox � αo;

XJ
j¼1

yjλ
2
j � yo þ φgy;

XJ
j¼1

bjλ
2
j ¼ bo � φgb;

XJ
j¼1

zj λ1j � λ2j

	 

� 0; λ1 � 0; λ2 � 0;

x � 0; φ : free

�������������������

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,
ð19:50Þ

which is based on the budget-constrained (indirect) network directional output

distance function. If NI~DO po=αo, yo,bo; g
yb

� � ¼ 0 and (yo,bo) is not dominated

by any other activities in NIP(po/αo), then DMUo produces on the budget-

constrained frontier of (19.47) and is weakly efficient for the directional vector

gyb. A DMU is inefficient if NI~DO p x
o=αo, yo,bo; g

yb
� �

> 0, with larger values

indicating greater inefficiency. The dual to (19.50) is

min
v,w, u, r, ζ

ζ � uyo þ rbo

ugy þ rgb ¼ 1; vxj � wzj � 0 8j;
wzj � uyj þ rbj � 0 8j; � vn þ ζ pn=αoð Þ � 0 8n;
v � 0; w � 0; u � 0; r : free; ζ � 0

������
8<
:

9=
;:

ð19:51Þ

Since the network budget-constrained output set allows inputs to be chosen

given a budget it allows more alternative output vectors to be produced so NIP

(po/αo) 	 NP(xo) for the vector (po/αo, xo) satisfying ∑ N
n¼1( pno/αo)xn � 1. There-

fore it is also the case that

NI~DO po=αo, xo, yo,bo; g
yb

� � � N~DO xo; yo; g
yb

� �
: ð19:52Þ

Let the difference between the left and right-hand sides of (19.52) represent the

loss of output due to a misallocation of inputs. The network output loss indicator

equals
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NOL xo; yo; bo; g
yb

� � ¼ NI~DO po=αo, yo,bo; g
yb

� �� N~DO xo; yo; bo; g
yb

� � ð19:53Þ

which can be arranged as

NI~DO po=αo, yo, bo; g
yb

� � ¼ NOL po=αo, xo, yo,bo; g
yb

� �
þ N~DO xo; yo; bo; g

yb
� � ð19:54Þ

Therefore, overall network inefficiency consists of two parts: technical ineffi-

ciency caused by the failure to maximize final outputs given inputs,

N~DO xo; yo; bo; g
yb

� �
, and the lost output due to a misallocation of inputs given

the budget and input prices, NOL(po/αo, xo, yo, bo; g
yb).

Table A.2 provides DEA estimates of the black-box and network budget

constrained directional distance functions. In addition the estimates show that I~DO

po=αo, xo, yo,bo; g
yb

� � � B~DO xo; yo; bo; g
yb

� �
and that NI~DO po=αo, xo, yo,bo; g

yb
� �

� N~DO xo; yo; bo; g
yb

� �
since the black-box and network output sets are contained

within the respected budget-constrained black-box technology and budget-

constrained network technology.

Slacks-based measures of performance evaluated relative to the direct and

budget constrained output possibility sets can also be constructed. We leave that

as an exercise for the reader.

19.5 Summary and Conclusions

Black-box models of a production technology assume that inputs enter and outputs

emerge from a metaphorical black-box. Two-stage network models are a way of

partially opening the black-box. In network models, producers use inputs in a first

stage of production to produce an intermediate output that becomes an input used to

produce final outputs in the second stage. We employed directional distance

functions to measure the performance of producers for both kinds of technologies.

Directional distance functions can be easily estimated using DEA and can allow for

non-radial projections of inputs and outputs to the frontier technology. Directional

distance functions are also particularly useful when undesirable outputs such as

pollution or bad loans are jointly produced as by-products along with desirable

outputs. The models we develop all assumed that these undesirable outputs are part

of the final outputs produced in stage 2.

Recent work by Akther et al. (2013) has extended the network models presented

in this chapter to a dynamic framework where decisions made in one period impact

future period’s production possibilities. Specifically, Akther et al. (2013) allowed

the undesirable outputs produced in stage 2 in one period to become an undesirable

input to stage 1 in a subsequent period. In the context of production by banks, such a

model is useful because non-performing loans become a drag on the fiscal position
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of banks in future periods and regulatory requirements generally require larger

amounts of financial equity capital to offset those non-performing loans. Thus,

producers might want to consider how to allocate a fixed amount of input between

various production periods so as to maximize the size of a dynamic output possi-

bility set. Färe et al. (2012) have considered these kinds of time substitution

opportunities.
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Appendix

The synthetic data set in Table A.1 is used to estimate the black-box and two-stage

network performance indicators presented in the paper. In the first stage N ¼ 3

inputs are used to produce Q ¼ 2 intermediate outputs. In the second stage the

Q ¼ 2 intermediate outputs become inputs to produceM ¼ 3 desirable outputs and

L ¼ 1 undesirable output. We choose a directional vector of g ¼ (gx1,g
x
2,g

x
3,g

y
1,g

y
2,g

y
3,

gb1) ¼ (1,1,1,1,1,1,1) to estimate each of the black-box and network performance

indicators given in (19.8), (19.11), (19.16), and (19.19). We choose g ¼ (gy1,g
y
2,g

y
3,

gb1) ¼ (1,1,1,1) for the black-box and network directional output distance functions

given by (19.44), (19.45), (19.48), and (19.50). Estimates were obtained using

GAMS (Generalized Algebraic Modeling System) with the Minos solver.
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Chapter 20

Performance Measurement of Major League

Baseball Teams Using Network DEA

Herbert F. Lewis

Abstract Data envelopment analysis (DEA) has been extensively applied to

measure the performance of individual athletes and teams in a variety of sports as

well as to analyze nations competing in the Olympics. Most of the models presented

in the literature are single-stage DEA models which treat the underlying process of

converting inputs into outputs as a “black box.” In many situations, analysts are

interested in investigating the sources of inefficiency within the organization in

order to improve organizational performance. To accomplish this, researchers have

developed two-stage and network DEA methodologies.

In this chapter, we model an MLB team as comprised of a front office operation

which consumes money in the form of player salaries to acquire offensive and

defensive talent and an on-field operation which uses the talent to outscore oppo-

nents and win games. We present a network DEA methodology to measure perfor-

mance of the front office operation, the on-field operation, and the overall team.

Finally, we conduct two industry-wide studies of Major League Baseball which

utilize the network DEA methodology.

Keywords Two-stage DEA • Network DEA • Major League Baseball • Efficiency

measurement in sports

20.1 Introduction

Baseball is a sport in which two teams, each consisting of nine players, compete on

a field referred to as a baseball diamond due to its shape. Each team takes turns on

offense (batting) and defense (pitching and playing the field). Traditionally, the

visiting team begins on offense. The batting team sends its players one at a time to
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try to hit a hard ball (thrown by a defensive player called a pitcher) with a wooden

bat. For a batter to be successful, he must safely arrive at a base, which he can

accomplish in several ways. Once the batter arrives safely at a base, he becomes a

base runner. A base runner scores a run by advancing four bases and touching home

plate. A base runner can advance along the bases by the actions of future batters or

by stealing bases.

The defense tries to prevent offensive players from advancing around the bases,

which it can accomplish in several ways. Each success by the defense records one

out; when three outs are recorded, the teams switch roles (the fielding team becomes

the batting team and the batting team becomes the fielding team). When both teams

have batted, they have completed one inning. A game consists of nine innings. The

winning team is the team that has scored the most runs by the end of the game.

If there is a tie at the end of nine innings, the game continues until one team has

more runs than the other does at the end of an inning. See Lorimer (2002) for a more

extensive discussion on baseball.

Major League Baseball (MLB) is a professional baseball league in the United

States and Canada. MLB is made up of two leagues: the National League (NL) and

the American League (AL). From 1901 until the early 1960s, each league consisted

of eight teams. At this time, each league began to expand. By 1969, each league was

comprised of 12 teams, making it necessary to split each league into two divisions.

Expansion continued and in 1994, each league further split into three divisions.

Currently, MLB is comprised of 30 teams. There are 15 teams in the NL and 15 in

the AL. Each of the three divisions within each league contains five teams.

The leagues play under essentially identical rules with one major exception:

since the early 1970s, the American League allows the use of a designated hitter

who bats in place of the pitcher. This potentially leads to generally greater offensive

production in the AL because pitchers are commonly poor batters and designated

hitters are often very good offensively.

Prior to 1961, each team played 154 regular season intra-league games. Since

then, each team plays 162 regular season games. Until 1997, these games were all

intra-league. Since then, each team plays roughly 144 intra-league games and

18 interleague games.

Major League Baseball has become a multi-billion dollar industry with many

individual player salaries in the tens of millions of dollars. With so much money at

stake, it is important for MLB teams to manage resources efficiently. Thus, in this

chapter, we present a model framework for measuring the performance of MLB

teams and use it to perform industry-wide analyses of Major League Baseball. Our

model framework utilizes recent extensions to the data envelopment analysis
(DEA) methodology: namely, two-stage DEA and network DEA. DEA is a linear

programming-based methodology that is widely used to evaluate relative efficiency

of decision making units (DMUs) in situations in which there are multiple inputs

and multiple outputs. Its mathematical development can be traced to Charnes

et al. (1978), who built on the work of Farrell (1957) and others.

The remainder of this chapter is organized as follows. The next section surveys

the application of DEA in baseball and other sports. In Sect. 20.3, we briefly
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describe two-stage DEA and network DEA and review the related literature. In

Sect. 20.4, we present our network DEA model framework for measuring the

efficiency of MLB teams. Section 20.5 presents two previously published MLB

industry-wide studies that apply the two-stage and network DEA methodology.

Finally, we present concluding remarks in Sect. 20.6.

20.2 DEA in Baseball and Other Sports

DEA has been extensively applied to measure the performance of individual

athletes and teams in baseball and other sports as well as nations in the Olympics.

In this section we summarize the literature.

20.2.1 DEA in Baseball

Howard and Miller (1993) use DEA to identify underpaid, equitably paid, and

overpaid MLB players. For each of the 433 players in the study, stolen bases, games

played, at-bats, runs scored, hits, doubles, triples, home runs, runs batted in, batting

average, put outs, assists, errors, fielding average, and years in the league are used

as the inputs to the DEA model. Player salary is the output of the DEA model. A

separate analysis is performed for each position. A reference set for each player is

provided from which an equitable salary can be determined.

Mazur (1994) measures efficiency of MLB batters, pitchers, and teams during

the 1986, 1987, and 1988 seasons. The author performs separate analyses for each

league in each season. The model for batters uses standardized batting average,

standardized number of home runs, and standardized number of runs batted in for

batters having at least 200 at bats in a given season. These measures define the triple

crown frontier (TCF). The model for pitchers uses standardized earned run average,

standardized hits to innings pitched ratio, and standardized base on balls to strike-

outs ratio for pitchers having at least 100 innings pitched in a given season. These

measures define the pitching dominance frontier (PDF). A TCF efficiency score is

determined for each batter and team and a PDF efficiency score is determined for

each pitcher and team in each season. Regression models for each league and

season suggest that a team’s TCF efficiency score and a team’s PDF efficiency

score are significant indicators of its winning percentage.

Anderson and Sharp (1997) present a radial input-oriented CCR DEA model

(Charnes et al. 1978) for measuring performance of MLB batters called the Com-

posite Batter Index (CBI). Their model uses one input (plate appearances) and

five outputs (dominance transformations of walks, singles, doubles, triples, and

home runs). The authors compute CBI scores for players in both the American

League and theNational League from 1901 to 1993 resulting in 186 analyses. Players

with fewer than 350 at-bats with one team in a given season are omitted from the

analysis. Historical results indicate that batting has matured over the decades.
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Specifically, league-wide CBI scores have increased over time. In addition, the

proportion of players with lowCBI scores has increased and the proportion of players

with high CBI scores has increased over the study period. Finally, the authors develop

and test a method for reducing the effect of noise in DEA. Thus allowing the CBI

score to estimate a player’s skill as opposed to his productivity.

Sueyoshi et al. (1999) present a goal programming model to rank Japanese

baseball players in the Central League during the 1995 season. The goal program

utilizes the offensive earned-run average (OERA) index (Cover and Keilers 1977)

and results from a slack-adjusted DEA. The DEA model uses at-bats and double

plays as input measures and singles, doubles, triples, home runs, runs batted in,

steals, sacrifices, and walks as output measures. The authors compare the player

rankings resulting from the OERA index, the DEA model, and the goal program.

Einolf (2004) applies two BCC DEA models (Banker et al. 1984) to measure

efficiency of teams in MLB from 1985 to 2001 and in the National Football League

(NFL) from 1981 to 2000. The model for MLB team efficiency has two inputs (total

salary paid to position players and total salary paid to pitchers) and three outputs

(team wins, team batting average, and team earned-run average). Similarly, the

model for NFL team efficiency has two inputs (total salary paid to offensive players

and total salary paid to defensive players) and three outputs (team wins, team

offensive yards per attempt, and team defensive yards per attempt). The author

uses the DEA results to compare the leagues and concludes that, on average, MLB

teams are less efficient than NFL teams. MLB teams in large markets tend to spend

more and tend to be less efficient than those in small markets. A second conclusion

is that, on average, NFL teams became more efficient after the salary cap was

introduced.

Hadley and Ruggiero (2006) apply two BCC DEA models (Banker et al. 1984)

to determine the contract zone for arbitration-eligible MLB players. One DEA

model reflects the player’s point of view, measuring worth relative to players

who earn more and have relatively lower performance. The other model reflects

the owner’s point of view, measuring worth relative to players who earn less and

have relatively higher performance. A double frontier is generated based on these

two models. The authors demonstrate the approach on position players eligible for

arbitration between the 2001 and 2002 seasons. They use the contract zone deter-

mined by the DEA models and the player’s final arbitrated salary to calculate each

player’s Relative Contract Position (RCP). The RCP is a measure of whether the

final arbitrated salary is favorable to the player (RCP close to 1) or to the owner

(RCP close to 0). Finally, a tobit regression indicates that player performance is the

only significant independent variable in predicting RCP. Player characteristics (race

and position), team characteristics (winning percentage and market size), and

whether a player is a free agent or arbitration-eligible are unrelated to RCP.

Volz (2009) uses an output oriented BCC DEA model (Banker et al. 1984) and

survival time analysis to analyze the effect of minority status on managerial

survival in MLB over the period from 1985 to 2006. Team position player salaries,

team pitching salaries, and average salary of all other in-division teams are used as

the inputs to the DEA model and regular season winning percentage is used as the
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output of the DEA model. The efficiency scores computed by the DEA are included

as covariates in the survival time analysis. The author concludes that on average,

minorities are 9.6 % more likely to return the following season. In addition,

managerial survival is independent of winning percentage.

20.2.2 DEA in Other Sports

DEA has been used to measure individual and team performance in other sports such

as basketball, soccer, and European football. DEA has also been used to measure

efficiency of athletes in non-team sports such as golf and tennis. In addition, DEA

has been applied to evaluate efficiency of nations competing in the Olympics.

20.2.2.1 Basketball

Fizel and D’Itri (1997, 1999) apply DEA to measure the efficiency of coaches in

NCAA Division I college basketball from 1984 to 1991. The DEA models use

player talent and opposition power as the inputs and winning percentage as the

output. In these studies, the authors examine the importance of team effectiveness

(winning percentage) and managerial efficiency on hiring and firing of coaches.

Results indicate that, although hiring and firing of coaches is often based on team

effectiveness, managerial efficiency may be a better measure when making these

decisions.

Cooper et al. (2009) use the two-step procedure for the selection of weights

proposed in Cooper et al. (2007) to measure effectiveness of basketball players in

the Spanish Premier League. They focus on player outputs such as points scored

and percentage of free throw successes and leave out such things as player salaries

and other inputs.

20.2.2.2 Soccer and European Football

Haas (2003a) investigates the efficiency of 20 English Premier League clubs during

the 2000/2001 season using DEA. The input variables are wage bills for players and

coaches and the output variables are points awarded and total revenues. Population

of each club’s home town is introduced in the model as a site characteristic. The

author finds that efficiency and club effectiveness are unrelated. The sensitivity of

results is analyzed with regard to different model specifications and variable

combinations. In all models at least 25 % of the clubs are on the efficient frontier.

Haas (2003b) applies DEA to measure the technical and scale efficiencies of

teams in Major League Soccer (MLS) during the 2000 season. This study uses the

same inputs and outputs as in Haas (2003a). Absolute number of spectators is also

included as an output. The author finds that efficiency scores are highly correlated
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with league performance and that the largest part of team inefficiency can be

explained by scale inefficiency as opposed to technical inefficiency.

Haas et al. (2004) study the efficiency of football teams in the German Bundeslign

during the 1999/2000 season usingDEA. The input variables and output variables are

the same as those inHaas (2003a). In addition, average stadium utilization is included

as an output variable in the model. Findings indicate that efficiency scores are not

correlatedwith effectiveness in the league.Medium-sized and small-sized teams tend

to outperform large-sized teams. The authors also decompose the sources of ineffi-

ciency into technical inefficiency and scale inefficiency.

Espitia-Escuer and GarcÍa-CebriÁn (2004) use DEA to measure the efficiency of

teams in the Spanish First Division from 1998 to 2001. The number of players used,

attacking moves, the minutes of possession of the ball, and the shots and headers are

the input variables and the number of points achieved is the output variable. The

authors conclude that the efficient teams do not always correspond with those that

finished highest in the league at the end of the season.

Espitia-Escuer and GarcÍa-CebriÁn (2006) use an output oriented DEAmodel to

evaluate the performance of Spanish First-Division soccer teams between the years

1998 and 2005. The authors use the same inputs and output as in Espitia-Escuer and

GarcÍa-CebriÁn (2004). The main finding is that the final league position of a team

depends more on its efficient use of resources than on its potential.

Barros and Leach (2006) apply an input oriented DEA model to panel data on

English Premier League Football Clubs in the years 1998/1999 to 2002/2003. The

authors measure three outputs (points obtained in the season, attendance and

turnovers) and four inputs (number of players, wages, net assets, and stadium

facilities expenditures). The main conclusion is that the clubs display equivalent

managerial skills, but they do not display equivalent scale efficiency.

Garcı́a-Sánchez (2007) present a three-stage DEA model to measure perfor-

mance of teams in the Spanish Professional Football League during the 2004/2005

season. The first stage consumes offensive talent (attacking moves, passes to the

penalty area and shots at goal) and defensive talent (ball recovery and goalkeeper’s

actions) as inputs and produces goals scored by the team and the inverse of goals

scored by the opposing teams as outputs. The outputs from the first stage determine

the inputs to the second stage. The second stage outputs reflect the final ranking of

the team. Finally, the third stage input is determined from the output of the second

stage and the output is the number of spectators who attended the team’s home

games. Site characteristics related to province population and stadium size are

considered in the third stage of the model. Results indicate that technical ineffi-

ciency of the defense is greater than that of the offense. In addition, teams with the

most experience are more effective than those with little experience.

Guzmán and Morrow (2007) use an input oriented DEA to measure the effi-

ciency of clubs in the English Premier League from 1997/1998 to 2002/2003. The

authors consider two inputs (directors’ remuneration and general expenses) and two

outputs (points won in a season and total revenue for the corresponding financial

year). A second study is performed using the Malmquist productivity index

(Malmquist 1953) to measure the change in productivity over the study period.
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Results indicate that clubs which were successful on the field achieved relatively

low efficiency scores, while other clubs that enjoyed less success on the field were

relatively more efficient. In addition, there was little evidence that teams improved

their productivity over time.

Boscá et al. (2009) analyze the performance of Italian and Spanish football clubs

using DEA during the 2000/2001, 2001/2002, and 2002/2003 seasons. The authors

select goals scored as the offensive output, goals conceded as the defensive output,

four offensive inputs (shots-on-goal, attacking plays made by the team, passes into

the opposing team’s centre area, and minutes of possession) and four defensive

inputs (the inverse of shots-on-goal made by the opposing team, the inverse of

attacking plays made by the opposing team, the inverse of passes to the centre area

made by the opposing team, and the inverse of minutes of possession by the

opposing team). Results indicate that the Spanish league is more homogeneous

and competitive than the Italian league. In addition, to improve competitiveness in

the Italian league, it is more important to improve defensive, rather than offensive,

efficiency. On the other hand, to improve the ranking in the Spanish league, the best

strategy is to improve offensive efficiency when playing at home and then to

improve offensive efficiency when playing away from home.

González-Gómez and Picazo-Tadeo (2010) use DEA to measure performance of

Spanish professional football teams at competition level (League, King’s Cup, and

European competitions) from season 2001/2002 to season 2006/2007 and use the

results as a proxy of fan satisfaction. The DEA model has three outputs (the points

obtained in the league at the end of each season, the number of rounds played in the

King’s Cup, and the number of matches played in European competitions) and four

inputs (the number of players in each season, the average number of spectators per

match, the number of seasons played in the First Division, and the trophies in

national and international competitions).

20.2.2.3 The Olympics

Lozano et al. (2002) present a variable returns-to-scale DEA model to measure

performance of nations competing in five summer Olympic games (from 1984 to

2000). The authors use two inputs (GNP and population of the country under

consideration) and three outputs (the numbers of gold, silver, and bronze medals

won by the country under consideration). Weights are used to differentiate between

the value associated with each medal type.

Churilov and Flitman (2006) use DEA to generate a ranking of the nations that

participated in the Sydney 2000 summer games. Their goal is “to design an

objective impartial system of analysis of the Olympics results which the majority

of participating countries would agree upon as a measuring tool without significant

bias.” The inputs to the DEA model are population of the country under consider-

ation, its GDP per capita (in U.S. dollars), its disability adjusted life expectancy,

and its index of equality of child survival. The model consists of four outputs
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determined from utility functions on the numbers of gold, silver, and bronze medals

won by the country under consideration.

Li et al. (2008) use a variable returns-to-scale context-dependent assurance

region DEA model (Cook and Zhu 2008) to “fairly” rank the performance of

78 different nations that participated in six summer Olympics (from 1984 to

2004). Nations are classified into four groups based on wealth. This classification

is used to impose the assurance region restrictions. Inputs to the model include

population of the country under consideration and its GDP per capita (in U.S.

dollars). Outputs are the numbers of gold, silver, and bronze medals won by the

country under consideration.

Wu et al. (2009) use cross efficiency evaluation (Sexton et al. 1986) to measure

performance of nations that competed in six summer Olympic games (from 1984 to

2004). The authors use the same inputs and outputs as in Li et al. (2008) and weight

the outputs as in Lozano et al. (2002).

Wu et al. (2010) use an integer-valued DEA model to evaluate efficiency of

nations involved in the Beijing Olympics. The inputs and outputs are the same as

those in Li et al. (2008). In this analysis, the target outputs (number of gold, silver,

and bronze medals) determined from the DEA must be integer values.

20.2.2.4 Golf and Tennis

Fried et al. (2004) use DEA to measure the efficiency of golfers on the PGA, LPGA,

and SPGA tours during the 1998 season. For each golfer, a performance under

pressure index and an athletic ability performance index are determined.

Ruiz et al. (2013) use DEA to measure efficiency of professional tennis players.

The authors provide an index of the overall performance of players by aggregating

the Association of Tennis Professionals (ATP) statistics and compare the results

to the ATP rankings.

20.3 Two-Stage and Network DEA

With the exception of Garcı́a-Sánchez (2007), who presents a three-stage DEA

model for teams in the Spanish Professional Football League, the DEA models

discussed in the previous section are all variations of the standard single-stage DEA

model. Such models treat the production process in which inputs are converted into

outputs as a “black box” and provide little insight as to the sources of inefficiency.

These single-stage DEA models are appropriate in many situations including when

the objective of the study is to rank DMUs based on performance. However, in

many other situations, analysts and DMU managers seek more detailed information

to assist them in improving managerial performance.
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20.3.1 Two-Stage and Network DEA Methodology

To address this issue, researchers have proposed two-stage and network DEA

models. In network DEA, each DMU is comprised of two or more sub-DMUs.

Each resource consumed by a sub-DMU either enters the DMU from outside (input

to the DMU) or is produced by another sub-DMU (intermediate product). Each

product produced by a sub-DMU either exits the DMU (output of the DMU) or is

consumed by another sub-DMU (intermediate product). Figure 20.1 shows the

internal structure of a DMU in a network DEA model. The DMU is a directed

acyclic graph in which the nodes correspond to sub-DMUs and the arcs correspond

to inputs to the DMU, outputs from the DMU, or intermediate products from one

sub-DMU to another.

In this chapter, we apply the two-stage methodology and network DEA meth-

odology proposed by Sexton and Lewis (2003) and Lewis and Sexton (2004a),

respectively. The methodologies allow the analyst to measure the efficiency of each

sub-DMU as well as the efficiency of the DMU itself. To measure the efficiency of a

given sub-DMU, solve a standard single-stage DEA model for the sub-DMU. To

evaluate the DMU-level efficiency use the directed acyclic structure of the under-

lying graph to identify a partial order of the sub-DMUs. Resolve the DEAmodel for

each sub-DMU in accordance with the partial order, assuming that all sub-DMUs

that precede the sub-DMU under analysis are efficient. Then, for an input (output)

oriented model, the DMU-level efficiency (inverse efficiency) is the largest

(smallest) of the ratios, computed for each input (output) of what could have been

consumed (produced) to what was actually consumed (produced).

Fig. 20.1 Internal structure of a DMU in a network DEA model
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20.3.2 Two-Stage and Network DEA Literature

Over the past two decades, several papers have been published on the theory,

methodology, and application of two-stage and network DEA. Färe and Whittaker

(1995) apply an input oriented two-stage DEA model to study relative efficiency

of dairy production. Seiford and Zhu (1999) evaluate the performance of 55

U.S. commercial banks using a two-stage network DEA model. In another study,

Färe and Grosskopf (2000) present a network DEA model for the Swedish Institute

for Health Economics. Zhu (2000) applies two-stage network DEA to develop a

multi-factor financial performance model to examine Fortune Global 500 compa-

nies. Castelli et al. (2001) describe a DEA-like model that evaluates the efficiencies

of each of a number of interdependent sub-DMUs within a larger DMU. Their

analysis assesses sub-DMU efficiency relative to other sub-DMUs within the same

DMU. Chen and Zhu (2004) develop an efficiency model that identifies the efficient

frontier of a two-stage production process linked by intermediate measures. They

illustrate the approach on a set of firms in the banking industry. Yang (2006) creates

a two-stage DEA model to provide managerial insights for the Canadian life and

health insurance industry. Chen et al. (2006) contend that two-stage DEA with a

single intermediate product can behave as a parametric linear model. They develop

a nonlinear DEA model to evaluate the impact of information technology on

multiple stages of a business operation along with information on how to distribute

IT-related resources so that efficiency is achieved. Färe et al. (2007) survey network

DEAmodels and present three network DEA examples. Liang et al. (2008) examine

and extend the two-stage DEA model using game theory concepts. They also

investigate the relationship among non-cooperative, centralized, and standard

DEA approaches. Kao and Hwang (2008) develop a two-stage DEA model and

apply it to measure efficiency of non-life insurance companies in Taiwan. Chen

et al. (2009a) develop an additive efficiency decomposition approach to generalize

the two-stage DEA model presented by Kao and Hwang (2008). Chen et al. (2009b)

examine the relationship and equivalence between the two-stage DEA approaches

of Chen and Zhu (2004) and Kao and Hwang (2008). Tone and Tsutsui (2009)

present a slacks-based measure approach to network DEA that applies to differing

model orientations. They demonstrate their methodology by measuring the effi-

ciency of electric power companies. Chen et al. (2010) develop an approach for

determining the frontier points for inefficient DMUs within the framework of

two-stage DEA. Tone and Tsutsui (2010) present a dynamic slacks-based measure

model that can evaluate the overall efficiency of the DMUs as well as the efficien-

cies of the individual sub-DMUs in a network DEA. In a survey paper, Cook

et al. (2010) review and classify several two-stage network DEA structures. In

many of these models, the first stage processes the DMU’s inputs into intermediate

products and the second stage converts the intermediate products into outputs.

Lewis and Mazvancheryl (2011) develop a network DEA model to measure the

efficiency of the customer satisfaction process and apply it to the automobile

industry. Holod and Lewis (2011) present a two-stage DEA model to measure

484 H.F. Lewis



efficiency of bank holding companies which resolves a long time dilemma by

treating deposits as an intermediate product as opposed to an input or an output to

the process. Mallikarjun et al. (2013) study the relationship between efficiency and

government subsidization of the U.S. commuter rail system using an unoriented

network DEA model.

20.4 Network DEA Model for a Major League

Baseball Team

Sexton and Lewis (2003) present a sequential two-stage DEA model for measuring

the efficiency of MLB teams. Each MLB team consists of a front office operation

and an on-field operation. The methodology provides efficiency scores for the front

office operation and the on-field operation as well as the overall organization. The

two-stage methodology is then extended in Lewis and Sexton (2004a) to a network

DEA model which allows for efficiency measurement of organizations with more

complex internal structures. The network DEA model further divides the front

office operation and on-field operation of an MLB team. The two-stage and network

DEA methodologies allow for constant or variable returns-to-scale processes and

permit input oriented or output oriented models. In addition, Lewis et al. (2013)

present an unoriented two-stage DEA methodology and apply it to measure effi-

ciency of MLB teams during the 2009 season.

Figure 20.2 presents our network representation of an MLB team. The front

office operation consumes money in the form of position player and pitcher salaries

to acquire offensive and defensive talent. The on-field operation uses this talent to

score runs and to prevent the team’s opponents from scoring runs in order to win

games.

Fig. 20.2 Network model of an MLB team consisting of a front office operation and an on-field

operation
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20.4.1 Inputs, Intermediate Products, and Outputs

Total player salary (TPS) of a team in a season consists of position player salaries

(POS) which reflect the offense and pitching salaries (PIT) which reflect the

defense. Offensive talent can be measured by total bases gained (TBG) by the

team in a season. MLB uses a statistic called total bases (TB) to measure offensive

performance. Specifically, MLB’s definition of total bases for a team in a season is

TB ¼ S + 2D + 3T + 4HR where S is the number of singles, D is the number of

doubles, T is the number of triples, and HR is the number of home runs hit by the

team. We extend this definition by adding BB, the number of walks received by the

team and E, the number of fielding errors committed by the opposing team. Thus,

TBG ¼ TB + BB + E. We point out that, with the exception of the relatively rare

hit by pitch and catcher, fielder, or umpire interference, our definition of TBG
includes all the ways in which a batter can reach first base without an out being

recorded. We recognize that not every error results in the batter reaching first base.

However, each error results in at least one runner (and in many cases the batter)

advancing at least one base. We elect to model errors as the approximate equivalent

of singles and walks. Defensive talent can be measured by total bases surrendered

(TBS) to the team’s opponents in a season. We define TBS identically to TBG except

that the summands refer to the number of such hits and walks surrendered by the

team, and the number of fielding errors committed by the team, in the given season.

Runs gained (RG) is the number of runs scored by the team in a season. Runs

surrendered (RS) is the number of runs scored by the team’s opponents in a season.

We note that TBS and RS are “reverse quantities,” in the sense that larger values

correspond to less, rather than more, defensive contribution. We use the method-

ology developed by Lewis and Sexton (2004b) to incorporate reverse quantities in

our models. The output of the process is games won (GW) by the team in a season.

We note that various inputs, intermediate products, and outputs may be aggregated

or disaggregated and sub-DMUs may be split or combined depending on the

analyst’s preferences and the data available.

20.4.2 Model Orientation and Returns-to-Scale

We select an output orientation for each MLB team as well as its front office

operation and its on-field operation because we feel that the appropriate improve-

ment for an inefficient team is to increase the number of games it wins rather than

decrease its total player salary. This orientation is consistent with each team’s long-

term goal of qualifying for post-season play. The input orientation would imply that

all teams seek to hold its games won at current levels, an assumption that, we

believe, contradicts the fundamental competitive nature of baseball teams. We

recognize that individual teams may make economic decisions to spend less
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(or more) on player salaries. However, we see this as a scale change, not evidence of

an input orientation.

We select a variable returns-to-scale model for the front office operation because

of the “threshold” nature in which player salaries result in offensive and defensive

production. At very low levels of player salary, we expect the marginal return to be

less than the average return. Low budget teams will tend to sign weaker players and

yet must conform to minimum salary levels set by the Major League Baseball

Players Association contract with MLB. Below a certain threshold, therefore, we

expect non-increasing returns-to-scale. Eventually, as player salary increases

beyond this threshold, the team is better able to sign superior players who contribute

significantly on the field. Here we expect non-decreasing returns-to-scale. At very

high salary levels, we again expect the marginal return to be less than the average

return. Superstar players who command the highest salaries are unlikely to provide

offensive and defensive performance commensurate with their salaries. Above a

second threshold, therefore, we expect non-increasing returns-to-scale.

We select a variable returns-to-scale model for the on-field operation because of

the “threshold” nature in which offensive and defensive performance combine to

win games. At very low levels of total bases gained and total bases surrendered, we

would expect the marginal return to be less than the average return. Weak teams are

likely to lose many games by several runs and therefore experience only a small

increase in games won for a given increase in offensive and defensive performance.

Below a certain threshold, therefore, we expect non-increasing returns-to-scale.

Eventually, as performance increases beyond this threshold, the average margin of

loss diminishes and the marginal return increases as the team begins to win some

close games that they would otherwise have lost. Here we expect non-decreasing

returns-to-scale. At very high levels of total bases gained and total bases surren-

dered, we again expect the marginal return to be less than the average return. Strong

teams are likely to win many games by several runs and would therefore experience

only a small increase in games won for a given increase in offensive and defensive

performance. Above a second threshold, therefore, we expect non-increasing

returns-to-scale. In addition, the limit on the number of games that a team can

win – it cannot win more than it plays – must lead eventually to non-increasing

returns-to-scale. Given our selection of variable returns-to-scale in both the front

office operation and the on-field operation, we select a variable returns-to-scale

model for the MLB organization.

20.4.3 Network DEA Model Formulation

Let POSj be the total salary remunerated to position players by team j in a season,
PITj be the total salary remunerated to pitchers by team j in a season, TBGj be the

total bases gained by team j in a season, TBSj be the total bases surrendered by
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team j in a season, RGj be the runs gained by team j in a season, RSj be the runs

surrendered by team j in a season, and GWj be the games won by team j in a

season. Define θ1k to be the inverse efficiency of the front office offense for team

k, ε2k to be the efficiency of the front office defense for team k, θ3k to be the

inverse efficiency of the on-field offense for team k, ε4k to be the efficiency of the

on-field defense for team k, and θ5k to be the inverse efficiency of the on-field

integration for team k. Further, define λ1j to be the weight placed on the front

office offense of team j by team k, λ2j to be the weight placed on the front office

defense of team j by team k, λ3j to be the weight placed on the on-field offense

of team j by team k, λ4j to be the weight placed on the on-field defense of

team j by team k, and λ5j to be the weight placed on the on-field integration

of team j by team k.
The output oriented variable returns-to-scale model for the front office

offense is:

Max θ1k
s:t:Xn

j¼1

λ1jPOSj � POSk

Xn
j¼1

λ1jTBGj � θ1kTBGk

Xn
j¼1

λ1j ¼ 1

λ1j � 0; j ¼ 1, 2, . . . , n
θ1k � 0

The output oriented variable returns-to-scale model for the front office defense is:

Min ε2k
s:t:Xn

j¼1

λ2jPITj � PITk

Xn
j¼1

λ2jTBSj � ε2kTBSk

Xn
j¼1

λ2j ¼ 1

λ2j � 0; j ¼ 1, 2, . . . , n
ε2k � 0

The output oriented variable returns-to-scale model for the on-field offense is:
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Max θ3k
s:t:Xn

j¼1

λ3jTBGj � TBGk

Xn
j¼1

λ3jRGj � θ3kRGk

Xn
j¼1

λ3j ¼ 1

λ3j � 0; j ¼ 1, 2, . . . , n
θ3k � 0

The output oriented variable returns-to-scale model for the on-field defense is:

Min ε4k
s:t:Xn

j¼1

λ4jTBSj � TBSk

Xn
j¼1

λ4jRSj � ε4kRSk

Xn
j¼1

λ4j ¼ 1

λ4j � 0; j ¼ 1, 2, . . . , n
ε4k � 0

The output oriented variable returns-to-scale model for the on-field integration is:

Max θ5k
s:t:Xn

j¼1

λ5jRGj � RGk

Xn
j¼1

λ5jRSj � RSk

Xn
j¼1

λ5jGWj � θ5kGWk

Xn
j¼1

λ5j ¼ 1

λ5j � 0; j ¼ 1, 2, . . . , n
θ5k � 0

To determine the organizational inverse efficiency for team k, we use the network

DEAmethodology presented in Lewis and Sexton (2004a). LetTBG�
k ¼

Xn
j¼1

λ�1jTBGj
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and TBS�k ¼
Xn
j¼1

λ�2jTBSj where λ�1j and λ�2j are the optimal weights obtained when

solving the front office offense model for team k and the front office defense model

for team k, respectively. We next resolve the on-field offense model for team k using
TBG�

k as the RHS of the first constraint and resolve the on-field defense model for

team k using TBS�k as the RHS of the first constraint.

Max θ3k
s:t:Xn

j¼1

λ3jTBGj � TBG�
k

Xn
j¼1

λ3jRGj � θ3kRGk

Xn
j¼1

λ3j ¼ 1

λ3j � 0; j ¼ 1, 2, . . . , n
θ3k � 0

Min ε4k
s:t:Xn

j¼1

λ4jTBSj � TBS�k

Xn
j¼1

λ4jRSj � ε4kRSk

Xn
j¼1

λ4j ¼ 1

λ4j � 0; j ¼ 1, 2, . . . , n
ε4k � 0

Let �RG�
k ¼

Xn
j¼1

�λ3j�3jRGj where *λ�3j are the optimal weights obtained when

solving the on-field offense model for team k, assuming the front office offense is

efficient and �RS�k ¼
Xn
j¼1

*λ�4jRSj where *λ
�
4j are the optimal weights obtained when

solving the on-field defense model for team k, assuming the front office defense is

efficient. We next resolve the on-field integration model for team k using *RG�
k and

*RS�k as the RHS of the first and second constraints, respectively.
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Max θ5k

s:t:Xn
j¼1

λ5jRGj��RG�
k

Xn
j¼1

λ5jRSj��RS�k

Xn
j¼1

λ5jGWj � θ5kGWk

Xn
j¼1

λ5j ¼ 1

λ5j � 0; j ¼ 1, 2, . . . , n

θ5k � 0

Finally, let �GW�
k ¼

Xn
j¼1

�λ5j�5jGWj where *λ�5j are the optimal weights obtained

when solving the on-field integration model for team k, assuming the front office

offense, the front office defense, the on-field offense, and the on-field defense are all

efficient. The organizational (overall team) inverse efficiency for team k is θk ¼
*GW�

k /GWk.

20.4.4 Extension to Other Team Sports

The model can be applied to measure the performance of teams in other sports. In

football, for example, total player salary (TPS) of a team in a season consists of

offensive team salary (OS), defensive team salary (DS), and special team salary

(SS). Offensive talent can be measured by total yards gained (TYG) by the team in a

season. TYG is the sum of passing and rushing yards gained (while on offense),

kickoff and punt return yards gained (while on special teams), interception and

fumble return yards gained (while on defense) and penalty yards gained (while on

offense or special teams) by the team in a season. Defensive talent can be measured

by total yards surrendered (TYS) to the team’s opponents in a season. TYS is the sum
of passing and rushing yards surrendered (while on defense), kickoff and punt

return yards surrendered (while on special teams), interception and fumble return

yards surrendered (while on offense) and penalty yards surrendered (while on

defense or special teams) to the team’s opponents in a season. Points gained (PG)
is calculated from the number of touchdowns, extra points, two-point conversions,

field goals, and safeties scored by the team in a season. Points surrendered (PS) is
calculated from the number of touchdowns, extra points, two-point conversions,
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field goals, and safeties scored by the team’s opponents in a season. The output of

the process is games won (GW) by the team in a season.

20.5 Two Studies of MLB Using Two-Stage

and Network DEA

In this section, we present two published studies which apply two-stage and

network DEA models to measure MLB team efficiency. The first study (Lewis

et al. 2007) is published in the Journal of Sports Economics. The second study

(Lewis et al. 2009) is published in the European Journal of Operational Research.

20.5.1 Player Salaries, Organizational Efficiency,
and Competitiveness in MLB

In this study published in the Journal of Sports Economics (Lewis et al. 2007), we
use a two-stage DEA model as part of a larger analysis to determine the minimum

total player salary required for a team to be competitive for each season and count

the number of teams that are noncompetitive due to low total player salary in each

season. Next, we determine the salary at which a team is overspending on total

player salary for each season and count the number of teams that overspend on total

player salary in each season. Finally, we examine the relationship between market

size, efficiency, and competitiveness. The study period is the non-strike seasons

from 1985 to 2002.

20.5.1.1 Motivation and Research Questions

MLB, unlike other business enterprises, depends on stiff competition for economic

survival. Baseball is entertainment; tight division races, unpredictable playoff

series, and the periodic emergence of new champions enhance the entertainment

value of the sport, ensuring the league’s future fan base. However, while individual

teams need the league to succeed, winning is the key to their economic success.

Winning increases fan interest, brings more people to the ballpark, improves

television ratings, and bolsters sales of team-related merchandise, all of which

add to the team’s prosperity.

Baseball entered the era of free agency on December 23, 1975, and player

salaries have since grown to extraordinary levels. In 1975, the average player salary

was $44,676; in 2002, it was $2,384,779, an average annual growth rate of nearly

16 % per year (nearly 11 % per year adjusted for inflation) for 27 years. During this

period, MLB grew by 25 %, expanding from 24 to 30 teams. Some teams, notably
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those located in larger markets and those possessing greater financial resources,

found it easier than other teams to sign free agents to high-salary, multi-year

contracts, thereby cornering the market on the most talented players and threatening

the competitive balance on the field.

In July 2000, the Commissioner’s Blue Ribbon Panel on Baseball Economics
(Levin et al. 2000) reported on the revenue disparities in MLB. The Panel found that

these disparities were affecting competition, that the disparities were becoming

worse, and that the limited revenue sharing and payroll taxes approved in the 1996

labor agreement with the players were having little effect. Moreover, the Panel

concluded that the cost of trying to be competitive was raising ticket and concession

prices, jeopardizing MLB’s position as the affordable family spectator sport. The

Panel’s recommendations included greater revenue sharing and a competitive

balance tax, both of which are part of the 2002 labor agreement with the players.

In 2002, the total player salary for the New York Yankees was $125.93 million

while that of the Tampa Bay Devil Rays was $34.38 million. With one team’s total

player salary equal to 3.66 times that of another team, it is reasonable to ask whether

the team with the lower salary can effectively compete with the team with the

higher salary, and the extent to which market size influences competitiveness. More

specifically, we pose the following research questions for the study period:

1. How much does a team need to spend on total player salary to be competitive?

2. What is the maximum total player salary that a team can pay without

overspending?

3. How many teams are noncompetitive due to low total player salary?

4. How many teams are overspending on total player salary?

5. How does noncompetitiveness due to low total player salary relate to market

size?

6. How does overspending on total player salary relate to market size?

20.5.1.2 Study Methodology

We present an overview of the study methodology in Fig. 20.3. In a given season,

we apply two-stage DEA to measure the relative efficiency of each MLB team. We

use a logistic regression model to classify teams as competitive versus

noncompetitive. For each season, we use the Gini index to determine the minimum

total player salary to be competitive and the maximum total player salary without

overspending. Finally, we model the transitions of teams among the competitive

and noncompetitive states according to a Markov process.

On page 5 of the report (Levin et al. 2000), the Commissioner’s Blue Ribbon

Panel defines competitive balance as the state in which “. . . every well-run club has
a regularly recurring reasonable hope of reaching post-season play.” Our analysis

entails parsing this statement into operational definitions of “well-run” and

“reasonable hope of reaching post-season play.”
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Efficiency Measurement

To define “well-run,” we turn to the theory of productive efficiency in the manage-

ment science and economics literature. We apply the two-stage DEA methodology

described in Sexton and Lewis (2003) to compute the efficiency of every MLB team

in the study period relative to the frontier created by all other teams in the same

season. The two-stage production model is presented in Fig. 20.4.

Define λ1j to be the weight placed on the front office operation of team j by the

front office operation of team k, λ2j to be the weight placed on the on-field operation
of team j by the on-field operation of team k, λj to be the weight placed on the team
j by team k when determining the organizational inverse efficiency of team k, ε1k to

Logistic
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Sal 

No

NCO 

TPS
<

Comp
Sal

MGW 

EGW 
GW* 
TPS* 

Fig. 20.3 An overview of the methodology used in this study to classify MLB teams
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Fig. 20.4 Sequential two-stage model of an MLB team consisting of a front office operation and

an on-field operation
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be the efficiency of the front office operation of team k, θ1k to be the inverse

efficiency of the front office operation of team k, θ2k to be the inverse efficiency

of the on-field operation of team k, and θk to be the organizational inverse efficiency
of team k.

First, we solve the following DEA model to determine the front office inverse

efficiency of team k:

Max θ1k
s:t:Xn

j¼1

λ1jTPSj � TPSk

Xn
j¼1

λ1jTBGj � θ1kTBGk

Xn
j¼1

λ1jTBSj � ε1kTBSk

θ1kε1k ¼ 1Xn
j¼1

λ1j ¼ 1

λ1j � 0; j ¼ 1, 2, . . . , n
θ1k, ε1k � 0

Next, we solve the following DEA model to determine the on-field inverse

efficiency of team k:

Max θ2k
s:t:Xn

j¼1

λ2jTBGj �TBGk

Xn
j¼1

λ2jTBSj �TBSk

Xn
j¼1

λ2jGWj � θ2kGWk

Xn
j¼1

λ2j ¼ 1

λ2j � 0; j ¼ 1, 2, . . . , n
θ2k � 0

Let TBG�
k ¼

Xn
j¼1

λ�1jTBGj and TBS�k ¼
Xn
j¼1

λ�1jTBSj where λ�1j are the optimal

weights obtained when solving the front office model for team k. Then, we solve the

20 Performance Measurement of Major League Baseball Teams Using Network DEA 495



following DEA model to determine the organizational inverse efficiency for team

k using TBG�
k and TBS

�
k as the RHS of the first and second constraints, respectively:

Max θk
s:t:Xn

j¼1

λjTBGj �TBG�
k

Xn
j¼1

λjTBSj �TBS�k

Xn
j¼1

λjGWj � θkGWk

Xn
j¼1

λj ¼ 1

λj � 0; j ¼ 1, 2, . . . , n
θk � 0

We compute the number of games each team would have won had it been

efficient, i.e., the team’s efficient games won (EGW), using the formula

EGW ¼ �GW�
k ¼

Xn
j¼1

�λ�j GWj, where *λ�j are the optimal weights obtained when

solving the organizational model for team k, assuming the front office is efficient.

The organizational (overall team) inverse efficiency for team k is θk ¼ *GW�
k /GWk.

Logistic Regression

We interpret the phrase “reasonable hope of reaching post-season play” to mean

that a team must have at least the same probability of reaching post-season play as it

would have if all teams in its league were equally talented. We refer to this

probability as the team’s balanced probability. The balanced probability for a

given team in a given season depends on the playoff qualification condition in

effect. Before 1969, the two leagues had no division structure and only the league

champions qualified for post-season play. Thus, the balanced probability for a team

before 1969 depended on only the number of teams in its league. Between 1969 and

1993, each league consisted of two divisions and each division winner qualified for

post-season play. During this period, the balanced probability for a team depended

on only the number of teams in the team’s division. Since 1994, each league

consists of three divisions. Between 1994 and 2011, each division winner qualified

for post-season play, as does the “wild card” team, which is the non-division winner

with the highest winning percentage in the league. Thus, between 1994 and 2011,

the balanced probability for a team depends on both the number of teams in its

division and the number of teams in its league.
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For each of the playoff qualification conditions, we compute its balanced

probability. We interpret each probability as the minimum probability of qualifying

for post-season play that a team must achieve to be competitive under its playoff

qualification condition.

Next, we construct a logistic regression model for a team’s probability of

qualifying for post-season play. We use data for the seasons 1903 through 2002

(except 1904, when there was no post-season, and the strike seasons 1981, 1994,

and 1995). For each team in each season, we use GW as the independent variable

and a binary indicator variable equal to 1 if the team qualified for post-season play

in that season, or equal to zero if it did not qualify. We also include indicator

variables that identify the playoff qualification condition that applied to the league

and division in which the team played in that season. Therefore, the logistic

regression computes a team’s probability of qualifying for post-season play given

its number of games won and the playoff qualification condition that applied to the

league and division in which the team played in that season.

We use the logistic regression model to computeMGW, the minimum number of

games a team must win to be competitive under each playoff qualification condi-

tion. Thus, a team is competitive if and only if it would have won at leastMGW had

it been efficient. In other words, we say that a team is competitive if and only if

EGW � MGW.

Gini Index

We then determine the minimum total player salary needed to be competitive in

each season, which we call the competitive salary for that season. To do this, within
each season, we sort the teams according to total player salary from low to high and

use the Gini index to identify a total player salary that partitions the teams into two

sets, one of which consists primarily of competitive teams and one of which

consists primarily of noncompetitive teams. The competitive salary in that season

is the total player salary of the lowest paid team in the primarily competitive set.

We now partition the noncompetitive teams into two groups:

• Noncompetitive Due to Low Total Player Salary (NCS): A noncompetitive

team is noncompetitive due to low total player salary if its total player salary is

less than the competitive salary.

• Noncompetitive for Other Reasons (NCO): A noncompetitive team is

noncompetitive for other reasons if its total player salary is greater than the

competitive salary.

Next, we analyze the competitive teams. In order to do this, we need to provide

more definitions. Define GW* to be the number of games that an efficient on-field

operation would have won given the actual performance of the front office. We note

that GW � GW* � EGW. We obtain GW* from the DEA of the on-field operation

of the two-stage model. Let TPS* be the total player salary of the efficient front
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office operation. We note that TPS* � TPS. We obtain TPS* from the DEA of the

front office operation.

We now partition the competitive teams into three groups:

• Conditionally Competitive (CC): A competitive team is conditionally compet-
itive if GW* < MGW. The team is spending enough money on total player

salary but inefficiency in the front office has resulted in insufficient player

performance to win enough games to achieve the balanced probability of

qualifying for post-season play. The front office must become more efficient

for this to happen. We note that a conditionally competitive team may be

overspending on player salaries if TPS* < TPS.
• Economically Competitive (EC): A competitive team is economically compet-

itive if GW* � MGW and TPS* ¼ TPS. The team has sufficient player perfor-

mance on the field to achieve the balanced probability of qualifying for

post-season play. Moreover, there is no evidence that the team is overspending

on total player salary.

• Hypercompetitive (HC): A competitive team is hypercompetitive if GW* �
MGW and TPS* < TPS. The team has sufficient player performance on the field

to achieve the balanced probability of qualifying for post-season play. However,

there is evidence that the team is overspending on total player salary.

We use the Gini index again, this time to determine the value of total player

salary that partitions hypercompetitive teams from other teams. We call this value

of total player salary the hypercompetitive salary for the given season.

Markov Analysis

Finally, we model the transitions of teams among these five states (NCS, NCO, CC,

EC, and HC) according to a Markov process. We test the five row distributions for

statistical independence and compute the steady-state probabilities and the mean

first passage times from each state to each other state.

20.5.1.3 Data for the Study

We obtain market size data from the United States Census Bureau and Statistics
Canada. We extract player salary data from the USA Today Website. We gather

games won, whether the team qualified for post-season play, and the team perfor-

mance data required to compute total bases gained and total bases surrendered from

the Baseball Archive Database and the Major League Baseball Official Website.
We were unable to find data on the number of opposition errors, which is

required in the calculation of total bases gained. We estimated this number for

each team in each season by subtracting the team’s own errors committed from the

total committed in that team’s league and dividing by one less than the number of

teams in the league. This approximation ignores the minor effects of interleague
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play and the somewhat different schedules played by different teams, and assumes

that teams are equally likely to commit errors against each team they play. In

addition, we were unable to find data to support MLB’s definition of total bases in

the calculation of total bases surrendered for seasons prior to 1999. We estimated

this quantity by identifying the relationship between total hits and total bases using

regression analysis.

20.5.1.4 Study Results

We apply the two-stage DEA model to measure the efficiency of the front office

operation, the on-field operation, and the overall organization of each team in each

season of the study period and explore the relationship between efficiency and

competitiveness. Next, we determine the competitive salary and hypercompetitive

salary for each season in the study period and classify teams as competitive and

noncompetitive. Finally, we examine how market size relates to efficiency and

competitiveness.

Efficiency, Wins, and Competitiveness

Figure 20.5 illustrates the relationship between EGW and GW for all teams in the

study period as determined by the DEA. The teams that lie along the line defined by

EGW ¼ GW are organizationally efficient. All organizationally inefficient teams

lie above this line. Different symbols indicate whether the team was

noncompetitive due to low total player salary, noncompetitive due to other reasons,

conditionally competitive, economically competitive, or hypercompetitive.

Table 20.1 shows, for each playoff qualification condition, the probability that a

team would qualify for the playoffs if every team in its league or division were

equally talented. For example, consider a team playing in a four-team division

within a 14-team league with a wild card. This team has a balanced probability of

0.318 of qualifying for post-season play. Figure 20.6 shows the logistic regression

model for this condition. The model indicates that a team playing under this

condition must win at least 86.1 games to have a probability of qualifying for the

playoffs equal to or greater than 0.318. Thus, under this playoff qualification

condition, MGW ¼ 86.1. Similar analyses lead to the MGW values shown in

Table 20.1.

Competitive and Hypercompetitive Salary

Figure 20.7 shows the relationship between TPS and EGW for the 2000 season.

Similar relationships hold in all other seasons in the study period. Three teams were

noncompetitive in 2000, when theMGW was 85.6 in the American League East and

Central, 86.1 in the American League West, 88.2 in the National League East and

20 Performance Measurement of Major League Baseball Teams Using Network DEA 499



West, and 87.3 in the National League Central. They were the Minnesota Twins, the

Florida Marlins, and the Houston Astros – their efficient games won were 74.3,

79.0, and 81.1, respectively. The Gini index analysis indicates that the two teams

with the lowest total player salaries (the Minnesota Twins and the Florida Marlins)

were noncompetitive due to low total player salary. The lowest total player salary in

the primarily competitive group is $23.13 million, belonging to the Kansas City

Royals. Thus, the competitive salary in 2000 was $23.13 million.

We cannot explain why the Houston Astros were noncompetitive in 2000 other

than to say that it was not due to low total player salary. However, we point out that

2000 was the Astros’ first season in their new ballpark, one with dramatically
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Fig. 20.5 The relationship between efficient games won and games won for all teams in the study

period

Table 20.1 The balanced probability of a team qualifying for the playoffs given its playoff

qualification condition and the minimum number of games a team needs to win to have a

probability of qualifying for the playoffs at least as large as the balanced probability

Number of teams

in league

Number of teams

in division Wild card Balanced probability MGW

10 – No 0.100 92.8

8 – No 0.125 88.9

14 7 No 0.143 89.5

12 6 No 0.167 88.2

16 6 Yes 0.231 87.3

16 5 Yes 0.262 88.2

14 5 Yes 0.272 85.6

14 4 Yes 0.318 86.1
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different playing conditions than those found in the Astrodome. We also note that

the Astros were competitive in both 1999 and 2001.

Table 20.2 and Fig. 20.8 show the competitive and hypercompetitive salary

along with the team minima, mean, and maxima salaries for the non-strike seasons

between 1985 and 2002. We find that the competitive salary ranges from $6.19

million in 1985 to $38.67 million in 2002, an average annual growth rate of 10.7 %
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per year, adjusted for inflation. The hypercompetitive salary ranges from $9.81

million in 1985 to $125.9 million in 2002, an average annual growth rate of 12.6 %

per year, adjusted for inflation. Interestingly, we observe that the team minimum,

mean, and maximum salaries have risen at nearly the same average annual percent-

age rate, namely 11.2 % for the minimum, 10.8 % for the mean, and 12.1 % for the

maximum. This suggests that, over the study period, it has not become relatively

more costly to be competitive in MLB.

Moreover, the competitive salary has remained low relative to the mean total

player salary in each season. As Fig. 20.9 shows, the ratio of the competitive salary

in a given season to the minimum total player salary in the same season has

remained stable around its mean of 1.5. Therefore, a rule of thumb is that a

team’s total player salary must be at least 50 % larger than the lowest total player

salary in a given season to be competitive. The least squares regression line in

Fig. 20.9 has a slope that is very nearly zero (0.0012 per year).

Classifying Teams as Competitive or Noncompetitive

We find that, in each season, there were between zero and four teams that were

noncompetitive due to low total player salary, as shown in Fig. 20.10. We conclude

that, in each season in the study period except for 2001, there existed teams that

were noncompetitive due to low total player salary and that the number of such

teams was relatively small. As Fig. 20.10 also shows, there were between zero and

eight teams that were noncompetitive for reasons other than salary. These are teams
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whose total player salaries exceeded the minimum required to be competitive but

had EGW < MGW. We cannot say why these teams are noncompetitive. During the

study period, 49 of 442 teams (11.1 %) have been noncompetitive. Of these

49 teams, 27 (55.1 %) were noncompetitive due to low total player salary, while

22 (44.9 %) were noncompetitive for other reasons.
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We find that, in each season, there were between zero and nine teams that were

hypercompetitive, as shown in Fig. 20.11. During the study period, 95 of the

442 teams (21.5 %) overspent on player salaries.

We find that 51 of these 95 teams (54.7 %) were hypercompetitive, 41 (43.2 %)

were conditionally competitive, and 2 (2.1 %) were noncompetitive for other

reasons. We also find that, in each season, there were between 6 and 14 economi-

cally competitive teams, and that there were between 5 and 14 conditionally

competitive teams. None of these categories demonstrate significant trends

over time.

Figure 20.12 displays the competitive status of each team in each season during the

study period. We observe that 16 teams have never been noncompetitive due to low

total player salary during the study period. Note that only the Minnesota Twins have

been noncompetitive due to low total player salary in four of the 18 seasons in the

study period, and no team has been noncompetitive due to low total player salarymore

often. The Cleveland Indians and the Montreal Expos were each noncompetitive due

to low total player salary three times. The Seattle Mariners (1985–1986), the

Cleveland Indians (1992–1993), the Pittsburgh Pirates (1997–1998), the Montreal

Expos (1998–1999), the Minnesota Twins (1986–1987 and 1999–2000), and the

Florida Marlins (1999–2000) were noncompetitive due to low total player salary for

two consecutive seasons. Thus, there is no evidence that being noncompetitive due to

low total player salary is a chronic condition.

We observe that two teams (the Anaheim/California Angels and the Milwaukee

Brewers) were conditionally competitive 12 times during the 16 seasons analyzed.

In addition, three teams (the Chicago Cubs, the Kansas City Royals, and the San

Diego Padres) were conditionally competitive 11 times, while the Philadelphia

0

5

10

15

20

25

30

35

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year

N
u

m
b

er
 o

f 
T

ea
m

s

CC EC HC

Fig. 20.11 The number of conditionally competitive, economically competitive, and hypercom-

petitive teams in each non-strike season

20 Performance Measurement of Major League Baseball Teams Using Network DEA 505



Phillies and the Pittsburgh Pirates were conditionally competitive 10 and 9 times,

respectively. Thus, this competitive status, in which the team has spent sufficient

money on player salary but the front office has failed to produce sufficient talent on

the field to be competitive, has been a persistent problem in these seven franchises.

We find that one team (the Toronto Blue Jays) was economically competitive in

11 seasons, while two teams (the Cincinnati Reds and the San Francisco Giants)

were economically competitive in 10 seasons and two teams (the Atlanta Braves

and the Montreal Expos) were economically competitive in 9 seasons. These

franchises consistently paid sufficient player salaries to be competitive, and their

front offices used the money to place sufficient talent on the field.

Three teams (the Boston Red Sox, the New York Mets, and the New York

Yankees) were hypercompetitive six times, while the Los Angeles Dodgers and the

Kansas City Royals were hypercompetitive five and four times, respectively.

Moreover, nine teams have never been hypercompetitive and another nine teams

have been hypercompetitive only once.

Markov Analysis

We model the transition of teams among the five states according to a Markov

process. Ignoring transitions that spanned the strike seasons, the estimated transi-

tion matrix is

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
ANA/CAL X X
ARZ X X XXXX X X X X X X X
ATL X X
BAL X X
BOS X X
CHC X X
CHW X X
CIN X X
CLE X X
COL X X
DET X X
FLA

X X X X X X

X X

X X

X X X X X X X X
HOU X X
KC X X
LA X X
MIL X X
MIN X X
MON X X
NYM X X
NYY X X
OAK X X
PHI X X
PIT X X
SD X X
SF X X
SEA X X
STL X X
TB X X X X X X X X X X X X X
TEX X X
TOR X X

XxX
NCS NCO CC EC HC N/A

Fig. 20.12 The competitive status of each team in each season during the study period
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P ¼

0:304 0:044 0:391 0:261 0

0:095 0:191 0:381 0:191 0:143
0:064 0:039 0:564 0:244 0:090
0:021 0:050 0:270 0:539 0:121
0 0:023 0:256 0:442 0:279

0
BBBB@

1
CCCCA

where the order of the states is NCS, NCO, CC, EC, and HC. A chi-square test

shows that the probability distributions in the rows are significantly different

(χ2 ¼ 92.75 with df ¼ 16, P < 0.00005). The steady-state probabilities associated

with this transition matrix are π ¼ 0:055 0:048 0:397 0:378 0:122ð Þ.
The matrix of mean first passage times is

M ¼

18:3 24:1 3:0 3:8 11:5
23:4 20:6 3:1 4:0 9:7
24:3 24:3 2:5 3:8 10:3
25:8 23:9 3:6 2:6 9:8
26:6 24:7 3:7 2:9 8:2

0
BBBB@

1
CCCCA

Market Size, Efficiency, and Competitiveness

Figure 20.13 shows the number of times each team was noncompetitive due to

low total player salary versus the team’s market size, defined as the population

of the team’s metropolitan area according to the 2000 U.S. census and the 2001

Canadian census. We find evidence that the number of times that a team has

been noncompetitive due to low total player salary between 1985 and 2002 is

negatively related to the size of the market in which it plays (P ¼ 0.0464 in a
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Fig. 20.13 The number of times that a team has been noncompetitive due to low total player

salary between 1985 and 2002 is negatively related to the size of the market in which it plays
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Poisson regression). The teams that played in markets below five million people

were NCS in 8.4 % of their seasons while teams that played in markets above

five million people were NCS in 3.1 % of their seasons (P ¼ 0.027). We note

that, while the four teams in the two largest markets – two in New York and two

in Los Angeles/Anaheim – were never noncompetitive due to low total player

salary, the Chicago White Sox, who play in the third largest market, were

noncompetitive due to low total player salary in two seasons (1989 and 1998).

In addition, we see that seven of the 18 teams that play in markets below five

million people have not been noncompetitive due to low total player salary in

the study period.

Figure 20.14 shows the number of times each team was hypercompetitive versus

the team’s market size. We find evidence that the number of times that a team has

been hypercompetitive between 1985 and 2002 is positively related to the size of

the market in which it plays (P < 0.00005 in a Poisson regression). The teams that

played in markets above five million people were hypercompetitive in 17.2 % of

their seasons while teams that played in markets below five million people were

hypercompetitive in 7.6 % of their seasons (P ¼ 0.0027). Of the 18 teams with

market size below five million, eight have never been hypercompetitive and four

have been hypercompetitive once. Of the 12 teams with market size above five

million, 11 have been hypercompetitive at least once, including the Boston Red

Sox, the New York Mets, and the New York Yankees six times each and the Los

Angeles Dodgers five times.

Figure 20.15 shows the relationship between efficient games won and market

size for MLB teams during the study period. The regression line shown in

Fig. 20.15 has a slope of 2.262 games per 10 million people (P-value ¼ 0.0019),

suggesting that an efficient New York team, with market size approximately equal

to 20.13 million, would win roughly four more games in a season than would an

efficient Milwaukee team, with market size equal to 1.65 million.
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Fig. 20.14 The number of times that a team has been hypercompetitive between 1985 and 2002 is

positively related to the size of the market in which it plays
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20.5.1.5 Conclusions of the Study

In this section, we summarize our results by responding to each research question.

How much does a team need to spend on total player salary to be competitive?
The competitive salary ranges from $6.19 million in 1985 to $38.67 million in

2002, an average annual growth rate of 10.7 % per year, adjusted for inflation. The

team minimum, mean, and maximum salaries have risen at nearly the same average

annual percentage rate. This suggests that, over the study period, it has not become

relatively more costly to be competitive in MLB. Moreover, the competitive salary

has remained low relative to the mean total players salary in each season. We find

that the ratio of the competitive salary to the minimum total player salary has

remained stable around its mean of 1.5.

What is the maximum total player salary that a team can pay without
overspending?
The hypercompetitive salary is $125.9 million in 2002, up from $9.81 million in

1985. This is an average annual increase of 12.6 % (adjusted for inflation) per year.

It is increasing over time as a percentage of maximum total player salary.

How many teams are noncompetitive due to low total player salary?
We find that, in each season, there were between zero and four teams that were

noncompetitive due to low total player salary. We conclude that, in each season in

the study period except for 2001, there existed teams that were noncompetitive due

to low total player salary and that the number of such teams was relatively small.

There were between zero and eight teams that were noncompetitive for other

reasons. The Markov analysis suggests that, in any given season, 5.5 % of the

teams (1.65 out of 30 teams) will be noncompetitive due to low total player salary,

while another 4.8 % of the teams will be noncompetitive for other reasons (1.44 out

of 30 teams).
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Fig. 20.15 Efficient games won versus market size for MLB teams between 1985 and 2002

excluding the strike seasons of 1994 and 1995

20 Performance Measurement of Major League Baseball Teams Using Network DEA 509



How many teams are overspending on total player salary?
We also find that between zero and nine teams are hypercompetitive in a given

season. During the study period, 95 of 442 teams (21.5 %) have been overspend-

ing on total player salary. Of these overspending teams, 52 (54.7 %) were

hypercompetitive, 41 (43.2 %) were conditionally competitive, and two (2.1 %)

were noncompetitive due to other reasons. The Markov analysis suggests

that, in a given season, 12.2 % (3.66 out of 30 teams) of the teams will be

hypercompetitive.

How does noncompetitiveness due to low total player salary relate to market size?
We find evidence that the number of times that a team has been noncompetitive due

to low total player salary between 1985 and 2002 is negatively related to the size of

the market in which it plays. However, we see that seven of the 18 teams that play in

markets below five million people have not been noncompetitive due to low total

player salary in the study period. Six of the 18 teams have been noncompetitive due

to low total player salary more than once in this period. While the four teams in

the two largest markets were never noncompetitive due to low total player salary,

the Chicago White Sox, who play in the third largest market, were noncompetitive

due to low total player salary in two seasons.

The size of the team’s market relates to the number of games it can win if it is

efficient. An efficient New York team, playing in the largest market, can expect to

win roughly four more games per season than an efficient Milwaukee team, playing

in the smallest market.

How does overspending on total player salary relate to market size?
Large market teams are more likely to be hypercompetitive than small market

teams. Of the 18 teams with market size less than five million, eight have never

been hypercompetitive, while four have been hypercompetitive only once. Mean-

while, of the 12 teams with market size greater than five million, 11 have been

hypercompetitive at least once.

20.5.2 Organizational Capability, Efficiency,
and Effectiveness in MLB

In this study published in the European Journal of Operational Research (Lewis

et al. 2009), we use a network DEA model as part of a larger analysis to explore the

relative contributions of team capability and managerial efficiency to team effec-

tiveness in the context of Major League Baseball. We analyze every MLB team

over the past century to capture long-term, persistent relationships. We perform

separate analyses of regular season effectiveness and post-season effectiveness.

The study period for the regular season analysis is from 1901 through 2002
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(excluding the strike-shortened seasons in 1981, 1994, and 1995), during which

there are 1934 observations. The study period for the post-season analysis is from

1903 through 2002 (excluding 1904 when there was no post-season play and the

strike-shortened seasons in 1981, 1994, and 1995), during which there are

282 observations.

20.5.2.1 Motivation and Research Questions

To be effective, organizations need capabilities relevant to their missions and they

must manage those capabilities efficiently. Without adequate talent, even a well-

managed organization will fail to achieve its goals. Similarly, the inefficient

utilization of resources will cause a well-equipped organization to fail. Of course,

a powerfully equipped organization can compensate for managerial inefficiencies

more easily than can a marginally equipped organization.

We anticipate that the relative contributions of capability and managerial

efficiency are significant factors in organizational resource allocation decisions.

Capability will be relatively more important in industries in which labor is highly

paid. Examples of such industries include high-tech manufacturing, universities,

hospitals, and professional sports. Efficiency will be relatively more important

in industries in which labor is inexpensive. Examples of such industries include

low-tech manufacturing, fast-food restaurant chains, janitorial services, and retail

services.

MLB team owners, general managers, scouts, field managers, and coaches

acquire, develop, and manage talent. Knowing the relative impact of talent and

efficient use of that talent on team effectiveness can greatly enhance decisions both

on and off the field. In this context, we pose the following research questions for the

regular season and post-season study periods, respectively:

1. How much does team capability and managerial efficiency contribute to regular

season effectiveness in MLB?

2. How much does team capability and managerial efficiency contribute to post-

season effectiveness in MLB?

20.5.2.2 Study Methodology

We present mathematical models to measure regular season team capability,

regular season team efficiency, regular season team effectiveness, and post-season

team effectiveness. We then use weighted linear regression to evaluate the contri-

butions of regular season team capability and regular season team efficiency to the

variation in regular season and post-season team effectiveness.
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Measuring Regular Season Capability

We measure the organizational capability of an MLB team during the regular

season using offensive and defensive measures based on a variant of MLB’s

definition of total bases. We refer to these measures as O-Capability and

D-Capability.
The capability of a team depends on its ability to get players on base and its

ability to prevent its opponent’s players from reaching base. We measure offensive

capability in any season as (TBOff + BBOff + EOff)/GP where TBOff is the team’s

total bases gained on offense, BBOff is the number of walks received by the team,

EOff is the number of fielding errors committed by the opposing team, and GP is the

number of games played by the team. This approach to measuring offensive

capability assumes constant returns-to-scale, i.e., that the sum in the numerator is

proportional to the number of games played.

Defensive capability is defined identically except that the terms refer to the

number of total bases and walks surrendered by the team, and number of fielding

errors committed by the team, in the given season. Thus, we measure defensive

capability in any season as (TBDef + BBDef + EDef)/GP where TBDef is the team’s

total bases surrendered on defense, BBDef is the number of walks surrendered by

the team, and EDef is the number of fielding errors committed by the team.

Observe that D-Capability has the property that larger numerical values are

representative of less rather than more defensive capability. Thus, D-Capability
is a reverse quantity. Note that we also assume constant returns-to-scale for

defensive capability.

Measuring Regular Season Efficiency

To measure efficiency of an MLB team, we use the network DEA model developed

by Lewis and Sexton (2004a). Figure 20.16 shows our network representation of the

on-field operation of an MLB team.

The on-field operation of an MLB team is comprised of three sub-DMUs.

The offense sub-DMU consumes offensive contributions (TBOff, BBOff, and EOff)

to produce runs gained on offense (ROff), the defense sub-DMU consumes defensive

contributions (TBDef, BBDef, and EDef) to prevent runs surrendered on defense

(RDef), and the integration sub-DMU consumes ROff and RDef to produce games

won (GW). Note that TBDef, BBDef, EDef and RDef are reverse quantities.

We use four efficiency scores to evaluate managerial performance. The first – the

O-Efficiency – measures the efficiency of the offense sub-DMU. A team increases

its O-Efficiency by clustering its hits, walks, and the errors committed by the

opposing team, by stealing more bases and taking extra bases on hits, and by

leaving fewer runners on base. The DEA model for O-Efficiency is
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Max θ1k
s:t:Xn

j¼1

λ1jTBOff j � TBOff k

Xn
j¼1

λ1jBBOff j � BBOff k

Xn
j¼1

λ1jEOff j � EOff k

Xn
j¼1

λ1jROff j � θ1kROff k

Xn
j¼1

λ1j ¼ 1

λ1j � 0; j ¼ 1, 2, . . . , n
θ1k � 0

In this model, λ1j represent the weight that DMU k places on DMU j when
measuring the efficiency of the offense sub-DMU and θ1k is the inverse efficiency
of the offense sub-DMU.

The second efficiency score – the D-Efficiency – measures the efficiency of the

defense sub-DMU. A team increases its D-Efficiency by scattering the hits, walks,

and the errors it commits, by preventing stolen bases and extra bases on hits, and by

leaving more opposition runners on base. The DEA model for D-Efficiency is

TBOff

BBOff

EOff

TBDef

BBDef

GW

ROff

RDef

Offense

Defense

Integration

EDef

Fig. 20.16 Network model

of the on-field operation of

an MLB team
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Min ε2k
s:t:Xn

j¼1

λ2jTBDef j � TBDef k

Xn
j¼1

λ2jBBDef j � BBDef k

Xn
j¼1

λ2jEDef j � EDef k

Xn
j¼1

λ2jRDef j � ε2kRDef k

Xn
j¼1

λ2j ¼ 1

λ2j � 0; j ¼ 1, 2, . . . , n
ε2k � 0

In this model, λ2j represent the weight that DMU k places on DMU j when
measuring the efficiency of the defense sub-DMU and ε2k is the efficiency of the

defense sub-DMU.

The third efficiency score – the W-Efficiency – measures the efficiency of the

integration sub-DMU. A team increases its W-Efficiency by winning more close

games. The DEA model for W-Efficiency is

Max θ3k
s:t:Xn

j¼1

λ3jROff j � ROff k

Xn
j¼1

λ3jRDef j � RDef k

Xn
j¼1

λ3jGWj � θ3kGWk

Xn
j¼1

λ3j ¼ 1

λ3j � 0; j ¼ 1, 2, . . . , n
θ3k � 0

In this model, λ3j represent the weight that DMU k places on DMU j when
measuring the efficiency of the integration sub-DMU and θ3k is the inverse effi-

ciency of the integration sub-DMU.

The fourth efficiency score – the F-Efficiency – measures the efficiency of the

entire DMU. The F-Efficiency is computed as the efficiency of the integration
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sub-DMU using the optimal values R�
Off and R

�
Def produced by the offense sub-DMU

and the defense sub-DMU, respectively. The DEA model for F-Efficiency is

Max θk
s:t:Xn

j¼1

λjROff j � R�
Off k

Xn
j¼1

λjRDef j � R�
Def k

Xn
j¼1

λjGWj � θkGWk

Xn
j¼1

λj ¼ 1

λj � 0; j ¼ 1, 2, . . . , n
θk � 0

In this model, λj represent the weight that DMU k places on DMU j when
measuring the efficiency of the entire DMU and θk is the inverse efficiency of the

entire DMU.

All of the DEA models assume variable returns-to-scale, an output orientation,

and use a common frontier over teams in all seasons in the study period. We justify

the use of a common frontier for all seasons based on the observation that the

process by which MLB teams convert inputs into outputs has remained essentially

unchanged throughout the study period. While it may be true that offensive and

defensive capabilities have evolved during the study period, the variable returns-to-

scale assumption neither rewards nor penalizes a team based on the season in which

it played. During this period, there were 1934 observations. All the models except

for the O-Efficiency model involve reverse quantities, which we incorporate using

the methodology presented in Lewis and Sexton (2004b).

Measuring Regular Season Effectiveness

The number of games an MLB team wins in a given season is a measure of its

effectiveness. However, during the study period, not all teams played the same

number of regular season games. Therefore, we define the regular season organi-

zational effectiveness of an MLB team as the team’s winning percentage during the

season, defined as WPct ¼ GW/GP.
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Analyzing Regular Season Effectiveness

We use WPct as the dependent variable in a weighted linear regression

with O-Capability, D-Capability, O-Efficiency, D-Efficiency, W-Efficiency, and

F-Efficiency as the independent variables and regular season games played as the

weights. We evaluate the contributions of each independent variable to the varia-

tion in regular season effectiveness in three ways. First, we compute the coefficient

of partial determination for each independent variable. Second, we compute the R2

contribution of a given independent variable. Third, we compare (absolute) regres-

sion coefficients between the two capability measures and within the efficiency

measures.

Measuring Post-season Effectiveness

We measure a team’s post-season series effectiveness as the probability that the

team would have performed at least as well as it actually did. For a given team A,

we rank the series outcomes from best to worst. For example, in a best-of-seven

game series, the ranked outcomes for team A are shown in the first column of

Table 20.3. Next, we determine the probability that team A wins a given game

versus an opposing team B. Let α be the regular season winning percentage of team

A and β be the regular season winning percentage of team B. Then, the probability

that team A wins a given game is p ¼ α/(α + β) and the probability that team B

wins a given game is q ¼ 1 � p ¼ β/(α + β). The second column of Table 20.3

shows the probability distribution for team A in a best-of-seven series. We measure

the post-season series effectiveness of team A as the sum of the probabilities from

the worst outcome for team A to the outcome that occurred. The third column of

Table 20.3 shows these values.

Prior to 1969, we measure a team’s post-season effectiveness as its World Series

effectiveness. Since 1969, we measure a team’s post-season effectiveness as a

Table 20.3 The first column shows the possible seven-game post-season series outcomes, ranked

from best to worst for Team A. The second column shows the probabilities of the possible seven-

game post-season series outcomes, where p is the probability that Team A wins any given game,

and q ¼ 1 � p. The third column shows the seven-game post-season series effectiveness of Team

A for each possible series outcome

Team A Probability Post-season series effectiveness

Wins in 4 p4 1

Wins in 5 4p4q q4(1 + 4p + 10p2 + 20p3) + p4(20q3 + 10q2 + 4q)

Wins in 6 10p4q2 q4(1 + 4p + 10p2 + 20p3) + p4(20q3 + 10q2)

Wins in 7 20p4q3 q4(1 + 4p + 10p2 + 20p3) + 20p4q3

Loses in 7 20p3q4 q4(1 + 4p + 10p2 + 20p3)

Loses in 6 10p2q4 q4(1 + 4p + 10p2)

Loses in 5 4pq4 q4(1 + 4p)

Loses in 4 q4 q4
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weighted average of its individual series effectiveness measures, using the maxi-

mum series lengths as the weights.

Analyzing Post-season Effectiveness

We examine how capability and efficiency during the regular season relate to post-

season effectiveness. We use post-season effectiveness as the dependent variable in

a weighted linear regression with (regular season) O-Capability, D-Capability,
O-Efficiency, D-Efficiency, W-Efficiency, and F-Efficiency as the independent vari-
ables and post-season games played as the weights. We evaluate the contributions

of each independent variable to the variation in post-season effectiveness using the

coefficient of partial determination, the R2 contribution, and the (absolute) regres-

sion coefficients.

20.5.2.3 Data for the Study

We obtained games won, post-season records, and team performance data (such as

runs, total bases, walks, and errors) from the Baseball Archive Database and the

Major League Baseball Official Website. We were unable to find data on the

number of opposition errors and the number of opposition total bases for seasons

prior to 1999. We estimated these quantities as described in Sect. 20.5.1.3.

20.5.2.4 Study Results

In this section, we present summary statistics of our capability, efficiency, and

effectiveness measures of all MLB teams and post-season teams. We also perform a

series of hypothesis tests to compare the capability, efficiency, and effectiveness

measures of post-season and non-post-season teams. In addition, we report the

results of our regular season and post-season regression analyses.

Summary Statistics of Capability, Efficiency, and Effectiveness Measures

Table 20.4 presents descriptive statistics of regular season capability for all regular

season teams and post-season teams. Figures 20.17 and 20.18 are histograms of

O-Capability for all regular season teams and post-season teams, respectively,

while Figs. 20.19 and 20.20 are histograms of D-Capability for all regular season

teams and post-season teams, respectively. On average, a regular season team gains

(and surrenders) 17.24 total bases per game. We note that a typical post-season

team gains 18.40 total bases and surrenders 16.42 total bases during a regular
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season game. Thus, teams that achieve the post-season are typically above average

offensively and defensively.

Table 20.5 presents descriptive statistics of regular season efficiency for all

regular season teams and post-season teams. Figures 20.21 and 20.22 are

Fig. 20.17 Histogram of regular season O-Capability for all regular season teams

Fig. 20.18 Histogram of regular season O-Capability for post-season teams
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histograms of O-Efficiency for all regular season teams and post-season teams,

respectively. Figures 20.23 and 20.24 are histograms of D-Efficiency for all regular
season teams and post-season teams, respectively. Figures 20.25 and 20.26 are

histograms of W-Efficiency for all regular season teams and post-season teams,

Fig. 20.19 Histogram of regular season D-Capability for all regular season teams

Fig. 20.20 Histogram of regular season D-Capability for post-season teams
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respectively. Figures 20.27 and 20.28 are histograms of F-Efficiency for all regular
season teams and post-season teams, respectively. On average, a regular season

team should be able to increase its runs gained by 13 % (given its total bases

gained), decrease its runs surrendered by 10 % (given its total bases surrendered),

and win 16 % more games (given its runs gained and runs surrendered). Overall, a

Fig. 20.21 Histogram of regular season O-Efficiency for all regular season teams

Fig. 20.22 Histogram of regular season O-Efficiency for post-season teams
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typical regular season team should be able to win 36 % more games if it were

efficient in the offense, defense, and integration sub-DMUs. Typical post-season

teams demonstrate above average efficiency. On average, a post-season team

should be able to increase its runs gained by 9 % (given its total bases gained),

Fig. 20.23 Histogram of regular season D-Efficiency for all regular season teams

Fig. 20.24 Histogram of regular season D-Efficiency for post-season teams
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decrease its runs surrendered by 8 % (given its total bases surrendered), and win

9 % more games (given its runs gained and runs surrendered). Overall, a typical

post-season team should be able to win 17 % more games if it were efficient in the

offense, defense, and integration sub-DMUs.

Fig. 20.25 Histogram of regular season W-Efficiency for all regular season teams

Fig. 20.26 Histogram of regular season W-Efficiency for post-season teams
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Table 20.6 presents descriptive statistics of regular season effectiveness for all

regular season teams and post-season teams and post-season effectiveness for all

post-season teams. Figures 20.29 and 20.30 are histograms of regular season

effectiveness for all regular season teams and postseason teams, respectively, and

Fig. 20.27 Histogram of regular season F-Efficiency for all regular season teams

Fig. 20.28 Histogram of regular season F-Efficiency for post-season teams
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Fig. 20.31 is a histogram of post-season effectiveness for post-season teams. We see

that no team has won fewer than 23 % or more than 75 % of its regular season

games. A typical post-season team wins 61 % of its regular season games and each

post-season team has won at least 51 % of its regular season games.

Fig. 20.29 Histogram of regular season effectiveness for all regular season teams

Fig. 20.30 Histogram of regular season effectiveness for post-season teams
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Hypothesis Tests on Capability, Efficiency, and Effectiveness Measures

We perform a series of hypothesis tests to determine differences in capability,

efficiency, and effectiveness between post-season and non-post-season teams.

Table 20.7 presents the results of both a two-sample t-test and a Wilcoxon rank-

sum test for each variable. Table 20.7 also shows the results of the F-tests to

determine whether to assume equal or unequal variances when performing the

t-tests. The results of the F-tests indicate that we should assume unequal variances

Fig. 20.31 Histogram of post-season effectiveness for post-season teams

Table 20.7 Results of hypothesis tests on post-season and non-post-season teams

Variable Two-sample t test Wilcoxon rank-sum test

O-Capability t ¼ 13.23 DF ¼ 1932 P < 0.00005 Z ¼ 12.318 P < 0.00005

F ¼ 1.04 DF ¼ 281,1651 P ¼ 0.3371

D-Capability t ¼ �10.37 DF ¼ 423.4 P < 0.00005 Z ¼ �9.518 P < 0.00005

F ¼ 1.37 DF ¼ 1651,281 P ¼ 0.0005

O-Efficiency t ¼ �13.74 DF ¼ 495.1 P < 0.00005 Z ¼ �11.055 P < 0.00005

F ¼ 1.99 DF ¼ 1651,281 P < 0.00005

D-Efficiency t ¼ 8 DF ¼ 406.2 P < 0.00005 Z ¼ 7.623 P < 0.00005

F ¼ 1.21 DF ¼ 1651,281 P ¼ 0.0212

W-Efficiency t ¼ �26.26 DF ¼ 751.4 P < 0.00005 Z ¼ �17.582 P < 0.00005

F ¼ 4.12 DF ¼ 1651,281 P < 0.00005

F-Efficiency t ¼ �41.07 DF ¼ 1293.6 P < 0.00005 Z ¼ �23.408 P < 0.00005

F ¼ 9.04 DF ¼ 1651,281 P < 0.00005

WPct t ¼ 42.97 DF ¼ 672.7 P < 0.00005 Z ¼ 24.134 P < 0.00005

F ¼ 3.47 DF ¼ 1651,281 P < 0.00005
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for all the t-tests except for the one involving O-Capability. We summarize the

hypothesis tests for each variable below:

• O-Capability: Post-season teams on average gain more total bases than do non-

post-season teams.

• D-Capability: Post-season teams on average surrender fewer total bases than do

non-post-season teams.

• O-Efficiency: Post-season teams have on average lower inverse efficiency scores

at the offense sub-DMU than do non-post-season teams.

• D-Efficiency: Post-season teams have on average higher efficiency scores at the

defense sub-DMU than do non-post-season teams.

• W-Efficiency: Post-season teams have on average lower inverse efficiency scores

at the integration sub-DMU than do non-post-season teams.

• F-Efficiency: Post-season teams have on average lower organizational inverse

efficiency scores than do non-post-season teams.

• WPct: Post-season teams have on average higher regular season winning per-

centages than do non-post-season teams.

Regular Season Regression Analysis

The sample size for the regression model is 1934 regular season teams. We omitted

F-Efficiency from the model because of its high colinearity with the other three

efficiency scores. Table 20.8 shows the resulting regression model.

We observe that all five independent variables are highly statistically significant

and that all five coefficients have the expected sign. Recall that D-Capability
is a reverse quantity and that larger values of O-Efficiency, D-Efficiency, and
W-Efficiency indicate greater potential to increase output and therefore signify

Table 20.8 Regression output for the regular season analysis

Weighted least squares linear regression of winning percentage

Weighting variable: Games played

Predictor variables Coefficient Std error T P

Constant 1.36968 0.01867 73.36 0.0000

O-Capability 0.03537 4.283E-04 82.57 0.0000

D-Capability �0.04247 3.907E-04 �108.71 0.0000

O-Efficiency �0.26566 0.00935 �28.42 0.0000

D-Efficiency �0.13465 0.00957 �14.06 0.0000

W-Efficiency �0.25583 0.00686 �37.28 0.0000

R2 0.9245 Resid. Mean Square (MSE) 0.08455

Adjusted R2 0.9243 Standard deviation 0.29077

Source DF SS MS F P

Regression 5 1,996.91 399.383 4,723.70 0.0000

Residual 1,928 163.01 0.085

Total 1,933 2,159.92
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lower efficiency. The model explains over 92 % of the variation inWPct, indicating
that omitted factors and random variation account for no more than 8 % of the

variation in regular season effectiveness. Table 20.9 shows the coefficients of

partial determination and the R2 contribution of each independent variable.

The results show that capability contributes more to regular season effectiveness

than does efficiency. Specifically, the coefficients of partial determination of

O-Capability and D-Capability are 0.780 and 0.860, respectively, while those of

O-Efficiency, D-Efficiency, and W-Efficiency are 0.295, 0.093, and 0.419, respec-

tively. We observe a similar pattern in the R2 contributions.

Defensive capability appears to be more important than offensive capability, as

indicated by the higher coefficient of partial determination, higher R2 contribution,

and larger (absolute) regression coefficient for D-Capability relative to O-Capabil-
ity (t ¼ 12.25, df ¼ 3866, P < 0.001). However, good management apparently can

enhance offense more than it can enhance defense, as indicated by the higher

coefficient of partial determination, higher R2 contribution, and larger (absolute)

regression coefficient for O-Efficiency relative to D-Efficiency (t ¼ 9.79,

df ¼ 3866, P < 0.001). The coefficients of partial determination and the R2

contributions suggest that W-efficiency contributes somewhat more to regular

season effectiveness than does O-Efficiency, although the (absolute) regression

coefficients of W-Efficiency and O-Efficiency are nearly equal.

Post-season Regression Analysis

The sample size for the regression model is 282 post-season teams. We find

that a team’s post-season performance is virtually unrelated to offensive and

defensive capabilities and that only overall efficiency on the field

(a combination of O-Efficiency, D-Efficiency, and W-Efficiency) has even the

slightest relationship to post-season performance. Overall efficiency on the

field can account for just over 1 % of post-season performance, suggesting

that nearly 99 % of post-season success is attributable to chance and other

unidentified factors.

Table 20.9 Coefficient of partial determination and the R2 contribution of

each capability measure and each efficiency measure in the regular season

analysis

Variable

Coefficient of

partial determination R2 contribution

O-Capability 0.780 0.267

D-Capability 0.860 0.463

O-Efficiency 0.295 0.032

D-Efficiency 0.093 0.008

W-Efficiency 0.419 0.054
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20.5.2.5 Conclusions of the Study

In this section, we summarize our results by responding to each research question.

How much does team capability and managerial efficiency contribute to regular
season effectiveness in MLB?
We conclude that both capability and efficiency are significant contributors to

regular season effectiveness in MLB. However, capability is more important than

efficiency. This supports our speculation that capability is more important than

efficiency in industries where labor is highly paid. Moreover, we conclude that

defensive capability contributes more to regular season effectiveness than does

offensive capability. This supports an organizational strategy that places greater

emphasis on defense (primarily pitching) relative to offense (primarily hitting).

Among the three efficiency measures, we conclude that the team’s ability to win

close games, as indicated by its W-Efficiency, has the greatest contribution to

regular season effectiveness. This suggests that managers who employ effective

strategies late in the game, such as pinch-hitting and relief pitching, can signifi-

cantly influence the team’s overall effectiveness.

We also find that the team’sO-Efficiency has greater influence on its regular season
effectiveness than does its D-Efficiency. We speculate that this may be because the

offense typically has greater control over the tactics that increaseO-Efficiency relative
to the control that the defense has over the tactics that increase D-Efficiency. For
example, the offense decides when to try to steal a base, when to attempt a hit-and-run

play, and when a runner seeks to advance an extra base on a hit. There are few tactics

that the defense can employ, such as pitching out and having the pitcher keep runners

close to their bases, leaving the defense in a generally reactive position. Thus, the

defense tends to rely more on capability – the ability of the pitcher and the catcher to

prevent stolen bases and the throwing abilities of the outfielders – than on efficiency.

How much does team capability and managerial efficiency contribute to
post-season effectiveness in MLB?
We conclude that regular season capabilities and efficiencies are poor predictors of

post-season effectiveness. Thus, post-season success is overwhelmingly deter-

mined by chance in that even talented and well-managed teams have little relative

advantage in post-season play. We believe that this is due primarily to two factors.

First, opposing teams in the post-season are likely also to be talented and well

managed, nullifying any relative advantage. Second, post-season series are short –

either five or seven games in almost all cases – so that an inferior team maintains a

significant chance of winning the series with the help of a few lucky bounces.

20.6 Conclusion

Data envelopment analysis has been extensively applied to measure the perfor-

mance of individual athletes and teams in a variety of sports as well as to analyze

nations competing in the Olympics. Most of the models presented in the literature
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are single-stage DEA models which treat the underlying process of converting

inputs into outputs as a “black box.” This approach is appropriate in many situations

including when the purpose of the analysis is to rank decision making units

(individual athletes, teams, or nations).

In other situations, analysts are interested in investigating the sources of ineffi-

ciency within the organization in order to improve organizational performance. For

example, the owner of a sports team may be interested in evaluating the efficiency

of various organizational sub-processes under the control of different administra-

tors (general managers, talent scouts, on-field managers, or coaches) in order to

make personnel decisions. To accomplish this, researchers have developed

two-stage and network DEA methodologies.

In this chapter, we model an MLB team as comprised of a front office operation

which consumes money in the form of player salaries to acquire offensive and

defensive talent and an on-field operation which uses the talent to outscore oppo-

nents and win games. We present a network DEA methodology to measure perfor-

mance of the front office operation (offense and defense), the on-field operation

(offense, defense, and integration), and the overall team. We utilize the methodol-

ogy in two industry-wide studies of Major League Baseball.

In the first study, we use a two-stage DEA model as part of a larger analysis to

determine the minimum total player salary required for a team to be competitive, to

count the number of teams that are noncompetitive due to low total player salary,

to determine the hypercompetitive salary, to count the number of hypercompetitive

teams, and to examine the relationship between market size, efficiency, and com-

petitiveness. In order to address these issues, we need to classify the MLB teams as

noncompetitive due to low total player salary, noncompetitive for other reasons,

conditionally competitive, economically competitive, and hypercompetitive.

The classification process utilizes the front office, on-field, and overall team

efficiency scores obtained from the two-stage DEA model.

In the second study, we use a network DEA model as part of a larger analysis to

explore the relative contributions of team capability and managerial efficiency

to team effectiveness during the regular season and the post-season. In order to

build the model for team effectiveness, we utilize the O-Efficiency, D-Efficiency,
W-Efficiency, and F-Efficiency scores determined from the network DEA model.

We emphasize that each of these studies requires the results obtained from the

two-stage and network DEAmodels in order to perform the analysis. A single-stage

DEA model does not provide the in-depth information the analyst needs to address

the research questions.
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Chapter 21

Production and Marketing Efficiencies

of the U.S. Airline Industry: A Two-Stage

Network DEA Approach

Wen-Min Lu, Shiu-Wan Hung, Qian Long Kweh,

Wei-Kang Wang, and En-Tzu Lu

Abstract This chapter presents an application of a two-stage network data

envelopment analysis (DEA) for examining the performance of 30 U.S. airline

companies. The airline industry is a subject of concern because the industry is a

major contributor to a country’s or even global economic development. Although

a number of studies have explored airline performance using DEA, relatively few

studies have applied a two-stage DEA model. The current chapter examines

production efficiency and marketing efficiency through an additive two-stage

network DEA model. This approach allows the black-box of the performance

measurement process to be assessed, thus, providing a new direction in measuring

airline performance. The chapter includes a managerial decision-making matrix

and makes suggestions to help airline managers improve performance for airlines.

In addition, a regression analysis of the effect of corporate governance mechanisms

on airlines performance is conducted. Given the volatility of growth in the airline

industry, it is expected that we will see more research related to performance

management in the industry.
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21.1 Introduction

Since the United Stated Congress passed the Airline Deregulation Act in 1978, the

air transport market has seen significant changes. This Open Skies policy allowed

low-cost carriers (LCCs) to enter the air transport market. LCCs use a simple type

of aircraft, secondary airports and simplified routes to reduce their operating costs,

which allows them to provide lower fares to customers. The rapid expansion of

LCCs has caused traditional airlines to confront fierce competition. Rising labor

costs and volatile fuel prices affect all airlines. Competition in the airline industry is

at an all-time high, challenging providers to reduce costs while improving quality.

In this environment, the ability to attract new customers while retaining existing

ones through superior customer service is not only a key competitive differentiator,

but a necessity. Obstacles met in the search for flight information can diminish

customers’ perceptions of an airline’s capability, decrease the opportunity for

future revenue, and open the door for other carriers to win their business. In today’s

highly competitive market, airlines are deploying a range of innovations in terms of

customer service and support in order to improve operating performance. The focus

has moved from attempts to characterize performance in terms of a simple indica-

tor, e.g., revenues, to a multi-dimensional systems perspective.

The Data Envelopment Analysis (DEA) is a linear programming based tech-

nique that converts multiple output and input measures into a single comprehensive

measure of performance. This is attained through the construction of an empirical-

based production or resource conversion frontier, and by the identification of peer

groups. The philosophy behind DEA is predicated on the fact that a frontier

transformation function empirically captures the underlying process defining

firms’ production activities. The application of DEA is strongly supported in the

multitude of empirical analysis methods in different fields of profit (Seiford 1997;

Zhu 2000; Gattoufi et al. 2004; Cooper et al. 2006). DEA has also been widely

applied in evaluating airline performance (Sengupta 1999; Barbot et al. 2008;

Barros and Peypoch 2009). The traditional DEA model is based on one-stage

activities, which neglect intermediate measures or linking activities (Fare and

Whittaker 1995; Chen and Zhu 2004; Tone and Tsutsui 2009). This study estab-

lishes a two-stage DEA model to overcome the shortcomings of the traditional

one-stage DEA. While production efficiency indicates the relative efficiency of a

firm in the production process, marketing efficiency reflects the relative perfor-

mance of a firm in the marketing process. This study evaluates the relative effi-

ciency of airlines in the US, in response to the changing nature of the airline market.

Corporate governance is a multi-faceted subject. An important theme of

corporate governance is the nature and extent of accountability of particular

individuals in the organization and mechanisms that try to reduce or eliminate the
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principal-agent problem. A related, but separate, thread of discussions focus on the

impact of a corporate governance system on economic efficiency, with a strong

emphasis on shareholders’ welfare; this aspect is particularly present in contem-

porary public debates and developments in regulatory policy. Since the failures of

well-known companies such as Enron, WorldCom, Tyco and Merck, academics

and practitioners have shown increasing interest in corporate governance. Corpo-

rate governance is the set of processes, customs, policies, laws, and institutions

affecting the way a corporation (or company) is directed, administered or con-

trolled. Corporate governance also includes the relationships among the many

stakeholders involved and the goals for which the corporation is governed. In

contemporary business corporations, the main external stakeholder groups are

shareholders, debt holders, trade creditors, suppliers, customers and the communi-

ties affected by the corporations’ activities. Internal stakeholders include the

boards of directors, executives and other employees. Chiang and Lin (2007),

Bennedsen et al. (2008), Carline et al. (2009) and Sueyoshi et al. (2010)

demonstrate that corporate governance is correlated with organizational perfor-

mance. Gompers et al. (2003) illustrate that good governance positively affects a

firm’s performance. Several governance factors may affect the performance of

airlines. To explore the impact of exogenous factors on corporate performance,

Simar and Wilson (2007) verify that truncated regression is more appropriate than

Tobit regression.

This study adopts bootstrapped DEA scores with truncated regression to analyze

the relationship between corporate governance and airline performance. The sig-

nificant difference between the present study and the studies mentioned above is

that the former adopts a two-stage DEA to explore airline performance and

addresses production efficiency and marketing efficiency in order to better under-

stand intermediate measures or linking activities. Additionally, this study uses a

managerial decision-making matrix in order to help airline managers rapidly

improve corporate efficiency or strategies. Finally, this study uses truncated regres-

sion in order to analyze the relationship between corporate governance and perfor-

mance and to guide managers toward competitiveness in the airline industry. The

important contributions of this study include: (1) developing an innovative

two-stage production process that includes production efficiency and marketing

efficiency in order to assess the operating performance of airlines; (2) implementing

truncated regression (Simar and Wilson 2007) in order to investigate whether or not

corporate governance affects airline performance; (3) integrating production effi-

ciency and marketing efficiency in order to address managerial decision-making.

As a result, management could use the managerial decision-making matrix to set up

improvable strategies.

The remainder of this chapter is organized as follows: Sect. 21.2 presents a

literature review; Sect. 21.3 describes the research design, including our two-stage

DEA methodology, truncated regression, collection of the sample data and the

criteria for variables to evaluate performance; Sect. 21.4 presents empirical data

and analyzes the results; and Sect. 21.5 presents the conclusion.
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21.2 Operating Performance Measurement Approaches

in the Airline Industry

In today’s globalized world, air transportation systems play the role of providing a

service to connect virtually all countries around the world. Over the last decade, the

airline industry has experienced the fastest growth and has contributed to the

creation of economies worldwide. However, the industry was greatly affected by

economic challenges such as increased competition and volatility. The September

11 attacks in 2001 and the severe acute respiratory syndrome (SARS) in 2002 and

2003 caused the 2001/2003 aviation crisis, and the recent global financial crisis of

2007–2009 caused the 2008/2009 aviation crisis (Franke and John 2011). During

these periods, even the most lucrative airlines lost money and this implies that

airline managers have to take extra caution in choosing information that reflects

their operating performance (Gramani 2012). Therefore, it is no surprise that there

has been a recent spate of interest in the study of airline performance as researchers

have applied an arsenal of tools to evaluate airline performance.

21.2.1 Uni-dimensional Measures

There is a long-standing debate over which measures reflect operating performance

well. Among performance measurement technique, Francis et al. (2005) document

that benchmarking is the most used method in the aviation industry. In the academic

field, researchers have used various measures as indicators of the operating perfor-

mance of airlines, including ratio analysis on accounting-based performance and

market-based performance.

The traditional ratio measures are simple and easy to understand with each

indicator providing a single dimensional measure of operating performance. Var-

ious ratios have been used in prior studies (see for example, Feng and Wang 2000).

An example of a market-based ratio measure used is Tobin’s Q. Lee et al. (2013)

used approximate q, which is calculated as the summation of a firm’s market value,

liquidating value of outstanding preferred shares, and value of short-term liabilities.

Raghavan and Rhoades (2005) employed an operating profit margin to indicate the

profitability of the U.S. airlines. In examining the performance of international

airlines, Backx et al. (2002) used several ratios, such as return on sales, return on

assets, and employee productivity. Despite the prevalent use of ratio measures,

Chuang et al. (2008) argue that the use of traditional performance measures like the

Sharpe ratio could provide wrong information to investors regarding the stock

performances of airlines.

Other measures that have been previously used are aggregate measures (Gorin

and Belobaba 2004), activity-based costing (Lin 2012), an integrated approach of an
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analytic hierarchy process (AHP) and fuzzy TOPSIS method (Aydogan 2011),

benchmarking (Francis et al. 2002), a multi-attribute decision making model

(Chang and Yeh 2001) and even newly-developed explanatory frameworks (Tan

and Rae 2009).

21.2.2 Data Envelopment Analysis

Prior studies document that DEA is superior to traditional methods, such as ratio

analysis (Lu et al. 2014). Zhu (2000) argues that the single output to input financial

ratios may not characterize the financial performance of a company that is complex

in nature. Instead of using mere ratios or other individual financial variables,

various attributes can be accommodated so that possible interactions between

them can be captured in order to derive the efficiency scores of decision making

units (DMUs) under DEA (Yeh 1996; Homburg 2001; Biener and Eling 2011; Lu

and Hung 2011; Premachandra et al. 2011; Fang et al. 2013; Matthews 2013; Yang

and Morita 2013). This means that DEA provides additional information through

the computed efficiency scores of financial measures aggregation as compared to

such financial ratios as return on assets that are uni-dimensional and have subjective

problematic interpretations (Feroz et al. 2003). Moreover, comparing multiple

inputs and outputs of DMUs for measuring relative DMU’s efficiency allows for

the identification of benchmarking. Other advantages of DEA include the identifi-

cation of sources and the amount of inefficiency in each input and each output for a

DMU as well as its ability for benchmarking purposes (Cooper et al. 2006).

Contemporary research in the aviation industry has applied DEA in order to

evaluate organization performance. Through a rigorous analysis, Liu et al. (2013b)

provide a summary of five major DEA application areas, among which is transpor-

tation. In air transportation, Schefczyk (1993) is the leading article measuring

the operational performance of airlines. Using data from 15 airlines, the author

uses DEA to analyze the operational performance of airlines and concludes with an

analysis of the strategic factors of high profitability and performance in the airline

industry.

Sengupta (1999) evaluates the performance of seven major airlines between

1988 and 1994 by using the DEA method. The results of this study showed that

techniques and the allocation efficiency of the airlines changed significantly during

this period. Scheraga (2004) investigates whether relative operational efficiency

implied superior financial mobility. He used DEA to derive efficiency scores for

38 airlines in North America, Europe, Asia and the Middle East, and found that

relative operational efficiency did not inherently imply superior financial mobility.

Chiou and Chen (2006) employ DEA to evaluate 15 Taiwanese domestic air

routes from three perspectives proposed by Fielding et al. (1978). The results of the

DEA model suggest that ten routes were relatively cost efficient, five routes

were relatively cost effective and four routes were relatively service effective. The

study also performed clustering analysis to categorize the routes into four clusters.
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Based on the characteristics of each route, the authors addressed directions for

improvement.

Barbot et al. (2008) use DEA and total factor productivity (TFP) to analyze the

efficiency and productivity of the 49 member airlines of IATA. The study found that

low-cost carriers perform more efficiently than full-service carriers, and larger air-

lines aremore efficient than smaller ones.With respect to geographic areas, the author

noted that the European and American carriers were more effective than airlines in

Asia Pacific and China/North Asia. The results of the DEA analysis illustrate that

efficiency and effectiveness are not always correlated. The results of the TFP analysis

show that the airlines operating within more homogeneous and regulatory structured

areas, like North America, are more uniform in their productivity.

Greer (2008) uses DEA and the Malmquist productivity index to examine

changes in the productivity of the major U.S. passenger airlines from 2000 to

2004. The study suggests that there was a significant improvement in the produc-

tivity of the carriers during this period. Most of the productivity improvements

came from the efficiency laggards’ catching up with efficiency leaders in the

industry. Barros and Peypoch (2009) apply DEA to evaluate the efficiency of

27 airlines in the Association of European Airlines (AEA), from 2000 to 2005.

The study found that almost all European airlines operate at a high level of pure

technical efficiency and scale efficiency. In the second stage, the study used

bootstrapped truncated regression and noted that population and network alliances

are the most important influences on the efficiency of airlines.

Hong and Zhang (2010) use DEA to analyze the operations of 29 airlines from

1998–2002 in order to explore whether a high degree of cargo business improves the

operational efficiency of mixed passenger/cargo airlines. It was found that airlines

with a high degree of cargo business are significantly more efficient than ones with a

low degree of cargo business.Moreover, the authors found no statistically significant

difference between airlines with similar degrees of cargo business.

Merkert and Hensher (2011) evaluate key determinants of 58 passenger airlines’

efficiency using bootstrapped DEA scores in the first stage and partially

bootstrapped random effects Tobit regressions in the second stage. They show

that airline size and fleet mix characteristics have positive impacts on technical,

allocative and cost efficiencies. Although the age of an airline’s fleet does have a

positive impact on its allocative and cost efficiency, it has no significant impact on

its technical efficiency, which means that an old fleet can possibly achieve higher

efficiency than a young fleet. Merkert and Williams (2013) also apply a two-stage

approach to measure the efficiency of 18 European public service obligations

airlines. In the first stage, they document a bootstrapped DEA analysis to compute

the technical efficiency of the sample airlines. In the second stage, they regress the

first-stage DEA efficiency scores against explanatory variables (determinants of

airline performance).

Wang et al. (2011) also apply a two-stage approach, where they use DEA to

assess the operating performance of 30 airlines in the U.S. and regress the first-stage

DEA efficiency scores against corporate governance mechanisms. They assess

competitive advantages of airlines through efficiency decomposition, cluster
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analysis, and multidimensional scaling. Their truncated regression analysis shows

that airline performance is related to their characteristics and corporate governance

mechanisms. Studying 17 European airlines, Lozano and Gutiérrez (2011) employ

a multi-objective DEA approach to determine the trade-offs among environmental

impact, fleet cost and operating cost, and a Slacks-Based Measure (SBM) of DEA to

assess the technical efficiency of each airline. Their results show that approximately

50 % of the airlines are technically inefficient.

The study of Gramani (2012), which is closely related to our study, applies a

two-phase data envelopment analysis approach to examine the operational and

financial performances for Brazilian and American airlines from 1997 to 2006.

The intermediate input in their study is the inverted efficiency scores obtained in the

first phase. In contrast, our study is set in a different research setting in which we

establish a two-stage DEA model with intermediate measures in a single imple-

mentation. This is consistent with that of Zhu (2011), who examined the perfor-

mance of fleet maintenance in the first stage and the performance of revenue

generation in the second stage through an application of the centralized model

developed by Liang et al. (2008).

In summary, prior studies have considered different inputs and outputs with no

unanimous orientation. That is, input-oriented, output-oriented, and non-oriented

models have been applied in prior studies. With respect to the assumption on returns

to scale, they assume either constant returns to scale (CRS) or variable returns to

scale (VRS). Both radial and non-radial methods have been employed. A drawback

of traditional DEA models is that they ignore intermediate measures or linking

activities. To overcome this problem, an integrated additive two-stage DEA model

is discussed in the next section.

21.3 Research Design

From the influential study of Charnes et al. (1978), the first outcome of note is the

definition of DEA: a “measure of the efficiency of any decision making unit (DMU)

is obtained as the maximum of a ratio of weighted outputs to weighted inputs

subject to the condition that the similar ratios for every DMU be less than or equal

to unity” (Charnes et al. 1978). DEA, a widely used linear-programming-based

composite tool, is a non-parametric mathematical technique for measuring the

relative efficiency of DMUs, in particular the efficiency of the DMUs in

transforming inputs into outputs. Particularly, DEA first establishes an “efficient

frontier” formed by a set of DMUs that exhibit best practices and then assigns the

efficiency level to other non-frontier units according to their distance from the

efficient frontier. Put differently, a company is technically efficient if it cannot

improve any of its inputs or outputs without reducing some of its other inputs or

outputs (Cooper et al. 2004).

DEA has been in existence for more than 30 years. Since the publication of the

seminal paper by Charnes et al. (1978), the number of DEA-related published
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research articles has exceeded 4,000 entries up to year 2007 (Emrouznejad

et al. 2008) and has accumulated approximately 4,500 papers in the ISI Web of

Science database up through the year 2009 (Liu et al. 2013a). The usefulness of

DEA is evident in its wide acceptance, in which it has been widely applied to

various industrial and non-industrial contexts, such as transportation, banking,

education, etc. in the academic field. Furthermore, almost no one in the DEA

research community is cognizant of the development and application of DEA to

real world scenarios in countries such as China and UAE (Liu et al. 2013b). That is,

DEA has become a widely used tool for evaluating corporate performance in the

study of management and related disciplines (Seiford and Zhu 1999; Zhu 2000;

Banker et al. 2004; Wang 2005; Lu and Hung 2010; Sueyoshi and Goto 2010;

Chang et al. 2008).

Taken together, applying DEA, a multi-factor performance measurement model,

to measure corporate performance is more advantageous than traditional perfor-

mance measures and can better capture managerial efficiency in managing organi-

zational resources. Those publications noted earlier are definitely great examples to

illustrate the pros of using DEA to address real world problems or corporate

performance.

However, the traditional DEA model, which is based on a one-stage approach

ignores intermediate measures or linking activities (Chen and Zhu 2004; Tone and

Tsutsui 2009). That is, the conventional DEA model treats each DMU as a “black

box” where only initial inputs and final outputs are assessed for efficiency mea-

surement (Chen and Yan 2011). A two-stage DEA model is able to overcome the

shortcoming of the traditional one-stage DEA model.

21.3.1 Two-Stage Transformation

Evaluating organizational performance is a complex process that cannot take into

account just one criterion or just one dimension. A number of studies have applied

DEA, which converts multiple inputs and outputs into a single efficiency score in

order to evaluate the performance of organizations (Seiford 1997; Gattoufi

et al. 2004; Emrouznejad et al. 2008).

One disadvantage of traditional DEA models is that they neglect intermediate

measures or linking activities (Fare and Whittaker 1995; Chen and Zhu 2004; Tone

and Tsutsui 2009). In order to adequately evaluate the operating performance of

airlines, this study proposes a two-stage production process that includes produc-

tion efficiency and marketing efficiency, as shown schematically in Fig. 21.1.

In each stage, input and output variables are chosen based on the literature from

studies on the field of aviation (Schefczyk 1993; Charnes et al. 1996; Ray and Hu

1997; Alam et al. 1998; Sengupta 1999; Scheraga 2004; Barbot et al. 2008; Greer

2008). In the first stage, each airline uses six inputs to produce two outputs, which

are then used as inputs in the second stage to produce two further outputs. The

input, intermediate and output variables used in this study are defined as follows.
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Input variables:

Employees (FTEs): The number of full-time equivalent employees (FTEs)

Fuel Consumed (FUEL): The total gallons of fuel consumed during the current

period

Seating Capacity (SEATS): The total number of seats in all aircraft

Flight Equipment (FLIGHT): The cost of flight equipment

Maintain Expense (MAINEXP): The maintenance, materials and repairs expenses in

the income statement

Ground Property & Equipment (GROPROEQ): The cost of equipment and property

minus that of flight equipment

Intermediate variables:

Available Seat Miles (ASMs): The total number of seat miles that were available to

passengers (i.e. aircraft miles flown times the number of seats available for

revenue passenger use)

Available Ton Miles (ATMs): The sum of the products obtained from the number of

tons available to carry revenue load passengers, freight and mail on each flight

stage multiplied by miles flown

Output variables:

Revenue Passenger Miles (RPMs): The scheduled revenue miles flown by passen-

gers (i.e. revenue passengers carried times miles flown)

Non-Passenger Revenue (NPR): The total amount of passenger revenue subtracted

from gross sales

FTEs

FUEL

SEATS

FLIGHT

MAINEXP

GROPROEQ

RPMs

NPR

Production

Efficiency

Marketing

Efficiency

ASMs

ATMs

Airlines’ overall efficiency

Fig. 21.1 Two-stage production processes for airline
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21.3.2 Data Collection and Descriptive Statistics

The data were extracted from the Compustat database, the Bureau of Transportation

Statistics (BTS), annual reports, and proxy statements published in 2006. The study

first selected 36 airlines listed on the US stock exchanges, including 26 US airlines

and 10 American Depositary Receipt (ADR) airlines. Each airline is treated as a

DMU in the DEA analysis. The samples included an additional consolidated

statement from a different source, while airlines that were missing data were

eliminated. As a result, the final sample list contained 30 airlines, including

21 US airlines and 9 ADR airlines. We examined the efficiency of the airlines

with the two-stage production process, in which all of the outputs from the first

stage were used as inputs to the second stage. Furthermore, we explored whether

characteristics of corporate governance affected airline performance.

Descriptive statistics for the 30-airline sample are provided in Table 21.1. Panels

B and C in Table 21.1 show the correlation coefficients for inputs and outputs in the

two stages. The results reveal a significantly positive relation between inputs and

outputs. The data set satisfies the assumption of isotonicity, that is, an increase in

any input should not result in a decrease in any output. Besides, DEA requires that

the number of DMUs be at least twice the total number of input and output variables

(Golany and Roll 1989). In this study there are six inputs and two outputs in stage

one, with two inputs and two outputs in stage two. Each stage meets the criterion,

i.e., 30 > 2(6 + 2) in the first stage and 30 > 2(2 + 2) in the second stage. The

DEA model of this study is thus deemed valid.

21.3.3 Additive Efficiency Decomposition in Two-Stage DEA

A number of studies (Seiford 1997; Gattoufi et al. 2004; Emrouznejad et al. 2008)

have employed two-stage processes to evaluate the operating efficiency of peer

organizations using different DEA models. In general, DEA models can be

sub-divided into four categories: separate DEA models (SDEA; e.g., Karlaftis

2004; Chiou and Chen 2006), separate two-stage DEAmodels (STDEA; e.g., Seiford

and Zhu 1999; Keh et al. 2006), networkDEAmodels (NDEA; e.g., Yu andLin 2008;

Yu 2008; Kao 2009; Tone and Tsutsui 2009; Cook et al. 2009), and integrated

two-stage DEA models (ITDEA; e.g., Kao and Hwang 2008; Chen et al. 2009;

Cook et al. 2010). The SDEA cannot conduct the two-stage efficiency, with interme-

diatemeasures, in a single implementation. Hence, because of intermediatemeasures,

the performance improvement of one stage affects the efficiency status of the other.

The lack of interrelated performance among different stages in SDEA may be

solved by the NDEA or ITDEA models. However, due to the complexity of the

modeling, the scale economy and slack values for each DMU are hard to compute

using the NDEA model proposed by Yu and Lin (2008), Yu (2008) and Kao (2009),

which is only applicable to the case of constant returns to scale. The NDEA model
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(Tone and Tsutsui 2009) does not show the relative importance or contribution of

the performances of individual stages to the overall performance of the entire

process. The ITDEA model proposed by Chen et al. (2009) and Cook

et al. (2010) can be applied to both technologies of variable and constant returns

to scale and represents the relative importance or contribution of the performances

of individual stages to the overall performance of the entire process. One reasonable

choice of the weights for each stage is by the relative size of each stage.

Therefore, this study adopts the additive efficiency decomposition of Chen

et al. (2009) and Cook et al. (2010) by establishing a two-stage DEA model with

intermediate measures in a single implementation. Consider the two-stage produc-

tion process presented in Fig. 21.1. Assume we have n airlines and that airline j uses
m inputs (xij, i ¼ 1, . . ., m) to produce d outputs (zpj, p ¼ 1, . . ., d ) in the first

stage; these are then used as inputs in the second stage to produce s outputs

(yrj, r ¼ 1, . . ., s). The efficiency measure for stages 1–2 of the process under

VRS for an observed airline becomes β1 and β2.

β1 ¼
Xd

p¼1
ηpzpo þ κA

� �
=

Xm

i¼1
vixio

� �
ð21:1Þ

β2 ¼
X s

r¼1
uryro þ κB

� �
=

X d

p¼1
ηpzpo

� �
: ð21:2Þ

The overall efficiency measure of the two-stage process can reasonably be

represented as a convex linear combination of the two stage-level measures,

namely,

θ ¼ w1β1 þ w2β2 where w1 þ w2 ¼ 1:

The weights (w1 and w2) are intended to represent the relative importance or

contribution of the performances of individual stages to the overall performance of

the two stage process. The weights (w1 and w2) in each stage are determined based

on the relative size of that stage. To be more specific, (
Pm

i¼1 vixio +
Pm

i¼1ηpzpo)
represents the total size of, or total amount of, resources consumed by the two stage

process. Assume that w1 and w2 are defined as the proportion of the total input used

at each stage, then

w1 ¼
Xm

i¼1
vixio

� �
=

Xm

i¼1
vixio þ

Xd

p¼1
ηpzpo

� �
and

w2 ¼
Xd

p¼1
ηpzpo

� �
=

Xm

i¼1
vixio þ

Xd

p¼1
ηpzpo

� �
:

Thus, the overall efficiency θ is in the form

θ ¼
Xd

p¼1
ηpzpo þ

X s

r¼1
uryro þ κA þ κB

� �
=

Xm

i¼1
vixio þ

Xd

p¼1
ηpzpo

� �
ð21:3Þ
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The overall efficiency θ of the two stage process can be optimized, subject to the

restrictions that the individual measures (β1 and β2) must not exceed unity in the

linear programming format, after making the usual Charnes and Cooper transfor-

mation (1962). The linear programming problem of additive efficiency decompo-

sition in the two-stage DEA under the VRS model is as follows.

Max
Xd

p¼1
ηpzpo þ

X s

r¼1
uryro þ κA þ κB

subject toXm

i¼1
vixio þ

Xd

p¼1
ηpzpo ¼ 1Xd

p¼1
ηpzpj þ κA �

Xm

i¼1
vixij � 0X s

r¼1
uryrj þ κB �

Xd

p¼1
ηpzpj � 0

vi, ηp, ur � 0; κA, κB free in sign; j ¼ 1, 2, . . . , n:

ð21:4Þ

If κA ¼ κB ¼ 0 in (21.4), then the technology is said to exhibit CRS.

The dual model of (21.4) under the VRS model is as follows:

Min θk

subject toXn

j¼1
λjkxij � θkxik, i ¼ 1, . . . ,m,Xn

j¼1
μjkzpj �

Xn

j¼1
λjkzpj � θkzpk � zpk, p ¼ 1, . . . , d,Xn

j¼1
μjkyrj � yrk, r ¼ 1, . . . , s,Xn

j¼1
λjk ¼ 1,Xn

j¼1
μjk ¼ 1,

λjk � 0; j ¼ 1, 2, . . . , n,

μjk � 0; j ¼ 1, 2, . . . , n:

ð21:5Þ

The solution based on formula (21.5), λjk can be utilized to determine whether

unit j is a peer of the observed unit k in the first stage. If it is zero, then unit j is not a
peer, otherwise, λjk serves as an indication of how much unit j is to be learned by the
observed unit k. The larger λjk which is the stronger unit j, is related to the observed
unit. μjk plays the same role in the second stage.

Once we obtain the overall efficiency, models similar to (21.4) can be developed

to determine the efficiency of each stage. Specifically, assuming the pre-emptive

priority of stage 1, the following model determines that stage’s efficiency TE1
k ,

while maintaining the overall efficiency score at θk calculated from (21.6),
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TE1
k ¼

XD

d¼1
πdzdkþκA

s:t:XD

d¼1
πdzdjþκA �

Xm

i¼1
wixij � 0X s

r¼1
μryrjþκB �

XD

d¼1
πdzdj � 0

1� θkð Þ
XD

d¼1
πdzdkþ

X s

r¼1
μryrk þ κA þ κB ¼ θkXm

i¼1
wixik ¼ 1

πd, μr,wi � 0, j ¼ 1, . . . , n,

κA, κB free in sign:

ð21:6Þ

Similarly, if stage 2 is to be given pre-emptive priority, the following model

determines the efficiency TE2
k for that stage, while

TE2
k ¼

X s

r¼1
μryrkþγB

s:t:XD

d¼1
πdzdjþκA �

Xm

i¼1
wixij � 0X s

r¼1
μryrjþκB �

XD

d¼1
πdzdj � 0XD

d¼1
πdzdkþ

X s

r¼1
μryrk � θk

Xm

i¼1
wixik þ κA þ κB ¼ θkXD

d¼1
πdzdk ¼ 1

πd, μr,wi � 0, j ¼ 1, . . . , n,

κA, κB free in sign:

ð21:7Þ

21.3.4 Truncated Regression

In the DEA literature, Tobit regression has been used to investigate whether

performance is affected by exogenous factors. This chapter assumes and tests the

regression condition as:

TEj ¼ αþ Xjβþ εj, j ¼ 1, . . . , n: ð21:8Þ

In (21.8), α is the intercept, εj is the residual value, and Xj is a vector of

observation-specific variables for airline j that is expected to be related to the

airline’s efficiency score, represented by TEj. Nevertheless, Simar and Wilson

(2007) illustrate that Tobit regression is inappropriate to analyze the efficiency

score under DEA. They also developed a truncated-regression model with boot-

straps instead of the Tobit model, and illustrate satisfactory performance in Monte

Carlo experiments.

21 Production and Marketing Efficiencies of the U.S. Airline Industry. . . 551



This study follows the approach of Simar and Wilson (2007) by adopting the

exogenous factors (corporate governance proxy variables) that would affect the

performance of airlines. It is noted that the distribution of εj is restricted by

the condition εj � 1 � α � Xjβ in (21.8). This study modifies (21.8) and assumes

that the distribution before truncation is truncated normal with zero mean, unknown

variance, and truncation point, which are determined by different conditions.

Equation 21.9 is the result after modification.

T̂E j � αþ Xjβ þ εj, j ¼ 1, . . . , n, ð21:9Þ

where εj ~ N(0, σ2ε), such that εj � 1 � α � Xjβ, j ¼ 1, . . ., n. This study uses the

regression process of parametric bootstrapping to estimate parameters (β, σ2ε),
estimates (21.8) by maximizing the corresponding likelihood function and gives

heed to (β, σ2ε). Readers not familiar with the details of the estimation algorithm are

referred to Simar and Wilson (2007).

21.4 Empirical Results

This section presents the empirical results of the two-stage DEA approach and

truncated regression. In the first phase, we examine the production and marketing

performances. Combining production efficiency and marketing efficiency, we con-

struct a decision-making matrix to identify the relative positions of our sample

airlines. In the second phase, we further help airline managers to improve their

operating performance through regression analysis. That is, we regress production

efficiency and marketing efficiency (dependent variables), respectively, on a num-

ber of corporate governance mechanisms and control variables (explanatory

variables).

21.4.1 Measuring Production and Marketing Performances

Based on the controllable aspect of a manager, this study adopts additive efficiency

decomposition (Chen et al. 2009; Cook et al. 2010) under the assumption of input

minimization (also known as input orientation) to measure the operating perfor-

mance of the multi-stage production of airlines, with intermediate measures, in a

single implementation model. One opting for DEA analysis should choose either

the CRS or VRS model. As Avkiran (2001) suggests, the way to choose between

CRS and VRS is to run the performance models under each assumption and

compare the efficiency scores. In this study, a Wilcoxon Matched Pairs Test is

applied to perform the evaluation. The mean of the paired differences between CRS

and VRS scores are not significantly greater than zero, thus supporting the CRS
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Table 21.2 Additive efficiency decomposition for airlines

Classification Company name

Additive efficiency decomposition

Production Marketing w1 w2 OTE

Full-service carriers

AIR FRANCE-KLM-ADR 1.000 1.000 0.500 0.500 1.000

AMR CORP/DE 0.808 0.924 0.553 0.447 0.860

BRITISH AIRWAYS

PLC-ADR

1.000 0.893 0.500 0.500 0.947

CHINA EASTERN AIRLINES-

ADR

0.755 0.832 0.570 0.430 0.788

CHINA SOUTHN AIRLS

LTD-ADR

1.000 0.848 0.500 0.500 0.924

CONTINENTAL AIRLS

INC-CL B

1.000 0.942 0.500 0.500 0.971

COPA HOLDINGS SA 1.000 0.846 0.500 0.500 0.923

DELTA AIR LINES 0.885 0.909 0.530 0.470 0.897

DEUTSCHE LUFTHANSA

AG-ADR

0.722 0.958 0.581 0.419 0.821

GREAT LAKES AVIATION

LTD

0.356 0.705 0.737 0.263 0.448

HAWAIIAN HOLDINGS 1.000 1.000 0.500 0.500 1.000

LAN AIRLINES SA-ADR 0.741 0.907 0.574 0.426 0.812

MESA AIR GROUP 0.726 0.866 0.579 0.421 0.785

NORTHWEST AIRLINES 0.804 1.000 0.554 0.446 0.892

PINNACLE AIRLINES 1.000 0.897 0.500 0.500 0.948

REPUBLIC AIRWAYS

HLDGS

1.000 0.935 0.500 0.500 0.967

SKYWEST 0.843 0.906 0.543 0.457 0.872

TAM SA-ADR 1.000 0.858 0.500 0.500 0.929

UAL 1.000 0.955 0.500 0.500 0.977

Average efficiency score 0.876 0.904 0.882

Low-cost carriers

AIRTRAN HOLDINGS 0.964 0.843 0.509 0.491 0.905

ALASKA AIR GROUP 0.839 0.886 0.544 0.456 0.860

ALLEGIANT TRAVEL 1.000 0.959 0.500 0.500 0.980

EXPRESSJET HOLDINGS 0.889 1.000 0.529 0.471 0.941

FRONTIER AIRLINES

HOLDINGS

1.000 0.871 0.500 0.500 0.935

GOL LINHAS AEREAS

INTEL-ADR

1.000 0.847 0.500 0.500 0.923

JETBLUE AIRWAYS 1.000 0.955 0.500 0.500 0.978

MAIR HOLDINGS 1.000 0.659 0.500 0.500 0.829

RYANAIR HOLDINGS

PLC-ADR

1.000 0.904 0.500 0.500 0.952

SOUTHWEST AIRLINES 0.877 0.846 0.533 0.467 0.863

US AIRWAYS GROUP 0.984 0.940 0.504 0.496 0.962

Average efficiency score 0.959 0.883 0.921

Total average efficiency score 0.907 0.896 0.896

Note:
w1 represents the relative importance of production efficiency to overall performance

w2 represents the relative importance of marketing efficiency to overall performance

OTE ¼ w1production efficiency + w2marketing efficiency
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assumption in the efficiency assessment. The ‘Production Efficiency,’ ‘Marketing

Efficiency’ and the relative importance of individual stages to the overall perfor-

mance of the entire process are presented in Table 21.2.

DEA efficiency scores do not measure the productive efficiencies of the

decision-making units in an absolute sense. Instead, they measure their efficiencies

relative to ‘the efficient’, meaning the best existing empirical practice and decision-

making units in the dataset, i.e. those that receive a DEA efficiency score of 1. This

does not preclude the existence of some inefficiency among the most efficient

decision-making units, so the efficient ones need not be completely efficient in an

absolute sense. DEA is a frontier analysis, where the boundary of the production

possibilities set (sometimes called the “efficiency frontier”) is specified by linear

combinations of the input–output vectors of the efficient firms. Firms that are not

found to be efficient receive efficiency scores of less than one (in an input-oriented

DEA model), with the extent to which their scores fall short of one measures how

inefficient they are relative to the efficient firms. An average efficiency score for the

decision-making units in a dataset essentially measures how inefficient, on average,

the firms in the dataset are compared to the efficient firms.

The score of relative efficiency ranges from 0 to 1. An airline with the score of

one is relatively efficient; otherwise, one with a score of less than 1 is relatively

inefficient. Table 21.2 shows that the mean scores of production efficiency and

marketing efficiency are 0.907 and 0.896, respectively. This finding indicates that,

in the area of production efficiency, there are smaller differences in the relative

efficiencies of the carriers than there are in their marketing efficiencies. This result

suggests that the policy-makers in these airlines should focus first on improving

marketing strategies and then proceed to improving their revenue passenger miles

and non-passenger revenue.

To determine whether differences exist in various operating characteristics,

including carrier type (either full-service carriers or low-cost carriers) for produc-

tion and marketing efficiencies, a non-parametric statistical analysis (Mann–Whit-

ney test) is used (Brockett and Golany 1996) for unknown distribution scores.

Table 21.2 shows that the low-cost carriers have higher production efficiency

than the full-service ones, with scores of 0.959 and 0.876 respectively. However,

the full-service carriers have higher marketing efficiency than the low-cost ones,

0.904 and 0.883 respectively. Most low-cost carriers do not carry cargo or provide

other services. Their main source of revenue comes from passengers. We speculate

that the marketing inefficiency of low-cost carriers is due to lower non-passenger

revenue. Due to the small sample size, the result of the Mann–Whitney test shows

no significant difference at the 5 % level.

21.4.2 Managerial Decision-Making Matrix

To identify the relative positions of the 30 airlines, we constructed a decision-

making matrix by combining production efficiency and marketing efficiency to help
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airline managers and boards of directors improve corporate efficiency. The hori-

zontal axis of the matrix measures production efficiency, while the vertical axis of

the matrix measures marketing efficiency. A large value indicates better marketing

efficiency. In contrast, a small value indicates a lower marketing efficiency.

Each airline is classified into a quadrant by examining (1) whether the produc-

tion efficiency is equal to or less than 0.95, and (2) whether the marketing efficiency

is greater than or smaller than 0.95. The decision-making matrix, shown in

Fig. 21.2, is divided into four quadrants, according to the importance and urgency

of the decision-making process. In order to find information indicating by how

much and in what areas an inefficient airline needs to improve, a non-zero slack

analysis was used to find targets and potential improvements for the inefficient

airlines. Such analysis can identify marginal contributions in efficiency ratings with

an additional decrease in specific input amounts. Table 21.3 reports the results of

our slack analysis. Based on the results shown in Table 21.3, the inefficient DELTA

AIR LINES, as an example, can decrease its number of employees (FTEs) by

10.35 %, its fuel consumed (FUEL) by 10.35 %, its seating capacity (SEATS) by

10.35 %, its flight equipment (FLIGHT) by 10.35 %, its maintenance expenses

(MAINEXP) by 31.6 %, its ground property and equipment (GROPROEQ) by

56.95 %, its available seat miles (ASMs) by 10.35 % and its available ton miles

(ATMs) by 53.37 %, so as to be as efficient as its peer group. This result suggests

that DELTA AIR LINES is seriously over-utilizing operational efficiency and

should enhance its management’s ability operate. The total potential improvement

also indicates that the inefficient DELTA AIR LINES has the greatest potential to
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Fig. 21.2 Managerial decision-making matrix for airlines
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decrease their inefficiency. Therefore, managers should expect to spend most of

their efforts in this area.

The purpose of this study is to understand the utilization of resources and the

decision-making orientation of each airline. We also propose a number of methods

to improve the airlines’ efficiency. The airlines located in the four zones are

described as follows.

Zone I: The airlines in this zone demonstrate higher efficiency in both production

and marketing than airlines in other zones. There are five airlines in this zone:

HAWAIIAN HOLDINGS, UAL, JETBLUE AIRWAYS, AIR FRANCE-KLM-

ADR, and ALLEGIANT TRAVEL. In both stages, these airlines were found to

be superior to other airlines, and are regarded as benchmarks because of their

outstanding efficiency. If they manage and control resources effectively, they will

be able to maintain their leading position.

Zone II: There are three airlines in this zone: EXPRESSJET HOLDINGS, NORTH-

WEST AIRLINES and DEUTSCHE LUFTHANSA AG-ADR. They were found to

be not as efficient as the airlines in Zone 1. Despite their relatively inferior

production efficiency, they performed remarkably in marketing. These airlines

should improve their ability to reallocate ASMs and ATMs in order to achieve

more effective outcomes in the production process.

Zone III: This zone contains nine airlines: DELTA AIR LINES, SOUTHWEST

AIRLINES, SKYWEST, ALASKA AIR GROUP, AMR CORP/DE, CHINA

EASTERN AIRLINES-ADR, LAN AIRLINES SA-ADR, MESA AIR GROUP

and GREAT LAKES AVIATION LTD. Both their production efficiency and

marketing efficiency were found to be inferior, with China Eastern Airlines bearing

the lowest score. All of these airlines should attempt to increase both production

efficiency and marketing efficiency. In addition to enhancing managerial capabil-

ities and reorganizing resources, these airlines should concentrate on substantive

issues and effective strategies.

Zone IV: There are 13 airlines in this zone, MAIR HOLDINGS, CONTINENTAL

AIRLS INC-CL B, REPUBLIC AIRWAYS HLDGS, COPA HOLDINGS SA,

CHINA SOUTHN AIRLS LTD-ADR, BRITISH AIRWAYS PLC-ADR, GOL

LINHAS AEREAS INTEL-ADR, RYANAIR HOLDINGS PLC-ADR, TAM

SA-ADR, PINNACLE AIRLINES, FRONTIER AIRLINES HOLDINGS, US AIR-

WAYS GROUP and AIRTRAN HOLDINGS. They had better production effi-

ciency, but lower marketing efficiency. This suggests that all policy-makers in

these airlines should focus first on improving marketing strategies and then proceed

to improving their revenue passenger miles and non-passenger revenue.

To summarize, we find that almost all variables are maximized in Zone I. Thus,

we can say that these airlines use resources efficiently. One input resource might be

further reduced in Zone II. Boards and management could focus on how to reduce

maintenance costs through communication and discussion. For example, if they leased

newer aircraft, maintenance expenses could be reduced. In Zone III, the output

resources are relatively smaller than those in other zones. Thus,managers could revise
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their strategies in order to increase output resources (ASMs, ATMs and RPMs). They

could learn about management strategies from those airlines with the best practices

in Zone I. Non-passenger revenue is the smallest in Zone VI. Boards andmanagement

could improve their strategy by adding other non-passenger services. If these services

were incorporated, then these airlines could move up to Zone I.

21.4.3 The Relationship Between the Airlines’ Performance
and Corporate Governance

Jensen (1993) and Chiang and Lin (2007) point out that large board sizes can lead to

some problems, such as coordination and communication, allow the CEO to control

the board easily and so give rise to certain agency related problems. However, more

directors in the board can allow for more specialists from different fields and

therefore higher-quality decision-making. Furthermore, resource dependent theory

demonstrates that board size is associated with a firm’s ability to acquire key

resources from outside (Zahra and Pearce 1989; Xie et al. 2003). Committees are

established by the board. There are four common types of committees: audit,

nominating, remuneration and executive. Vafeas (1999) found that committees

and a firm’s performance were negatively related, but the relation was not signif-

icant. In terms of boards’ internal functions, one of their major tasks is deciding the

frequency of meetings (Vafeas 1999). Andres and Vallelado (2008) demonstrate

that meetings provide board members with ways to discuss and exchange ideas

about how they wish to monitor managers. Jensen (1993), however, indicates that

board meetings were not necessarily helpful to performance.

With respect to composition and independence, there can be two types of

directors: executive and non-executive. Non-executive directors’ major duties

include monitoring, disciplining and advising managers; therefore, they can reduce

conflicts of interest between insiders and shareholders (Harris and Raviv 2008).

Andres and Vallelado (2008) point out that an appropriate, not excessive, number of

non-executive directors would be more efficient in monitoring and advising func-

tions and thus would improve performance. Nevertheless, Yermack (1996) shows

that firms with a high percentage of non-executive directors have inferior perfor-

mance. Baliga et al. (1996) and Bhagat and Bolton (2008) showed that when a firm

separates the functions of the CEO and the chairman, performance is better than

those with CEO duality. Nevertheless, Jensen (1993) observes that in CEO duality,

the CEO can control information more effectively than the other board members

and so can impede monitoring. Sonnenfeld (2002) argues that the average age of

directors can be used as a proxy for experience. Older directors have more profes-

sional experience in firms and industries and so board quality can be promoted.

However, Stathopoulos et al. (2004) suggests that older directors are less effective

in ensuring firm performance. With respect to managerial ownership, Jensen and

Mecking (1976) point out that when managerial ownership increases, the interests
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of managers and shareholders become more similar. Therefore, managerial

ownership is significantly positively related to performance.

To summarize, prior studies have rarely explored whether the characteristics of

corporate governance affect an airline’s performance. Therefore, in this section, we

will explore whether corporate governance affects airline performance.

For the dependent variable of the study, we apply the efficiency results from

the two-stage DEA in the first part. For independent variables, we use Board
size (BOASIZE), Committee (COMNUM), Meetings (MEETYEA), Non-executive
director (NEXDIR), CEO duality (CEODUALITY), Directors’ age (DIRAGE) and
Executive officers ownership (EXEOWN) to represent corporate governance. As

proposed by Backx et al. (2002) and Barros and Peypoch (2009), this study uses five

control variables.

Corporate governance variable

Board size (BOASIZE): The number of directors on the board including executive

and non-executive directors

Committees (COMNUM): The number of committees established by the board, for

instance, auditing, nominating, remuneration and executive committees.

Meetings (MEETYEA): The annual number of board meetings for each airline

Non-executive director (NEXDIR): The number of independent non-executive

directors on the board

CEO duality (CEODUALITY): A dummy variable for airlines, which equals 1 if the

CEO is also chairman of the board, and 0 otherwise

Directors’ age (DIRAGE): The average age of the board directors

Executive officers ownership (EXEOWN): The percent of the firm’s outstanding

shares owned by the executive officers

Control variable

Average age of aircraft (AVGAGE): The average age of all aircraft
Average aircraft size (AVGSIZE): The average number of seats on the aircraft

Average stage length (AVGSTAGE): The average distance flown on each segment

of every route

Dummy International (INTER_DUM): A dummy variable for airlines, which equals

1 if the airline has international flights and 0 otherwise

Dummy low cost carrier (LCC_DUM): A dummy variable for airlines, which equals

1 if the airline is a low-cost carrier and 0 otherwise

To explore whether characteristics of corporate governances affect an airline’s

performance, we estimate the truncated-regression model as follows:

TEi ¼ αþ β1BOASIZEi þ β2COMNUMi þ β3MEETYEAi þ β4NEXDIRi

þ β5CEODUALITYi þ β6DIRAGEi þ β7EXEOWNi þ δ1AVGAGEi

þ δ2AVGSIZEi þ δ3AVGSTAGEi þ δ4INTER DUMi þ δ5LLC DUMi þ εi

TE represents the empirical result of the efficiency score obtained from

the production efficiency or marketing efficiency of the two-stage DEA
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efficiency scores. This study also performs a simulation test, which includes 3,000

experimental observations, in order to confirm the fitness of the truncated-

regression model. To enhance the robustness of our empirical results, the following

additional analyses were completed. First, we used the variance inflation factors’

diagnostics (Neter et al. 1985) for collinearity analysis. No evidence of collinearity

between independent variables was found in our regression models. Next, the White

test (White 1980) was used to check the heteroskedasticity of the residuals, and

evidence of heteroskedasticity could be found. Finally, the heteroskedasticity-

robust standard error was used to construct a heteroskedasticity-robust t statistic.

Table 21.4 Results of truncated regression by using the heteroskedasticity-robust standard error

Variable Production efficiency Marketing efficiency

Intercept 1.9850* 2.2265**

BOASIZE �0.0638** �0.0063

COMNUM 0.0358* 0.0331

MEETYEA �0.0053 0.0034

NEXDIR 0.0119 0.0479**

CEODUALITY 0.0352 0.0629*

DIRAGE 0.0026 �0.0010

EXEOWN 0.0005 0.0165*

AVGAGE(years) �0.0364 �0.0229

AVGSIZE 0.0041** �0.0028*

AVGSTAGE(miles) 0.0004** �0.0002

INTER_DUM �0.0169 0.2779**

LCC_DUM 0.0547 0.0737

Adjusted R-squared 0.2956 0.3125

Variance 2.880 2.8312

Note:
*, ** and ***, indicates the statistical significance at the 10 %, 5 %, and 1 % levels, respectively

PE ¼ the efficiency score obtained from the weighted average of the two-stage DEA efficiency

score

BOASIZE ¼ the number of board members

COMNUM ¼ the number of committees established by the board

MEETYEA ¼ the number of meetings held by the board per year

NEXDIR ¼ the ratio of non-executive board members to board size, which is also a measure of

board independence

CEODUALITY ¼ a dummy variable, which is equal to 1 if the CEO is also the chairman of the

board and 0 otherwise

DIRAGE ¼ the average age of board directors

EXEOWN ¼ the percentage of outstanding shares owned by the executive officers

AVGAGE ¼ the average age of all aircraft

AVGSIZE ¼ the average number of seats on each aircraft

AVGSTAGE ¼ the average distance flown on each segment of every route

INTER_DUM ¼ a dummy variable for airlines, which is equal to 1 if the airline has international

scheduled flights and 0 otherwise

LCC_DUM ¼ a dummy variable for airlines, which is equal to 1 if the airline is a low-cost carrier

and 0 otherwise
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Table 21.4 presents the regression results of the separate efficiency by using the

heteroskedasticity-robust standard error.

In terms of production efficiency, the results of a truncated-regression suggested

that the independent variables BOASIZE and COMNUM are significantly related to

airline performance at 5 % levels. They also indicated that BOASIZE and

MEETYEA have an inverse relation with airline performance, while COMNUM
has a positive significant relationship with airline performance.

The results indicate that smaller boards lead to better airline performance.

Provan (1980) found that board size is positively related to performance and argued

that board size is related to the company’s ability to acquire key resources such as

budgets, external funding and leverage. Zahra and Pearce (1989) and Kiel and

Nicholson (2003) propose that larger boards are likely to be heterogeneous in their

industrial background and expertise, which improves the company’s decision

making and thus enhances its performance. Xie et al. (2003) reported that larger

boards can mitigate earnings management. The results of the current study are

contrary to their findings. We speculate that too many directors on the board may

lead to greater personnel compensation, which in turn makes it more difficult to

integrate management decisions. With respect to COMNUM, the results indicate a

significantly positive relationship with production performance. Vafeas (1999)

found a negative but not significant relationship between performance and the

number of committees. The more committees established by the board (for

instance, auditing, nominating, remuneration and executive committees), the

tighter control will be.

The study shows that MEETYEA has no significant negative relation with

production performance, while CEODUALITY showed no significant relation to

performance. When the CEO is also the chairman of the board, serious agency

problems can arise, and monitoring by the board can be reduced (Fama and Jensen

1983). Baliga et al. (1996) showed that a firm with separate CEO and chairman of

the board positions performed better than a firm with CEO duality. DIRAGE is a

proxy for experience, and older directors may be familiar with the firm and

industries. The results show that older directors have more experience and contrib-

ute to the airline’s performance. EXEOWN had positive relations with performance.

This is consistent with the findings of Jensen and Mecking (1976) in which they

show a positive relation between performance and stock ownership by executive

officers.

Regarding marketing efficiency, the truncated-regression analysis shows that the

independent variables NEXDIR and EXEOWN are significantly positively related to

airline performance at 5 % levels. Non-executive directors should scrutinize the

performance of management in meeting agreed goals and objectives, in monitoring,

and where necessary, removing, senior management, and in succession planning.

Directors may be recruited for their ability to offer support and advice in specialized

areas such as marketing, product development or financial restructuring. On the

other hand, BOASIZE and DIRAGE were found to be negatively related to airline

performance. Board size refers to the number of directors serving in a firm’s board.

Large boards may destroy corporate value. The result here suggests that some
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boards may be larger than optimal and that it may be worthwhile for some airlines

to reevaluate their optimal board size. Besides, a high level of executive officer

ownership reflects too many chiefs in an airline, which in turn may spoil the

company.

While previous studies have discussed the influence of control variables, this

study shows that some control variables are significant. AVGSIZE and AVGSTAGE
are significant in the production model, and AVGAGE, AVGSIZE and INTER DUM

are significant in the marketing model. These airlines should increase the average

number of seats on an aircraft and the average distance flown on each segment of

every route to improve production efficiency, and decrease the average number of

seats on an aircraft and the average distance flown on each segment of every route

and increase international flights in order to improve marketing performance.

Finally, it should be noted that the use of variables measured in monetary terms

in arriving at the DEA efficiency scores may render the scores somewhat question-

able as measures of the relative production and marketing efficiencies of the

carriers in the dataset. Variables such as the FLIGHT, MAINEXP, GROPROEQ

and NPR are measured in United States dollars, while the remaining variables are

measured in their physical units, which is how they should be measured when

evaluating the relative productive efficiency of a decision-making unit. Different

carriers in the dataset pay different prices for each unit of flight equipment, for their

maintenance services, and for each item in their ground property equipment, and

receive different prices for each ton of freight and mail they transport, especially

since the carriers used in the dataset are based in different countries (France,

Germany, China, Brazil, the United States, etc.). The currency exchange rate

from one country to another may lead to different operational costs for firms in

different geographical regions, and so the relative DEA efficiency scores may not

actually track differences in the relative efficiencies of the carriers. This will be the

topic of our future research.

21.5 Conclusion

While transport industries have become increasingly important in the global econ-

omy, issues in the aviation industry are especially important for a large, free market

economy like the United States, because they can influence both global economic

development and international politics. Although the efficiency of the aviation

industry has been widely discussed in previous literature, and the DEA technique

is frequently used to evaluate efficiency, there are still some important points not

previously explored. As a research topic, the issue of corporate governance in the

aviation industry has rarely been investigated. From the perspective of research

methods, the problem with the traditional DEA model is the concept of a one-stage

process, which neglects intermediate measures or linking activities. The concept of
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a two-stage process has been applied infrequently at best in previous studies of the

aviation industry. Therefore, this chapter aimed to establish a two-stage DEA to

measure efficiency, to discuss corporate governance and to evaluate the bench-

marks of airlines from a more complete viewpoint. The results of this study can

provide United States airlines with insights into resource allocation and competitive

advantage, and can help them to improve their strategic decision-making, specifi-

cally regarding operational styles, under fierce competition in the aviation industry.

The findings can briefly be described as follows. First, the 30 airlines researched

had an average production efficiency of 63 % and an average marketing efficiency

of 33 %. This suggests that managers should focus first on improving the inefficient

allocation of resources in production and then their marketing efficiency. Secondly,

low-cost carriers are more efficient, on average, than full-service ones in produc-

tion. This finding is consistent with the findings of Barbot et al. (2008). On the other

hand, full-service carriers are more efficient, on average, than low-cost carriers in

marketing. Thirdly, we can state that corporate governance influences firm perfor-

mance. The results of truncated regression on board size, average age of directors,

and percentage of outstanding shares owned by executive officers all show signif-

icant, positive relations to performance. Number of committees and CEO duality

both present significant negative relations with performance. This means that these

airlines can modify corporate governance to strengthen their efficiency and com-

petitiveness. Finally, we used the managerial decision-making matrix to find

benchmark airlines in order to help managers improve corporate performance.

Our findings can provide guidelines for coping with corporate governance issues

in the aviation industry. Future research might use Malmquist productivity change

index techniques to examine long-term variance in airline performance. It could

also prevent the results from being affected by external, short-term factors. Such an

approach would allow a dynamic view of the multidimensional performance of

airlines. It is also hoped that the models and methods implemented in this study can

help to bring about related research in other industries.
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Chapter 22

Network Representations of Efficiency

Analysis for Engineering Systems:

Examples, Issues and Research Opportunities

Konstantinos (Kostas) Triantis

Abstract Network efficiency models depict internal production/service processes,

and/or alternative perspectives, and/or different time periods. Researchers in the

efficiency measurement field are investigating and applying these models in a

variety of ways. However, in very few instances are these representations focused

on engineering systems. This chapter presents two very distinct network efficiency

models that are applied to engineering systems. The first uses the radial and slacks

based network DEA models to assess the efficiency performance of a downtown

space reservation system (DSRS). This system has been designed as an approach to

mitigate traffic congestion in an urban downtown area. The implementation of the

network DEA models identify the determinants of efficiency performance for the

agency operating the DSRS, for the traveler using the DSRS and for the community

where the DSRS resides. The second example pertains to asset management and

more specifically to highway maintenance management. An alternative network

efficiency representation is used where a system dynamics modeling approach

provides a way to study dynamic efficiency performance and assess highway

maintenance policies. Through these examples, issues pertaining to opening the

production black box to evaluate internal processes, the validity of the axiomatic

foundations of DEA for the network models, the relevance of the structure of the

network models in terms of suggesting resulting system behaviors, temporal and

dynamic efficiency performance associated with the network efficiency models are

discussed suggesting future research directions.
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22.1 Introduction and Context

Even though efficiency measurement and improvement has been a significant area

of scholarly research, engineers have not extensively used the efficiency measure-

ment paradigm to evaluate system performance and design engineering systems

(Triantis 2011, 2013) even though there are notable exceptions in the literature

(e.g., Cooper et al. 1992).

There are number of issues that provide challenges and opportunities for this type

of research. Typically, the focus of the analysis for engineering systems is at the very

micro level. This suggests that the “input/output transformation box” typically

considered in efficiency analyses needs to be “opened” and studied in detail. This

requires access and understanding of the underlying technologies, processes, infor-

mation exchange, organizational settings, and social/behavioral considerations.

On a very fundamental level, from an engineering perspective, a first understanding

of what needs to be measured lies in having a full appreciation and knowledge of the

physical and engineering relationships that govern these systems.

However, engineering systems are not designed, built and operated in a vacuum.

There are organizations and design teams that are tasked to do so by exchanging

important information and making decisions. Given, this reality, understanding the

interdependencies between system performance and the organizational entities that

are responsible for these engineering systems is paramount. This suggests that we

need a deeper appreciation and integration of the social/behavioral and information

sciences in our measurement analyses and thinking.

While the efficiency literature is based on an axiomatic framework (Vaneman

and Triantis 2003) the engineering design literature does not enjoy a similar

axiomatic foundation. What this means is that while in efficiency measurement

we rely on production theory, in engineering design the theory is still evolving

while at the same time engineering design literature borrows knowledge and

representations from organizational, optimization, decision, and probabilistic

theoretical frameworks among others. At the end, we need to make sure that the

axiomatic framework on which efficiency evaluation methods are based on are

relevant for the specific systems that we are evaluating and designing.

An important consideration is when in the system life-cycle performance assess-

ment is being conducted. Most efficiency studies rely on an ex-post assessment

where historical performance is analyzed. For engineering systems, the evaluation

of performance during design (conceptual, preliminary and detailed) (Blanchard

and Fabrycky 2010) is just as important as the assessment of performance during

operational phases. This performance evaluation during the design phase requires

the identification of the production possibility space or the design possibility space

and to make sure that the axiomatic framework underlying efficiency measurement

still holds for the various systems being considered.
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Related to the previous point, i.e., as to when in the system life cycle the

performance analysis is conducted, are the temporal and dynamic considerations of

system performance (Fallah-Fini et al. 2013a). In this chapter we borrow the dynamic

concepts presented by Sterman (2000) that help describe the dynamic characteristics

of systems. More specifically the concepts that we take into account is the consider-

ation of causation, feedback mechanisms, delays, and non-linear relationships. In our

dynamic representations and models the structure of the system leads to the observed

dynamic system behaviors and the resulting system performance.

In this chapter, we build on the concept of networks in efficiency analysis and

how this concept can be used to address some of the issues described in this Section.

More specifically, in Sect. 22.2, we employ the notion of network DEA (both radial

network DEA (Färe and Grosskopf 2000) and slacks based network DEA (Tone and

Tsutsui 2009)) in the context of a transportation system that has yet to be designed,

i.e., the downtown space reservation system (Zhao et al. 2010a, 2011). The DSRS

uses concepts from transportation engineering and efficiency measurement and

combines system optimization, neural networks, traffic micro-simulation and net-

work DEA approaches.

Additionally, in Sect. 22.3 we provide a description of a different type of

network that considers the dynamics of highway maintenance (Fallah-Fini

et al. 2010). The highway maintenance example combines concepts from highway

deterioration and efficiency measurement and combines system dynamics simula-

tion, optimization and efficiency measurement. In both of these sections we do not

replicate the details of the mathematical formulations, models and discussions in

the papers that have already been published or are under review. However, we do

wish to highlight some of the issues that have been briefly described in this section

and focus on future research opportunities (Sect. 22.4).

22.2 The Downtown Space Reservation System (DSRS)1

22.2.1 The Initial DSRS Conceptualization

In transportation engineering, congestion analysis is a continuing research concern.

Travel demand based approaches attempt to reduce congestion by defining, evalu-

ating, and implementing congestion mitigation strategies. An experimental travel

demand management approach that has yet to be implemented is the downtown

space reservation system (DSRS) (Zhao et al. 2010a) whose main objective is to

mitigate downtown traffic congestion.

Within the DSRS, travelers who want to drive to an urban downtown

area have to reserve their time slots in advance before embarking on their trips.

1 This section is adopted from Zhao et al. (2010a, b, 2011).
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The transportation agency who operates the DSRS, allocates time slots to travelers

based on the availability of the road network capacity. Only the travelers who get

permission from the transportation agency can drive in the downtown area during

the requested time period. This system is analogous to the idea of making reserva-

tions in advance to secure a seat on an airline for a trip taking into account carrier

capacity. In the case of the DSRS, the traveler is securing a time slot to visit the

downtown area taking into account road capacity.

The proposed DSRS consists of two modules, an offline optimization module

and an online decision making module (based on a neural network approach). In the

offline module, an optimization model is solved based on historical travel informa-

tion. Two objectives are included in the optimization problem, i.e., the total number

of travelers that the transportation system handles during a certain time period and

the revenue obtained from the downtown space reservation system. From a travel

demand mitigation point of view, the mobility of people is improved by restraining

the excessive amount of automobiles entering the downtown area. From an eco-

nomic point of view, revenue is maximized. It is assumed that this revenue can be

used to finance public transportation systems.

In order to take into account the stochastic variations in travel demand, a neural

network approach was used to construct the online module. Assuming that we have

hundreds of historical demand scenarios, we obtained optimal solutions for each

scenario (using the CPLEX platform). Given that artificial neural networks have the

capability to “learn from experience” (Teodorović and Vukadinović 1998), they can

be taught from the historical demand scenarios and the derived optimal solutions.

From this learning process, the system is able to recognize a situation characterized

by the number of reservations that already have been made for each vehicle class

during each time period and the corresponding revenue generated from the reserva-

tions. Therefore, when a new request comes in, the neural network can rely on this

historical information to provide a real time decision. In addition, new requests

become historical information and the system can be updated at predetermined time

intervals.

22.2.2 The Micro-simulation Evaluation

From a system performance measurement point of view, there were a number of

challenges. First is the fact that there were no ex-post data to use for the perfor-

mance analysis. The DSRS has been proposed but not yet implemented so there

were no available historical operational data. Second, the level of aggregation at

which the performance analysis could take place needed to be decided.

Initially, Zhao et al. (2010b) used a microscopic traffic simulation approach

executed in VISSIM to evaluate the DSRS. The microscopic traffic simulation

emulated the physics of traffic flow at a microscopic level. The simulation was

conducted for a revised road network representing downtown Boise, Idaho. The

issues that were tested in the simulation included: whether the DSRS improves
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traffic performance when compared without the DSRS; how the DSRS performs

compared with a reservation system that uses the First Come First Serve (FCFS)

principle; how specific DSRS parameters (such as, the relative importance of

traveler throughput versus revenue generation) influence the transportation network

system performance. The performance parameters that were outputs from the

simulation included typical engineering variables such as: average delay time per

vehicle, average speed, total travel time, total vehicle miles, total delay time, fuel

usage and costs, and emissions.

22.2.3 Social Welfare Evaluation for the Three Perspectives

Yet in addition to the standard transportation engineering measures of performance

one is faced with issues related to performance from the agency’s/provider’s,

travelers’/users’ and community’s points of view where the social welfare impact

of the DSRS needs to be considered. These three perspectives represent important

stakeholders in the transportation system and their interactions determine the overall

performance of the transportation system. By social welfare we are suggesting that

above and beyond the engineering traffic flow impacts of the DSRS, one needs to

take into account the impact of the system as far as the operational issues associated

with the transportation agency that is providing the service, the quality of service

that is experienced by the travelers using the system and the sustainability issues

insofar as the community is concerned.

At the initial stages of the DSRS development (Zhao et al. 2010a), the design of

the system was anchored around the objective of mitigating congestion. This means

that the original optimization model, which is at the core of the DSRS, was not

formulated to consider multiple stakeholder perspectives (agency, traveler, commu-

nity). In order to consider these multiple perspectives, the network DEA approach

was considered as a potentially viable approach. Nevertheless, there were a number

of issues that needed to be resolved as the following section suggests.

22.2.4 The Network DEA Approach

22.2.4.1 Assumptions and Considerations

As stated in the Sect. 22.1, the production possibility space or in this case the design

possibility space needed to be defined. This required the determination of the

decision making units and the definition of the inputs and outputs associated with

each of the three perspectives (agency, traveler, and community). Additionally, it

was assumed that the production axioms (Vaneman and Triantis 2003) governing

the inputs and outputs held as part of the associated service processes that are part of

the three perspectives. The three processes in the context of this research are the
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service provision process of the transportation agency, the service consumption

process of the travelers, and the environmental impact process for the community as

a function of automobile travel in the downtown area.

An understanding of each of these processes provided the requisite background to

define the input and output variables that were used in the network DEA model that

linked the three perspectives. It was assumed that the system was being evaluated at

the beginning of the system life-cycle. The dynamics associated with the various

processes of the DSRS and the impact of organizational/behavioral/ information

issues (e.g., the way the transportation agency would implement the DSRS) were not

considered as part of the measurement evaluation. An open issue that still remains

unresolved was how to account for the fact that the DSRS is to be used by many

travelers. The network DEA approach assumed that for the travelers’ perspective we

would consider average values associated with multiple travelers for the input and

output variables that were defined for the traveler perspective. This aggregation

issue however, requires further investigation in the future.

The essence of the network DEA efficiency measurement approach was to

compare and contrast various instances (scenarios) that occur in the transportation

network under the execution of the Downtown Space Reservation System (DSRS).

The scenarios constituted the production possibility set for our analysis. In other

words, the scenarios generated by the traffic micro-simulation constituted the

decision making units (28 in total). In this context, the data that were used were

viewed as ex-ante versus ex-post data.

The scenarios varied in terms of the total demand level (i.e. number of vehicles

per control period), the reservation policies (i.e. the weights assigned to the traveler

throughput and revenue in the objective function of the optimization model (Zhao

et al. 2010a)) and the inherent stochastic behavior of the traffic assignment and the

traffic flow in the simulation. The demand level varied from 6,000 to 7,000

(vehicles/control period) and was chosen according to the transportation network

size of the traffic simulation model. The relative importance (and consequently

weights of the DSRS optimization model) associated with the traveler throughput

and revenue was arbitrarily assigned due to the lack of practical references.

Operational costs were assumed constant for all of the 28 DMUs. The data from

the simulation model were complemented with revenue data from the original

optimization model of the DSRS.

22.2.4.2 The Network DEA Approach: The Initial

and Final Representations2

The idea behind the network DEA formulation is that users and community

stakeholders are likely to be outcome oriented whereas providers are output ori-

ented. Furthermore, we assumed that users are more focused on their mobility and

2 The mathematical formulations for the radial and slacks-based network models are described in

Zhao et al. 2011.
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this was reflected with the travel time related measures. It was assumed that

transportation agencies are mostly concerned with system efficiency and effective-

ness, which is reflected by the revenue, the level of service, and the vehicle

miles traveled. Last but not least, the community typically is concerned with

environmental and safety issues that are associated with traffic. Therefore, sustain-

ability oriented measures (such as, emissions) are more appropriate to reflect their

interests.

The network of Fig. 22.1 represents the conceptual underlying structure of the

DSRS transportation system with respect to the three perspectives and their inter-

relationships. This initial conceptualization was arrived at from input from trans-

portation engineers. The network consists of five nodes. Node 0 and node 4 are

dummy nodes. The purpose of these nodes is to distribute inputs to and collect

outputs from the intermediate nodes (nodes 1, 2 and 3). Therefore, the performance

of the network reflects the interrelationship among the three perspectives captured

by nodes 1, 2, and 3. Node 1 represents the community’s perspective that is directly

impacted by the transportation system. Node 2 represents the viewpoint of the

transportation service provider whereas node 3 is the transportation user’s perspec-

tive. The connection between nodes is directed, indicating the material transforma-

tion from inputs to outputs.

Fig. 22.1 Three perspectives of the performance network structure (initial conceptualization)

(Reprinted with permission from Zhao et al. 2011)
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From the agency’s perspective, the inputs to the transportation system include

different operational costs and the transportation system infrastructure. The opera-

tional costs considered in this research are the system maintenance and administra-

tive costs that the transportation agency wishes to minimize. It is also assumed that

the agency makes decisions on whether to improve the transportation infrastructure,

so it is considered as an input to the agency node 2. The outputs from the agency node

2 include revenue (Revenue I and II in Fig. 22.1), traffic volume, and level of service

(LOS). While collecting revenue (Revenue I) to maintain the transportation system

is in itself an objective for the agency, revenue (Revenue II) is also collected as a

final output. It is assumed that traffic flow on the roads will result in traffic volume as

a consequence of the DSRS and thus this variable is considered as an output from

the agency’s node 2. LOS is included as an output for node 2, because one of the

agency’s goals is to provide a certain LOS to the traveler.

From the community’s point of view, the inputs are the infrastructure, the

revenue (Revenue I) from executing the DSRS and the traffic volume. Infrastruc-

ture is imposed in the community’s territory, so it is viewed as an input for node

1. The traffic volume will result in emissions and accidents for the community, and

we assume that part of the revenue (Revenue I) from the DSRS will be used to

improve the transit system in the community. Thus, the traffic volume and revenue

(Revenue I) are included as inputs to the community node, and emissions (unde-

sirable output), accidents (undesirable output) and public transportation improve-

ments (desirable output) are the outputs.

From the travelers’ perspective, the fuel cost, travel time and other costs

including the reservation fee spent on the trips are considered as inputs by most

travelers. These costs are direct costs. Since node 3 reflects the traveler’s perspec-

tive, the measurement of the output is considered to be person miles rather than

vehicle miles therefore the outputs from node 3 are person miles traveled and user

satisfaction. Among all the variables in the representation of Fig. 22.1, there are two

types of inputs/outputs – intermediate inputs/outputs and initial inputs/final outputs.

The final outputs are the outputs that are accumulated in node 4, such as emissions,

accidents, and person miles. The intermediate outputs, LOS, traffic volume and

revenue, are the outputs from agency’s node 2 and they are also the inputs to nodes

1 and 3.

Given the data from the micro-simulation model and from the original DSRS

formulation the network DEA representation that was finally executed is

represented by Fig. 22.2. Travel time, vehicle miles, average speed, fuel costs,

emissions and personal miles (calculated from total vehicle miles and average

occupancy) was obtained from the micro-simulation whereas revenue was obtained

from the DSRS optimization. Radial network DEA and slacks based network DEA

models were computed for the network (both input and output orientations) whereas

the Banker et al. (1984) efficiency scores were computed for each of the nodes

(Fig. 22.3). The reason why the efficiency scores for each of the individual nodes

were computed was to determine the differences in performance evaluation using

the network DEA and the DEA individual formulations.
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22.2.5 Network DEA: Conclusions from the Example

The differences between the radial network and slacks based models for this

example lie in the way the efficiency scores are computed. The radial and the slacks

based model network DEA approaches provide different performance assessments.

For example, when considering both approaches, the node that dominates is differ-

ent given that the radial network efficiency score focuses primarily on the relatively

efficient node in the network and ignores the inferior performance of the other

nodes. Whereas, the slacks based network measure considers the average perfor-

mance of all nodes. According to this information, the decision maker may be

inclined to focus on very different interventions so as to improve system perfor-

mance. For instance, based on the results from our example, the radial network

DEA will lead the decision maker to focus more on the agency’s perspective, while

the slacks based network model will lead decision maker to focus on the traveler.
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One of the core assumptions is that the network DEA structure is representative

of the underlying processes (in this example, transportation processes (from an

agency’s and traveler’s points of view) and community processes (in terms of

community resilience). The network structure assumes two things. The first is

that the input and output variables considered for each node are accurate represen-

tations of the service transformation processes. The second is that the interactions

(co-dependencies) between nodes are reflected by the intermediate inputs and

outputs. This means that other forms of co-dependencies (physical, informational

and behavioral) are not at explicitly considered.

This research uses a combination of a DSRS optimization, a neural network, a

micro simulation evaluation and a network DEA approaches. What this suggests is

that when evaluating alternative system designs it is reasonable to combine analyt-

ical with simulation approaches. In our example, the DSRS optimization model

itself could not convey important information, such as which traffic flow conditions

are best suited for the DSRS, whether the design of the system meets stakeholders’

requirements, and how the DSRS influences agency, traveler, and community

performance. This is why it was necessary to additionally execute the micro-

simulation and network DEA approaches.

Simulation is one of the most popular tools used by transportation engineers.

It has been used to test and analyze the DSRS (Zhao et al. 2010b). The simulation

model provides various transportation measures (e.g. travel time, average delay,

etc.) and helps the decision maker appreciate the system from a transportation

engineering perspective. However, additional performance aspects need to be

considered. For example, the simulation does not directly tell us how various

input/output variables affect overall system performance and whether social wel-

fare goals are met by key stakeholder entities. The network DEA approach provides

a single index as representative of the overall system efficiency and identifies

appropriate sources of inefficiency across the various perspectives.

Therefore, the DSRS optimization model represents the system that was

designed; the simulation and the network DEA models are the supporting

approaches that provide an assessment of this system design. The two evaluation

approaches are complementary. The simulation approach supports the network DEA

model by providing data, and the network DEA performance measurement comple-

ments the simulation model by taking into account the key perspectives that are

impacted by the potential implementation of the DSRS.

Returning to the discussion of Sect. 22.1, the network DEA approach helps the

decision maker understand the system that is being evaluated by opening the DEA

transformation “black box”. This enables decision makers to locate the sources of

inefficiency more precisely. For example, if the network DEA model shows that

inefficiency is linked mainly to the traveler, the decision maker might improve the

traveler throughput via a pricing policy adjustment. Additionally, we assumed that

the axiomatic framework on which DEA is based holds for each of the three nodes

of our example and for the network as a whole. Nevertheless, we did not consider

the dynamic characteristics of the DSRS system which brings us to the next topic in

this chapter.
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22.3 Dynamic Representations of Performance

Measurement Networks

While the static network DEA performance models for engineering systems provide

an initial understanding of the determinants of efficiency performance within these

systems, they do not consider the dynamic characteristics of these systems. In terms

of dynamic network performance models, the efficiency research community has

chosen to approach this issue using two distinct and separate directions.

The first simply extends network DEA formulations to include time (see for

example, Tone and Tsutsui 2013). An alternative approach is to model the system’s

dynamic behavior explicitly (for example, using either system dynamics (Vaneman

and Triantis 2007) or agent based modeling (Dougherty et al. 2013)) and then

include efficiency concepts as a way to assess system performance. This latter

direction allows for the explicit consideration of causation, feedback mechanisms,

delays, and non-linear relationships whereas the former direction introduces tem-

poral variations of efficiency measures explicitly. As described in the example of

Sect. 22.2, the structure of network DEA model does not suggest anything in terms

of the resulting system behavior whereas, the structure of system dynamics or agent

based models result in various forms of system behaviors once one executes the

simulations. On the other hand, the ways tomeasure efficiency performance with the

system dynamics (Fallah-Fini et al. 2013b) or agent based models (Dougherty

et al. 2013) are not straightforward. Consequently, one can view both directions as

complementary since they address alternative representations of dynamics and

efficiency measurement.

In order to complement the discussion of Sect. 22.2 we offer an example of a

system dynamics representation of a system where performance assessment is an

important objective. In the example that follows we use system dynamics to

explicitly consider highway deterioration and renewal and briefly describe how

efficiency measurement considerations are incorporated. The modeling details are

described in Fallah-Fini et al. (2010, 2012, 2013b) which we do not replicate in this

brief overview.

22.3.1 Infrastructure Management: Obtaining an Optimum
Strategy for Road Maintenance3

For the highly challenged U.S. road infrastructure, major budgetary restrictions at

the State and Federal levels and the significant growth in traffic demand have led to a

continual pressure to improve the performance of highway maintenance practices.

This has led to a series of analyses (Fallah-Fini et al. 2010, 2012, 2013b) that have

3 This section is adopted from Fallah-Fini et al. (2010, 2012).
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attempted to assess the privatization of road maintenance operations by state

Departments of Transportation (DOTs). The research findings of these studies

have indicated that road agencies should use hybrid contracting approaches that

include best practices of both traditional (public) and performance-based (private)

highway maintenance contracting. The analyses used an empirical dataset of pave-

ment condition and maintenance expenditures over the years 2002–2008

corresponding to 17 miles of interstate highway that lay in one of the counties in

the state of Virginia, USA. The data allowed for the calibration of the developed

system dynamics models.

In the dynamic efficiency measurement model (Fallah-Fini et al. 2013b) the

performance of highway maintenance operations was evaluated where the inter-

temporal dependences between consumption of inputs (i.e., maintenance budget)

and realization of outputs (i.e., improvement in road condition) were explicitly

captured. We built on a micro representation of pavement deterioration and renewal

(Fallah-Fini et al. 2010, 2012) and studied the impact of the allocation of scarce

maintenance budgets over time. We introduced a concept of efficiency that con-

trasts the optimized budget allocations to the actual ones. The policies that were

found through the optimization showed that road authorities should give higher

priorities to preventive maintenance than corrective maintenance.

Initially, in order to establish the basic model we identified key maintenance

dynamics associated with road maintenance and then we represented the deterio-

ration and renewal processes of road maintenance using a physical understanding of

these processes at the pavement level. The deterioration and maintenance dynamics

can be summarized in two major feedback loops (See the causal loop in Fig. 22.4).

The pavement condition deteriorates as a function of traffic load and environmental

conditions. The balancing loop B1 (Maintenance Fix) depicts how the maintenance

operations performed by road agencies bring the road condition towards desired

conditions by reducing the road area under distress. On the other hand, the

reinforcing loop R1 (Accelerated Deterioration) depicts the effect of a budget

shortfall on delaying maintenance and the further deterioration of pavement con-

ditions. This initial qualitative representation of the deterioration and maintenance

dynamics served as the input to the physical simulation model. For details of the

simulation model refer to Fallah-Fini et al. (2010, 2013b).

The conceptualization of the dynamic evolution of road condition over time

expands the dynamic representation in network DEA introduced by Färe

et al. (2007). We assume that part of the highway network at period t is affected
by a set of deterioration factors such as climate conditions, traffic load, etc. Based

on the condition of the road, appropriate maintenance operations are performed and

the road evolves to a new condition at the end of period t. The new road condition is

used as an input at the start of period t + 1 when the road section goes under a

similar transformation process. This means that the maintenance treatments during

period t affect the road condition at the end of period twhich is the starting point for
period t + 1. Thus, the required maintenance operations during period t + 1 (and

consequently the road condition at the end of period t + 1) depend on the mainte-

nance operations/inputs that have been performed in a stream of previous periods.
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In such a setting, any “static” network DEA efficiency measurement framework

that ignores the inter-temporal effects of inputs and managerial decisions for

future streams of outputs (i.e., future road conditions) is likely to be unrealistic.

The premise of this research is that successful evaluation and improvement of the

performance of road maintenance practices requires a long-term perspective that

takes into account the dynamics of road deterioration and maintenance.

The pavement engineering literature was studied to understand and capture the

physics of the pavement deterioration (Huang 2004). Within the System Dynamics

(SD) framework (Sterman 2000), the physically based dynamics were investigated

in conjunction with macro-level maintenance operations. This combination

allowed for constructing a simulation model that is grounded in the physics of

road operations (i.e., the pavement distress generation and propagation, the effects

of aging, the effect of deferred maintenance), that considers environmental condi-

tions (the load in terms of vehicles and climate conditions) and material delays, that

incorporates managerial factors (i.e., budget constraints, priorities in terms of the

type of maintenance action (preventive, corrective and restorative), the thresholds

associated with each type of maintenance and the actual amount of funds allocated

to conduct maintenance for each road section). When executing the simulation

model one can observe an adjustment path of the road condition to a new condition

at the end of the simulation that is affected by the physics of deterioration,

environmental conditions (traffic demand and climate conditions) and maintenance

policies.
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Fig. 22.4 The highway deterioration and maintenance causal loop diagram (Adopted from Fallah-

Fini et al. 2010)
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In defining and measuring system efficiency, we compared the actual road

condition adjustment path (change in the state of the system) to a benchmark that

represents the expected road condition adjustment path under an optimal

budget allocation strategy over time. This concept is an augmentation of the output

oriented concept of efficiency. To find the benchmark, we introduced a payoff

representation that is a function of the state of the system at time t. For highway

maintenance, the main objectives of the road authorities are to improve the condi-

tion of the highway network and maximize drivers’ utilities while minimizing the

costs. Thus, as an example, the payoff representation could be defined as the

drivers’ utilities at any point of time as a function of the condition of the road

network state minus the maintenance costs. Then, starting from an arbitrary state at

time t0, the infinite horizon optimal adjustment path for the road condition can be

constructed by following the optimal maintenance decisions obtained from solving

an optimization problem (Fallah-Fini et al. 2013b) that maximizes driver utilities.

22.4 Conclusions and Future Research

The two examples presented in this chapter suggest that we have only scratched the

surface in terms of obtaining viable network efficiency representations of engineer-

ing systems. The challenges and opportunities summarized in Sect. 22.1 remain.

More specifically, micro performance representations of systems as a function of

implementing the network DEA approach are opening the production “black box”.

In so doing, the identification of important processes that impact system perfor-

mance are studied. This allows for an expanded exploration of the determinants of

efficiency performance both within and between nodes and processes that are

fundamental for the network DEA approach. In this sense, there is an opportunity

to contribute to theory by experimentally discovering determinants of efficiency

performance for a number of systems and applications.

Furthermore, we still have a limited understanding of how the structure of the

efficiency network relates to which nodes and determinants of efficiency perfor-

mance are important. In the case of the DSRS, the computational approach (radial

versus slacks based efficiency determination) suggested that different nodes are

important (i.e. the agency’s versus the traveler’s). This does not assist decision

makers to arrive at consistent performance improvement interventions.

In terms of understanding and measuring dynamic efficiency (Fallah-Fini

et al. 2013a) of engineering systems, there are potentially two distinct directions.

The first simply extends network DEA formulations to include time (see for

example, Tone and Tsutsui 2013). An alternative approach is to model the system’s

dynamic behavior explicitly (for example, using either system dynamics (Vaneman

and Triantis 2007) or agent based modeling (Dougherty et al. 2013)) and then

include efficiency concepts as a way to assess system performance. As suggested by

the highway maintenance example of Sect. 22.3, one can view both directions as
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complementary since they address alternative representations of dynamics and

efficiency measurement.

As argued in Sect. 22.1, engineering systems are not designed, built and operated

in a vacuum. There are organizations and design teams that are tasked to do so by

exchanging important information and making decisions. This suggests that we

need a deeper appreciation and the integration of the social/behavioral and infor-

mation sciences in our efficiency analyses and thinking. While the efficiency

literature relies primarily on economic and operations research thinking it is the

contention of the author that understanding of efficiency performance will be

incomplete without the input from the social and behavioral sciences (sociology,

psychology, cognitive sciences, decision sciences, etc.) computer science (cyber

physical systems), and engineering (control systems, environmental engineering,

electrical engineering, structural engineering, etc.). This suggests an even expanded

inter-disciplinary approach to efficiency measurement. Network representations

such as network DEA offer a viable vehicle for realizing this inter-disciplinary

perspective. However, all of this is contingent on consistently revisiting the

axiomatic framework on which efficiency analysis is based on.
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